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Abstract: Oxazaborolidine catalyst (CBS catalyst) has been extensively used for catalytic borane
reduction with a predictable absolute stereochemistry and high enantioselectivity. However, the use
of isolated CBS catalyst sometimes has the drawback of low reproducibility due to the aging of the
CBS catalyst during storage. Therefore, we investigated a more reliable and practical method for
the reduction of a variety of ketones including challenging substrates, primary aliphatic ketones,
α,β-enones, and trifluoromethyl ketones. This review surveys the developments in borane reduction
using oxazaborolidine catalysts generated in situ from chiral lactam alcohols and borane.
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1. Introduction

Asymmetric reduction of prochiral ketones is one of the most important methods for the synthesis of
chiral secondary alcohols and constitutes a valuable step in the synthesis of a variety of natural products and
several medicinally important compounds. The oxazaborolidine-catalyzed asymmetric borane reduction
of prochiral ketones (CBS reduction) using chiral amino alcohols [1–4] has been extensively investigated,
since the stoichiometric reductions were reported by Itsuno et al. [5–7] and the catalytic versions were
reported by Corey et al. [8]. The chiral amino alcohol, (S)-α,α-diphenyl-2-pyrrolidinemethnol (1) derived
from (S)-proline has been widely accepted as superior one that permits efficient synthesis of chiral secondary
alcohols with predictable absolute stereochemistries (Figure 1). However, it has been described that the
preparation of oxazaborolidine 1a requires heating at reflux with excess BH3 in tetrahydrofuran (THF) [4].
On the other hand, Quallich et al. reported that the reaction of 1 with excess borane-dimethyl sulfide
complex (BH3-Me2S) formed the oxazaborolidine 1a in THF at room temperature for 8–10 h (Scheme 1) [9].
Later, Yanagi et al. also reported that the catalyst 1a was generated from 1 and BH3-Me2S in THF, ether,
and hexane at room temperature for 1 h [10]. Although the B-Me oxazaborolidine 1b formed by the reaction
of 1 with methylboronic acid has been developed as an air- and moisture- stable catalyst that catalyzes the
borane reduction of ketones with an excellent enantioselectivity [11], there is the requirement of complete
removal of water to avoid undesired effects [12]. As part of our studies in asymmetric synthesis, we have
investigated a more convenient and practical method for the reduction of a variety of ketones. This review
surveys the developments in borane reduction using in situ generated oxazaborolidine catalysts from
chiral lactam alcohols and borane over the last fifteen years. Furthermore, modifications of the method are
described for the borane reduction of challenging substrates, i.e., primary aliphatic ketones, α,β-enones
and trifluoromethyl ketones.
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2. Oxazaborolidine Catalyst Generated In Situ from a Chiral Lactam Alcohol and Borane 

To overcome certain drawbacks, such as difficulties in handling and the reproducibility of the 
isolated oxazaborolidine catalysts, an alternative method was needed. We considered that the chiral 
lactam alcohol 2 [13], (S)-5-(diphenylhydroxymethyl)pyrrolidin-2-one, could be rapidly reduced 
with borane to the corresponding imine, which would be further reduced by the neighboring 
alkoxyborane to form the oxazaborolidine 1a (Scheme 2). This was inferred from the report that the 
racemic amino alcohol 1 could be prepared from the racemic lactam alcohol 2 through its reduction 
with borane [10]. 
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Therefore, we conducted 11B NMR analysis of the in situ generated oxazaborolidine catalyst as 
shown in Figure 2. The 11B NMR (CDCl3) spectrum indicated the presence of the oxazaborolidine 
complex with borane (+17.7 ppm and −13.2 ppm) and free oxazaborolidine (+27.2 ppm) [14]. These 
chemical shifts were mostly consistent with those of the oxazaborolidine 1a generated in situ from 
(S)-diphenylpyrrolidinemethanol and borane [10] under the same conditions. 
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2. Oxazaborolidine Catalyst Generated In Situ from a Chiral Lactam Alcohol and Borane

To overcome certain drawbacks, such as difficulties in handling and the reproducibility of the
isolated oxazaborolidine catalysts, an alternative method was needed. We considered that the chiral
lactam alcohol 2 [13], (S)-5-(diphenylhydroxymethyl)pyrrolidin-2-one, could be rapidly reduced with
borane to the corresponding imine, which would be further reduced by the neighboring alkoxyborane
to form the oxazaborolidine 1a (Scheme 2). This was inferred from the report that the racemic amino
alcohol 1 could be prepared from the racemic lactam alcohol 2 through its reduction with borane [10].
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Therefore, we conducted 11B NMR analysis of the in situ generated oxazaborolidine catalyst as
shown in Figure 2. The 11B NMR (CDCl3) spectrum indicated the presence of the oxazaborolidine
complex with borane (+17.7 ppm and −13.2 ppm) and free oxazaborolidine (+27.2 ppm) [14].
These chemical shifts were mostly consistent with those of the oxazaborolidine 1a generated in
situ from (S)-diphenylpyrrolidinemethanol and borane [10] under the same conditions.
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As a result, we expected that the oxazaborolidine 1a generated in situ from 2 and borane should
possibly catalyze the reduction of prochiral ketones with high enantioselectivities.
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3. Asymmetric Reduction of Ketones

The lactam alcohol 2 was readily prepared by the reaction of phenylmagnesium bromide with
methyl (S)-pyroglutamate as reported previously [13]. The reduction of the chiral lactam alcohol 2
(10 mol%) with 1 equivalent of BH3-THF smoothly proceeded at room temperature within 5 min.
We found that the resulting oxazaborolidine intermediate catalyzed the borane reduction of various
ketones, affording chiral secondary alcohols in good yields and enantiomeric excess (ee). The results
are summarized in Scheme 3 [15].
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The reduction of aryl methyl, ethyl, and chloromethyl ketone with borane and 10 mol%
of 2 afforded the corresponding (R)-secondary alcohols, except for (S)-2-chloro-1-phenylethanol,
with excellent enantioselectivities (91–98% ee). α-Tetralone, a cyclic aryl ketone, was reduced with
good enantioselectivity (85% ee). The reduction of alkyl methyl ketones having a tertiary, secondary,
and primary alkyl group proceeded with good to moderate enantioselectivities (89% ee, 81% ee,
and 69% ee, respectively). Thus, the yields and enantioselectivities of the reduction using the lactam
alcohol 2 and borane were comparable to those of the isolated catalyst 1a. Moreover, 1 could be
obtained in good yield by extraction from aqueous acidic solution after quenching, suggesting that the
lactam alcohol 2 was reduced by borane to actually generate the catalyst 1a in situ at room temperature
in a short time.

4. Asymmetric Reduction of Aliphatic Ketones

Although the reduction of most aromatic ketones proceeded with excellent enantioselectivities,
those of aliphatic ketones, in particular primary aliphatic ketones, usually afforded moderate
enantioselectivities. For example, the enantioselectivity for the reduction of benzylacetone using
1a generated in situ from the chiral lactam alcohol 2 and borane was only 69% ee (that of Me-CBS
1b was 64% ee under the same reaction condition). Accordingly, we decided to modify the catalytic
borane reduction using chiral lactam alcohol 2 to improve the enantioselectivity of the reduction of
aliphatic ketones which are challenging substrates [16].

Shioiri et al. reported that trimethyl borate improved the reactivity and enantioselectivity of CBS
reduction through the B-OMe oxazaborolidine 1d [17]. Therefore, we expected that the electronic effects
of the boron substituent of the oxazaborolidine should enhance the reactivity and enantioselectivity.
First, BH3-THF solution was added dropwise to various alcohols in THF and stirred for 20 min at
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room temperature. During this period, the generation of H2 was observed. Then, the chiral lactam
alcohol 2 (10 mol%) was added to the alkoxyborane solution and stirred further for 1 h (Figure 3).
Slow addition of benzylacetone as an aliphatic ketone to the catalyst generated in situ for 1 h afforded
a (R)-secondary alcohol in good yields (74–90%, Scheme 4). While addition of neither methanol
nor 2-propanol improved ee (69% ee, without the alcohols), the addition of substituted phenols
afforded equal to slightly higher enantioselectivities (69–73% ee). We found a nonlinear dependence of
enantioselectivity on the pKa of these phenols [18]. The most acidic p-(trifluoromethyl)phenol did not
provide superior results (70% ee) and p-iodophenol provided the highest result (73% ee). These results
suggest that p-iodophenoxy oxazaborolidine 1e has appropriate properties to increase the reactivity
and enantioselectivity, though the reaction mechanism is very complicated due to possible involvement
of several intermediate borane species. When p-iodophenol was added to the in situ generated 1a,
the enantioselectivity decreased from 73% ee to 67% ee. This result indicated that the reduction of 2
with p-iodophenoxyborane should generate B-OAr oxazaborolidine catalyst 1e, though the detection
of 1e by 11B NMR analysis has not been successful, possibly due to its instability.
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Scheme 4. Asymmetric reduction a of benzylacetone using chiral lactam alcohol 2. a All reactions were
carried out with 10 mol% of 2 and 1.2 equiv of BH3 and ROH in THF at room temperature. b pKa 9.99.
c pKa 10.10. d pKa 9.17. e pKa 9.21. f pKa 8.68.

The screening of new chiral lactam alcohols with the 4-substituted or 3,5-disubstituted phenyl of
the carbinol center revealed that the use of 3 with 3,5-dimethylphenyl improved the enantioselectivity
from 73 to 79% ee. A nonlinear temperature effect on the enantioselectivity was also observed
(Scheme 5). When the reaction temperature decreased from 20 ◦C to −20 ◦C, the enantioselectivity
gradually increased up to 83% ee, and then dropped to 75% ee at −40 ◦C. This temperature effect
contrasts with the reported result that general CBS reduction at lower temperature yielded lower
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enantioselectivities [19]. Therefore, we confirmed that the reduction with 3 (10 mol%) and BH3

(1.2 equiv) at −20 ◦C resulted in a decrease in enantioselectivity, 35% ee, implying that a new
oxazaborolidine catalyst 1e would generate from 3 and p-iodophenoxyborane.
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Under these optimized reaction conditions, the reduction of alkyl methyl ketones having a tertiary,
secondary, and primary alkyl group with 3 and p-iodophenoxyborane proceeded with excellent to good
enantioselectivities (98% ee, 81% ee, and 83% ee, respectively; Scheme 6). The reduction of cyclohexyl
methyl ketone at room temperature proceeded with a better enantioselectivity (90% ee) contrary to
that involving the other ketones, suggesting that the temperature effect is somewhat substrate-specific.
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5. Asymmetric Reduction of α,β-Enones

Chiral allylic alcohols are important natural products [11] and the key intermediates for many
stereospecific reactions, such as Claisen rearrangement [20], epoxidation [21], and SN2′ displacement
with organometallic regents [22]. However, the reports concerning oxazaborolidine catalysis for
the reduction of α,β-enones are very limited, probably due to the occurrence of a side reaction,
i.e., hydroboration. For example, Corey et al. reported that the reduction of benzalacetone with
Bu-CBS 1c (10–15 mol%) and 2 equiv. of catecholborane (CB) in toluene at −78 ◦C proceeded with
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excellent enantioselectivity (92% ee) [23], as shown in Scheme 7. On the other hand, Bach et al.
described that the reduction of benzalacetone using 4 and BH3-Me2S in THF at 0 ◦C provided a lower
enantioselectivity (82% ee) [24]. Recently, Falck et al. also reported the enantioselective reduction of
benzalacetone using CB and air-stable bifunctional thiourea-amine organocatalyst 5, instead of CBS
oxazaborolidine catalyst, with a high enantioselectivity (90% ee) [25]. In this context, we investigated
the enantioselective reduction of α,β-enones as challenging substrates using the oxazaborolidine
generated in situ from the chiral lactam alcohol 3 to expand its scope and generality [26].
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We first examined the effect of the alcohol on the enantioselectivity of the reduction of benzalacetone
as a substrate using the chiral lactam alcohol 3 (10 mol%) and BH3-THF at 0 ◦C because the reduction
with 3 and BH3-THF afforded a complicated mixture as a result of the hydroboration side reaction.
We found that the addition of p-iodophenol significantly increased the enantioselectivity compared to
2-propanol [27,28] and p-halogen substituted phenols as shown in Table 1. Then, we examined the solvent
effect in the reduction with 3 and p-iodophenoxyborane. Toluene afforded a higher yield than THF
and the polar solvents, dichloromethane (CH2Cl2) and chloroform (CHCl3), afforded somewhat lower
enantioselectivities (56% ee and 66% ee).

Table 1. Asymmetric reduction of α,β-enones using the chiral lactam alcohol 3 a.
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ROH Solvent Yield ee (%)

i-Pr THF 3 7
Ph THF 7 8

p-Cl-Ph THF 20 46
p-Br-Ph THF 30 55
p-I-Ph THF 48 73
p-I-Ph toloene 61 73
p-I-Ph CH2Cl2 13 56
p-I-Ph CH2Cl2 43 66

a All reactions were carried out with 10 mol% of 3 and 1.2 equiv. of the alcohol and BH3-THF at 0 ◦C for 2 h.



Molecules 2018, 23, 2408 7 of 14

Stone demonstrated that Ph-CBS catalyst is more sensitive to temperature change than Me- and
Bu-CBS catalysts and indicated that CBS reduction may be optimized to obtain the highest selectivity
possible for a given catalyst and ketone by adjusting the temperature [19]. Therefore, we examined the
temperature effect on enantioselectivity for the reduction of benzalacetone using the in situ generated
p-I-PhO-oxazaborolidine catalyst 1e.

When the reaction temperature is lowered from 0 ◦C to −60 ◦C, the enantioselectivity increased
up to 84% ee at −40 ◦C, and then dropped to 63% ee at −60 ◦C (Table 2). Therefore, the optimal
temperature in toluene was found to be −40 ◦C. The temperature effect might be attributed to
the acceleration of the catalytic cycle as a result of the dissociation of the product D and the
regeneration of the catalyst from the reaction intermediate C (Scheme 8). Interestingly, we observed
that the enantioselectivity was susceptible to the balance between the borane equivalents and catalyst
loading. When 8 mol% of the chiral lactam alcohol 3 and 1.0 equiv. of p-I-PhOBH2 were used,
the enantioselectivity increased up to 90% ee.

Table 2. Effect of temperature, ligand loading, and borane equivalent on enantioselectivity for the
reduction of benzalacetone using chiral lactam alcohol 3 and p-iodophenoxyborane a.
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The absolute configuration of the resulting secondary alcohol was (R), which agreed with the
reduction process catalyzed by Bu-CBS 1c [23]. The enantioselectivity was proposed to originate via
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a six-membered transition state B shown in Scheme 8 [4]. Therefore, this result can be explained by
a transition state model (Figure 4) in which the olefinic part behaves as the large group RL and the hydride
of 4-I-PhOBH2 would attack on the Si-face of the carbonyl carbon of benzalacetone to give the (R)-alcohol.
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Figure 4. Proposed transition state model.

Under the optimized conditions, we investigated the borane reduction of various α,β-enones to
evaluate the scope and limitations of the substrate. As shown in Scheme 9, the reduction of p-chloro
and p-methyl substituted benzalacetones proceeded with a slightly lower enantioselectivity than that
of benzalacetone, regardless of their electronic properties. The bulkier 4-(1-naphtyl)-3-butene-2-one
was reduced with 86% ee. The reduction of 6-phenyl-3-buten-2-one proceeded with a slightly lower
enantioselectivity (83% ee) compared to that of benzalacetone, possibly due to the lack of conjugation
with the benzene ring. Although the reduction of the cyclic enone, 1-acetylcyclohexene afforded a high
enantioselectivity (85% ee), the reduction of the exocyclic enone, phenylmethylidenecyclohexanone,
revealed a moderate enantioselectivity (76% ee). This result can be explained by the less stable s-cis
conformation of the exocyclic enone, unlike the s-trans conformation of the cyclic enone and other
enones of the transition state (Figure 4).
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6. Asymmetric Reduction of Trifluoromethyl Ketones

Fluorine-containing chiral alcohols have recently been studied as potentially good precursors for
preparing ferroelectric liquid crystals [29]. However, because of their high reactivity, the oxazaborolidine-
catalyzed asymmetric borane reduction of trifluoromethyl ketones usually affords the corresponding
chiral secondary alcohols with a poor enantioselectivity [4], except for the reduction of the trifluoromethyl
ketones with Bu-CBS 1c and CB [30,31]. This low enantioselectivity can be explained by the low
coordinating ability of the carbonyl oxygen to the oxazaborolidine catalyst and the noncatalytic reduction
with borane. It was also reported that the oxazaborolidine 6 derived from L-threonine and CB at −90 ◦C
afforded high enantioselectivities [32]. On the other hand, other methods using the catalyst prepared from
(S)-diphenylpyrrolidinemethanol with 9-borabicyclo[3.3.1]nonane (9-BBN) 7 [33], spiroborate ester 8 [34],
and electronically tuned-CBS catalyst 1f with high Lewis acidity [35] have been reported with good to
high enantioselectivities and, interestingly, stereochemistry opposite to that of 1c (Scheme 10). Therefore,
we set out to investigate the catalytic asymmetric reduction of trifluoromethyl ketones using the simple
oxazaborolidine 1a generated in situ from the chiral lactam alcohol 2 and borane [14,36] to clarify its scope
and enantioselection.
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We first examined the effect of borane reagents on enantioselectivity for the reduction of
trifluoroacetophenone as shown in Table 3. Various borane reagents, BH3-THF, BH3-Me2S, CB,
and p-I-PhOBH2 were used at room temperature. Although the reduction with BH3-Me2S or CB
resulted in small enantioselectivities and the use of p-I-PhOBH2, which was effective for the reduction
of aliphatic ketones [17], did not improve the enantioselectivity, the use of BH3-THF was found to be
optimal as a reducing borane reagent for our method. Further study of the solvent revealed that the
polar solvent CHCl3 afforded a significantly higher enantioselectivity (up to 80% ee) for the reduction
with 2 and BH3-THF. However, we observed variable enantioselectivities depending on the storage
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period of BH3-THF. To our surprise, when a new commercially available BH3-THF (stabilized with ca.
0.005 M NaBH4) was employed, only lower enantioselectivities (55% ee) were obtained. These results
imply that a properly degraded BH3-THF is superior to the one containing NaBH4-stabilizer possibly
due to the butoxyborane species produced by the reduction of THF with BH3-THF during storage,
as reported by Nettles et al. [37]. They also described that the addition of a Lewis acid deactivated
the NaBH4 stabilizer in BH3-THF and that the BF3-THF complex (3–8 mol%) proved to be the best
with a high enantioselectivity for the reduction of acetophenone among the examined Lewis acids.
Fu et al. simultaneously reported that the chemo- and enantioselectivities dramatically increased when
using an acid (5 mol% of BF3-OEt2 or p-toluenesulfonic acid) as a scavenger of the NaBH4 stabilizer
in BH3-THF for the reduction of a ketone having the chiral 4-phenyl-2-oxazolidinone auxiliary [38].
Therefore, we expected that addition of BF3 could enhance the enantioselectivity for the reduction of
trifluoroacetophenone with the oxazaborolidine 1a. The reduction with 2 (10 mol%) and BH3-THF
(0.8 equiv.) in the presence of BF3 (8 mol%) provided the (S)-alcohol in 85% yield, with a higher
enantioselectivity (60% ee) compared to that without BF3, implying that the BF3 remaining after
scavenging the NaBH4 stabilizer might enhance the enantioselectivity. Accordingly, we carefully
examined the effect of BF3 loading on the enantioselectivity, which was not described in the papers
mentioned above ([37,38]). The enantioselectivity increased depending on the BF3 loading and reached
80% ee at 160 mol%, which was found to be the best loading after screening for the optimal loading.
To clarify the effect of its addition, 8 and 160 mol% of BF3 were added to the reduction process using
the pure BH3 generated in situ from tetra-n-butylammonium borohydride (TBAB) and methyl iodide
(MeI) [39], thus producing the (S)-alcohol in high yield and with high enantioselectivities. These results
suggested that excess BF3-THF not only deactivated NaBH4 stabilizer, but also actually improved
the enantioselectivity.

Table 3. Asymmetric reduction of 2,2,2-trifluoroacetophenone using lactam alcohol 2 a.
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suggesting that the hydride attack on the Re-face of the carbonyl group of trifluoroacetophenone 
might occur via a typical transition state (Figure 5A) for general CBS reductions. 

Reducing Agent Solvent BF3 (mol%) Yield (%) ee (%)

BH3-THF THF – 89 52
BH3-Me2S THF – 77 3

CB THF – 36 2
p-I-PhOBH2 THF – 67 42

BH3-THF toluene – 82 56
BH3-THF CH2Cl2 – 97 78
BH3-THF CHCl3 – 90 80

BH3-THF b CHCl3 – 94 55
BH3-THF b CHCl3 8 85 60
BH3-THF b CHCl3 160 91 80

TBAB/MeI c CHCl3 8 94 67
TBAB/MeI c CHCl3 160 97 81

a All reactions were carried out with 10 mol% of 2 and 1.2 equiv of BH3 and p-iodophenol in THF at −20 ◦C.
b New bottle containing approximately 0.005M NaBH4. c Pure BH3 was generated in situ.

The stereochemistry of the resulting secondary alcohol during the reduction with BH3-THF was
the same (S)-configuration as that observed for the reductions catalyzed by 1f [35], 7 [33], and 8 [34],
suggesting that the hydride attack on the Re-face of the carbonyl group of trifluoroacetophenone might
occur via a typical transition state (Figure 5A) for general CBS reductions.
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Corey et al. proposed another transition state (Figure 5B) for the reverse (R)-enantioselection
occurring hydride attack on the Si-face of the carbonyl group during the reduction with Bu-CBS 1c and
CB at −78 ◦C due to the electrostatic repulsion between the trifluoromethyl group and the lone pair
of the carbonyl group. To clarify whether the addition of BF3 causes a change in the oxazaborolidine
catalyst, we carried out 11B NMR study of the in situ generated oxazaborolidine catalyst in the presence
of BF3. The 11B NMR analysis revealed that the major signals (+17.7 ppm and −13.2 ppm) of the
oxazaborolidine complex with BH3-THF and free oxazaborolidine (−27.2 ppm) did not change upon the
addition of BF3-THF to the catalyst solution. Thus, an interaction between the oxazaborolidine catalyst
and BF3-THF was deemed to be negligible, if any. These results suggested that BF3 might not coordinate
to the in situ generated catalyst, but rather coordinate to trifluoroacetophenone, in an anti-relationship
to the trifluoromethyl group, thereby stabilizing the complex in the transition state (Figure 5C).

Under the optimized reaction conditions, the reduction of aromatic trifluoromethyl ketones
including the para-substituted biphenyl trifluoromethyl ketones proceeded with moderate to high
enantioselectivities as shown in Scheme 11. The electron-donating methoxy and phenyl groups of
the benzene ring increased the enantioselectivity to 86 and 90% ee, respectively. The reduction of the
biphenyl trifluoromethyl ketone with the methoxy group afforded the (S)-alcohol in 90% yield with the
enantioselectivity of 86% ee, which is similar to that obtained from the reduction with Bu-CBS 1c or the
oxazaborolidine derived from L-threonine and CB at −90 ◦C, but the opposite (S)-configuration [33].
On the other hand, the biphenyl trifluoromethyl ketone with an electron-withdrawing bromo group
was reduced with modest enantioselectivity (71% ee).
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carried out with 10 mol% of 2, 160 mol% of BF3 and 0.8 equiv of BH3 in CHCl3 at room temperature.
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7. Conclusions

We have demonstrated that the oxazaborolidine catalysts generated in situ from the chiral
lactam alcohol 2 and borane catalyzed the enantioselective reduction of aromatic ketones with
high enantioselectivities. Furthermore, in the case of aliphatic ketones and α,β-enones, the use
of p-iodophenoxyborane improved the enantioselectivities at low temperatures and, in the case of
trifluoromethyl ketones, the addition of BF3 enhanced the enantioselectivities at room temperature.
These modified methods offer good reproducibility and render the catalytic borane reductions more
practical because these catalysts can be easily generated in situ from stable chiral lactam alcohols and
borane before use.
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