
Vol.:(0123456789)

Archival Science (2021) 21:281–294
https://doi.org/10.1007/s10502-021-09358-z

1 3

ORIGINAL PAPER

Decoding the Cauzin Softstrip: a case study in extracting
information from old media

Michael Reimsbach1 · John Aycock2

Accepted: 28 January 2021 / Published online: 25 February 2021
© The Author(s) 2021

Abstract
Having content in an archive is of limited value if it cannot be read and used. As a
case study of extricating information from obsolete media, making it readable once
again through deep learning techniques, we examine the Cauzin Softstrip: one of the
first two-dimensional bar codes, released in 1985 by Cauzin Systems, which could
be used for encoding all manner of digital data. Softstrips occupy a curious mid-
dle ground, as they were both physical and digital. The bar codes were printed on
paper, and in that sense are no different in an archival way than any printed material.
Softstrips can be found in old computer magazines, computer books, and booklets of
software Cauzin produced. However, managing the digital nature of these physical
artifacts falls within the scope of digital curation. To make the information on them
readable and useful, the digital information needs to be extracted, which originally
would have occurred using a physical Cauzin Softstrip reader. Obtaining a working
Softstrip reader is already extremely difficult and will most likely be impossible in
the coming years. In order to extract the encoded data, we created a digital Soft-
strip reader, making Softstrip data accessible without needing a physical reader. Our
decoding strategy is able to decode over 91% of the 1229 Softstrips in our Softstrip
corpus; this rises to 99% if we only consider Softstrip images produced under con-
trolled conditions. Furthermore, we later acquired another set of 117 Softstrips and
we were able to decode nearly 95% of them with no adjustments to the decoder.
These excellent results underscore the fact that technology like deep learning is
readily accessible to non-experts; we obtained these results using a convolutional
neural network, even though neither of the authors are expert in the area.

Keywords Cauzin Softstrip · Barcode · Optical recognition · Convolutional neural
network · Deep learning

This work was supported in part by the Natural Sciences and Engineering Council of Canada,
RGPIN-2015-06359.

 * John Aycock
 aycock@ucalgary.ca

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10502-021-09358-z&domain=pdf

282 Archival Science (2021) 21:281–294

1 3

Introduction

Home computers in the late 1970s and early 1980s were becoming more affordable
and targeting the mass market instead of computer enthusiasts, but still required a
lot of technological knowledge. For instance, computer owners’ manuals typically
included information about BASIC programming, teaching users how to program
their own software (e.g., Apple Computer 1979). It was also common for computer
magazines to contain software in the form of source code—type-in programs. In
order to use the programs, people had to manually enter the code, and even a single
mistake could result in an error.

To make matters worse, storage devices were usually not part of a computer and
had to be purchased separately. Cassette tape decks were one option, albeit slow, and
floppy disk drives were available but costly. A potential solution came in the form
of bar codes. Two of the most widely recognized bar codes today are the Universal
Product Code (UPC) for identifying products and the Quick Response (QR) code
which is used in many different areas such as manufacturing, health care, and mar-
keting (Denso 2012).

By contrast, the Cauzin Softstrip shown in Fig. 1 is an almost-forgotten relic, a
two-dimensional bar code format released in 1985 by Cauzin Systems (Sandberg-
Diment 1985). All kinds of digital data, such as graphics, software or text files,
could be encoded as a Cauzin Softstrip and then printed on paper.

Cauzin’s optical reader, the Softstrip System Reader, sold for approximately
200 USD (Baskin 1987; Johnson 1986), with Cauzin’s encoding software—dubbed
the “Stripper”—retailing at under 30 USD (Baskin 1987; Cauzin Systems, Inc
(n.d.a)). It was compatible with the IBM PC, Apple II, and Macintosh, and in fact
Softstrips could be used to transfer data between these different platforms (Cau-
zin Systems, Inc (n.d.b)). Softstrips appeared in magazines, were sold in stores,
and appeared in at least one book. It provided an inexpensive software distribution
medium for publishers.

Although MacUser magazine proclaimed the Cauzin Softstrip the most innova-
tive concept of 1986 (MacUser 1987) and Cauzin Systems had plans to use the Cau-
zin Softstrip on cards such as credit or calling cards (Glaberson and Santulli 1989),

Fig. 1 An example Softstrip

283

1 3

Archival Science (2021) 21:281–294

the technology was not as successful as anticipated and eventually disappeared a
few years after its release in 1985. Floppy disks became cheaper and more wide-
spread, and programs became larger; the Softstrip is impractical for larger data, with
a single Softstrip only able to store 5500 bytes (Cauzin Systems, Inc 1986a; Cauzin
Systems, Inc (n.d.a); Johnson 1986). By contrast, an Apple II floppy disk from that
time would hold over 25 times as much data. Larger data items could be split across
multiple Softstrips, but this increased scanning time (already 30 s for a full strip)
and required the user to adjust the Softstrip Reader again for each Softstrip (Johnson
1986).

It is already difficult to find a Cauzin Softstrip Reader, working or otherwise. To
underscore this point, we were able to acquire one on eBay only after this work was
complete, and even then the software is missing. Further, the mechanical nature of
a Cauzin reader suggests that long-term functionality is not guaranteed. The only
other option to decode the Softstrips without access to a Cauzin Softstrip Reader is
to do it by hand, a time-consuming and error-prone task. By way of illustration, a
Softstrip had to be decoded manually for this work to locate a decoding error, a pro-
cess that took about eight hours until the decoding was successful. Use of a Softstrip
Reader, of course, is predicated on the assumption that an appropriate “accessory
kit” is found to interface the Reader to one of the supported host computers (for
instance, either a serial port or a cassette port was used to connect to the Apple II,
depending on the computer model), that a decades-old host computer is available
and functioning, and that a mechanism for exporting data off the host computer
exists.

This is the situation we found ourselves in, one doubtless familiar to memory
institutions and software preservationists, where we had data locked in an obsolete
format—here, we had physical Softstrips with data on them but no physical reader.
How could we access this data and allow it to be assessed, researched, and ulti-
mately preserved? Instead of compounding our obsolescence problems by trying to
find a physical reader and cajole it back into life, we applied modern technology. We
created a digital optical reader using deep learning, demonstrating in the process
that deep learning is a technique within reach of non-experts.

Anatomy of a Softstrip

This section explains the structure of the Cauzin Softstrip and how digital data is
encoded within it. The Cauzin Systems patents (Brass et al. 1987, 1988a, b) were
particularly helpful for understanding the details of the Softstrip format, and the
information here is drawn from them unless stated otherwise.

Basics

A Softstrip is 5/8 inches wide and up to 10 inches long (Brass et al. 1987; John-
son 1986), with two positioning marks for the Softstrip reader: a circle in the

284 Archival Science (2021) 21:281–294

1 3

upper left and a rectangle in the lower left (Fig. 1). Figure 2 shows how the exam-
ple strip looks when aligned in the reader.

Each Softstrip is divided into three sections (Fig. 3). The first part is the hori-
zontal synchronization section, the second is the vertical synchronization section
and the last part contains the strip’s data. The two synchronization sections are
collectively referred to as the header and contain encoded metadata about the
Softstrip itself.

The Cauzin Softstrip uses two adjacent squares, called a dibit, for encoding a
single data bit. A zero data bit is encoded by a black square followed by a white
square, whereas a one data bit is encoded by a white square followed by a black
square; other combinations are invalid (Fig. 4).

Fig. 2 Softstrip aligned in the reader

Fig. 3 Softstrip structure, with: a start bar; b checkerboard; c rack

Fig. 4 Possible dibit values

zero one invalid invalid

285

1 3

Archival Science (2021) 21:281–294

The start of the Softstrip is indicated by a one-dibit-wide black bar on the left side
(Fig. 3a), followed by one white square. Both the checkerboard and rack (Fig. 3b, c
respectively) change each row and are used to determine the start and end of a row.

Data are located in between the checkerboard and rack on each row. After the
checkerboard comes the first parity dibit. Parity refers to a method of detecting
(some) bitwise data errors, at the cost of using an additional bit (or, in this case,
dibit). The first parity dibit is for detecting errors in the following odd-numbered
data dibits; a second parity dibit for even-numbered dibits appears after the data dib-
its in the row, just prior to one or two white squares and the rack.

Softstrip header

The first part of each Softstrip is the horizontal synchronization section. It includes
the number of four-bit groups (nibbles) per row and is used to align the optical
reader for scanning the strip. (A physical reader also uses this section to determine
the contrast between paper and ink color, but that is not required for our work.) The
horizontal synchronization section is followed by the vertical synchronization sec-
tion, where the height of the dibits is encoded and is repeated multiple times per
row. The vertical synchronization concludes with three zero bytes that indicate the
start of the data.

Data section

A file header with metadata is encoded first; it contains information about the
encoded file. There are provisions for multiple files to be encoded in one strip, but
we did not find any instances of that occurring. Full details about the file header can
be found elsewhere (Cauzin Systems, Inc 1986b), but suffice it to say that the file
header contains fairly typical file metadata: file name, length, type. Crucially for our
purposes, the file header also contains a strip checksum, which is a strong(er) means
of detecting data errors than parity alone.

Corpus

The Softstrips we used were from five different sources and provided a wide spec-
trum of encoding densities and image quality.

Digital generated Softstrips (Corpus1)

A Softstrip creation tool (Osborn 2016b) was used to generate Softstrips. Here the
selection of input data could be arbitrary; we chose to use an icon collection, where
each approximately 25 × 25 pixel icon was encoded into a single Softstrip with a
typical image resolution of 390 × 2500 pixels. This large dataset provided a baseline
with optimal conditions to decode. Unfortunately, all of the following non-artificial
datasets exhibit real-world problems: damaged dibits, missing dibit parts, white

286 Archival Science (2021) 21:281–294

1 3

noise on black areas, damaged racks, and smeared printer ink. Figure 5 shows visual
artifact samples from the best, professionally printed data sources below.

Animated algorithms (Corpus2)

The book Animated Algorithms (1986) is one of the few books which used Soft-
strips. They were scanned at 300 DPI and have an image resolution of about
360 × 4200 pixels.

Cauzin Softstrip application notes and marketing material (Corpus3)

This collection was found on the Internet Archive (Cauzin Systems, Inc 1986c) with
no DPI information; we extracted images from the PDFs. Many Softstrips in this
collection contain some blurred areas.

Magazine collection (Corpus4)

This collection consists of scans found online (Apple II Scans (n.d.) 2019) from var-
ious computer magazines and was processed similarly to Corpus3. Corpus4 contains
by far the worst quality Softstrips, including some that would be difficult for humans
to decode.

StripWare (Corpus5)

Computer programs in the form of Cauzin Softstrips were sold in computer stores as
booklets called StripWare. Corpus5 is comprised of a number of StripWare artifacts
from eight booklets in very good condition (some still sealed in plastic). These Soft-
strips were scanned at 1200 DPI, with resolution ranging from about 750 × 6000
pixels up to 800 × 9600 pixels.

Method and results

Overall, we tried four different methods of decoding Softstrips, beginning with ones
that did not involve deep learning; full details are in Reimsbach (2018). The method
described here is the second-best one, but this method used a simpler convolutional

Fig. 5 Corpus2 artifacts (above) and Corpus5 artifacts (below)

287

1 3

Archival Science (2021) 21:281–294

neural network (CNN) that is less prone to overfitting, and only decoded three fewer
strips than a more complex CNN.

Method

A single strip is selected using the Gimp image processing software and run through
a three-step process: header processing, row extraction, and row decoding. Their
description is followed by a discussion of the methods we implemented to improve
the decoding of damaged strips.

Header processing

The horizontal synchronization section is the first part of a Softstrip and, in order
to decode it, the white-to-black transitions need to be counted. Because a damaged
horizontal synchronization section could have more white-to-black transitions than
actually exist (Fig. 6), we first apply image noise reduction.

There is no guarantee that the noise reduction removes all the noise, however.
Therefore, we use a heuristic distance measure to look for a group of self-similar
pixel lines, such as the ones highlighted by the red rectangle in Fig. 6, and consider
that a noise-free area. After an area with no noise is extracted, the decoder is then
able to compute the number of nibbles per strip row.

A strip’s structure changes drastically from the horizontal to the vertical synchro-
nization section and is reflected in the above features. Therefore, the distance meas-
ure is used again to locate the boundary between those sections.

Row extraction

A Softstrip image is divided into multiple segments, each 70 pixel lines, which
are processed separately. The segmentation is to compensate for distortions in the
scanned image.

To process each segment, the boundaries of the black checkerboard and the last
rack square are first determined for each pixel line in the segment. After all pixel
lines are scanned, the collected locations are filtered: every checkerboard location
must be within the checkerboard window, which we make slightly larger than the
actual checkerboard to help compensate for cases where the checkerboard is slightly
shifted. In addition, every checkerboard and rack location must occur at least 6
times in the segment, in order to filter out noisy pixel lines. Once the boundaries
are known, the checkerboard and rack pattern can be determined for each pixel line,
using the color of the center pixel of the left checkerboard and last rack square.

Fig. 6 Damaged horizontal
synchronization section

288 Archival Science (2021) 21:281–294

1 3

After all segments are processed, adjacent pixel lines with the same valid pattern
are grouped together into rows. There is no minimum number of pixel lines required
to form a row, because in some cases only a single pixel line can be found in a row.

Row decoding

We used the Keras Python library along with a Tensorflow back end1 to develop a
CNN-based row decoder. It was trained on data from five Corpus2 Softstrips whose
rows we had decoded algorithmically (Reimsbach 2018): 17,094 1-dibit samples and
26,596 0-dibit samples, where 75% of the samples were used for training and 25%
for testing. Almost 100% accuracy was reached after one forward/backward training
pass (epoch).

Input to the CNN is a 20 × 20 pixel grayscale image of a dibit. Recall that the
number of nibbles per row is known from the strip’s header, and the row image to
decode is divided by this value to get the average dibit size. If necessary, the row’s
dibits are resized to make each one 20 × 20 pixels. The CNN itself has six layers.

Handling damaged strips

We automatically apply three methods to attempt decoding of otherwise undecod-
able rows where parity checks have failed. As these are local improvements to make
a row parity check succeed, all successful combinations must be stored and consid-
ered later during the checksum test.

Row splitting repeatedly partitions the row image horizontally in an effort to han-
dle dibits whose damage falls in either the upper or lower areas of a partition. In
the worst case, only a single pixel line in the entire row will lead to a correct result.
Row shifting addresses the case where the start bar is damaged and the row image
was incorrectly extracted as a result. Here, we try shifting the row 1–2 pixels to the
left or right. Finally, low confidence flipping uses the confidence value output by the
row-decoding CNN and tries flipping the dibits that were classified with low confi-
dence (< 90%).

Results

Our method is able to successfully decode slightly over 91% of the corpora.2 This
rises to over 99% if we exclude Corpus3 and Corpus4, and only consider images
produced under controlled conditions. Obviously the generated strips of Corpus1 are
a dominant factor, and if we exclude those the successful extraction drops to around
71%. However, this climbs again to almost 94% if we consider non-generated strips
whose scanning we controlled. Overall, our experience with this method on different
corpora is that the higher resolution strips gave a clear advantage when decoding,

1 https ://keras .io and https ://www.tenso rflow .org, respectively.
2 Corpus1 869/869; Corpus2 38/40; Corpus3 36/58; Corpus4 86/159; Corpus5 96/103; in total
1125/1229.

https://keras.io
https://www.tensorflow.org

289

1 3

Archival Science (2021) 21:281–294

and even minor rotations of 0.01◦ during strip selection could lead to decoding
failures.

We performed a baseline validation of our decoder using Corpus1. Since the
exact inputs were known, we decoded all the strips in Corpus1 and compared the
results to the original input files; all matched exactly. Beyond that, we have defined
successful decoding of a strip using the objective metric of having all of a strip’s
parity bits and its checksum match, the two Softstrip mechanisms designed for this
purpose. These mechanisms allegedly gave ‘an undetected bit error rate of less than
one bit error per 10,000,000,000 bits’ (Cauzin Systems, Inc (n.d.a)).

Marketing claims notwithstanding, these are not strong tests in modern terms,
and it is indeed possible for a strip to contain a combination of errors that cause
the parity checks and checksum to succeed, or for there to be different readings that
succeed under these criteria. We observe, though, that even in the case of errors
it may be easy to reconstruct the intended data. For example, one Softstrip con-
tained a text file whose checksum failed, producing the corrupted line ‘There
is no$warranty.’ The correction here is obvious, and we argue that similar
repairs of localized errors would be possible even with BASIC programs or binary
code given semantic knowledge that is out of the scope of strip decoding. But using
semantic knowledge is no different a situation than might be faced when interpret-
ing writing on damaged, traditional physical artifacts; the important point is that our
reader is able to extract strip content so that it may be seen and interpreted.

While it would be possible to attempt automated correction of failed data reads
using, for instance, a trained text or code corpus, we would argue that it is best left
as a separate process to be applied by the user of the data. While some types of
Softstrip data are relatively robust, such as English text, computer code is not. A
minor mistaken correction in code might easily yield nonfunctional code, or worse,
code that apparently does function but produces incorrect results. Data correction is
a task we feel is best left for a domain expert; the important part is to identify when
such intervention may be necessary.

Related work

One of the earliest bar codes for encoding software was the Paperbyte in 1977 (Bud-
nick 1977), a 1-D barcode that was used to encode programs in Paperbyte books
and Byte magazines. In 1983, the OSCAR 1-D bar code was released for encoding
software in the Databar magazine, but only a single issue of it was ever published
(Savetz et al. 2017). A modern OSCAR barcode reader is available (Teuwen 2016).
However, this is a more straightforward decoding problem: OSCAR was a 1-D for-
mat, and the number of published OSCAR bar codes is very limited. We needed to
handle many more strips and their visual artifacts.

Chris Osborn, the author of the Softstrip generator we used for Corpus1, used it
to pose a challenge (Osborn 2016a): decode a generated Softstrip that contained the
private key to a Bitcoin wallet. The winner did write a Softstrip reader (Sowerbutts

290 Archival Science (2021) 21:281–294

1 3

2016), but one that required a number of inputs from the user, only worked for strips
under ideal conditions—and only needed to be able to read one particular Softstrip.

More broadly, there is prior work in cultural heritage on reading old media for-
mats (Chenot et al. 2018) and work using CNNs (e.g., Can et al. 2018). Our work
here adds to that body of knowledge. Also on point is preservation-focused archival
work dealing, for example, with handling content on floppy disks (Durno and Tro-
fimchuk 2015; Levi 2011), or extracting data from magnetic tapes (van der Knijff
2019). Many of the concerns echo our experience, with hardware and software either
well past its best-before data, or missing entirely. We also note McNally’s advocacy
for do-it-yourself solutions, albeit with a focus on born-digital content (McNally
2018); we feel our work is one answer to that call, for a medium that straddles both
the physical and digital.

Parallels between our work and optical character recognition (OCR) can defi-
nitely be drawn. Indeed, a recent OCR survey observed that OCR work of late has
been trending toward deep learning (Memon et al. 2020). The input for OCR is
intended(!) to be legible to humans, of course, whereas the dibits of finer-resolution
Softstrips are not easily discernable to the naked eye. Having said that, OCR must
deal with an enormous variety of fonts and letter shapes well beyond the relatively
fixed format of Softstrips; our point is that using deep learning to address this and
similar tasks is now within the reach of non-specialists. There are certainly specific
aspects of OCR, such as noise reduction, that are applicable in contexts like ours.

Discussion and conclusion

What we have demonstrated with our digital reader for Cauzin Softstrips is that it
is tractable to develop bespoke software solutions for obsolete media formats. We
stress that neither of the authors are experts in neural networks, and yet we have
seen excellent results simply using freely available Python libraries in a straightfor-
ward way. And, while Softstrips are arguably a niche, esoteric data format, in the
bigger picture they and our digital reader act as a vehicle for more generally applica-
ble lessons.

One important idea is how we decomposed the problem, abstracting away unnec-
essary functionality as well as breaking down the task until we were left with a well-
defined classification problem. In our case, multiple Softstrips often appear on the
same page, and instead of trying to automatically identify and process them all, we
left the job of identifying single Softstrips to decode for a human. Similarly, we had
initially considered having our software locate Softstrips’ positioning based on the
alignment marks that the real physical reader would use, but eschewing that notion
in favor of a human selecting the image region to process also simplified the soft-
ware required. In other words, there is a “sweet spot” in design where, depending on
the anticipated scale, it is quicker and easier to not automate things.

We can see the decomposition playing out further in our eventual decoding
method, where parts of the Softstrip were tackled incrementally until we were
left with the comparatively constrained task of classifying/reading dibits, albeit
one made challenging by real-world conditions. Intuitively, one might reasonably

291

1 3

Archival Science (2021) 21:281–294

think that our solution using deep learning is overkill, and that simpler algorith-
mic approaches would suffice. That is, in fact, what we initially thought—that
was our starting point for this work, and an earlier independent attempt overseen
by the second author not reported here. Ultimately those methods worked for a
small number of Softstrips, but quickly broke down when faced with the range of
damage present in some physical Softstrips along with the variant quality of Soft-
strip images not created under controlled conditions. CNNs, which learn relevant
classification features by themselves and are known for image-based applications,
presented an appealing, and surprisingly good, solution.

We do want to stress the helpfulness of having Cauzin information available
in patents and other sources. Our task would not have been impossible without
that information, but it would have required far more heroic efforts that would be
beyond the reach of most non-specialists. Even so, there were some incompletely
documented aspects of Softstrips that we needed to figure out on our own, but
fortunately they were relatively minor ones.

The Cauzin Softstrip itself suffered a chicken-and-egg problem (Savetz et al.
2016). The limited number of available Softstrips did not attract enough custom-
ers to buy a Softstrip reader; magazines stopped publishing Softstrips because the
target market was not big enough. Situations like these leave portions of our digi-
tal past locked into obsolete media formats, yet we restored access to the encoded
data without need of a rare, functioning physical reader. While our decoding
method was necessarily specific to the Softstrip, knowing the approach we used
to read the strips, handle a wide variety of artifacts, and the lessons we learned
are useful more generally.

Although analysis of the Softstrip corpora contents is outside the scope of this
paper, we observe that this work speaks directly to archival accessibility. For the
Cauzin Softstrip, despite them being physical artifacts, physical preservation is
insufficient; it is only through being able to extract their data that the corpora
become accessible for research. The Softstrips’ data can now be analyzed en
masse to add to the growing body of scholarship on the history of personal com-
puting (e.g., Halvorson 2020; Nooney et al. 2020; Rankin 2018), and close read-
ings can be performed of individual Softstrips. For example, we came across a
purported encryption utility program in the Softstrip collection, and by extracting
its data using our software, we were able to study the program and determine its
encryption method.

As an epilogue, we recently acquired a set of Softstrips from eBay, and with no
adjustments whatsoever to our decoding software, we were able to decode nearly
95% of the 177 strips. This highlights both the robustness of our solution along with
the utility of deep learning for archival and digital curation tasks.

Acknowledgements Thanks to Henrique Alves, who made an earlier attempt to read Softstrips, and to
Jeff Boyd for image processing advice at that time. Kay Savetz helped acquire a Softstrip set; André
Miede initiated the co-authors’ collaboration. Many thanks to the anonymous reviewers for their com-
ments which helped improve the presentation of this work.

Funding This work was supported in part by the Natural Sciences and Engineering Research Council of
Canada (Grant No. RGPIN-2015-06359).

292 Archival Science (2021) 21:281–294

1 3

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Availability of data and material. Corpus1 is available in the code repository; Corpus2–Corpus4 are
sourced from publicly available resources. Corpus5 is not publicly available due to copyright considera-
tions, but it and the full dataset are available for research purposes from the corresponding author where
copyright exemptions apply. The software is freely available at https ://githu b.com/MR201 1/Cauzi n-Softs
trip-Decod er.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

Apple Computer, Inc (1979) The Applesoft tutorial
Apple II Scans (n.d.) https ://www.apple 2scan s.net/, offline as of 3 November 2019 but available via the

Internet Archive’s Wayback Machine: https ://web.archi ve.org/web/20190 41216 1821/https ://www.
apple 2scan s.net/

Barnett MP, Barnett SJ (1986) Animated algorithms: a self-teaching course in data structures and funda-
mental algorithms. McGraw-Hill, New York

Baskin C (1987) Reviewer’s notebook. BYTE Small Syst J 12(5):207
Brass RL, Glaberson J, Mason RW, L’Heureux III AJ, Santulli S, Roth GT, Frega J, Imiolek HS (1987)

Optical reader for printed bit-encoded data and method of reading same. US Patent 4,692,603
Brass RL, Glaberson J, Mason RW, Santulli S, Roth GT (1988a) Printed data strip including bit-encoded

information and scanner control. US Patent 4,782,221
Brass RL, Glaberson J, Mason RW, Santulli S, Roth GT, Feero WM, Balaska Jr RK (1988b) Method and

apparatus for transforming digitally encoded data into printed data strips. US Patent 4,754,127
Budnick K (1977) Bar code loader. BYTE Publications Inc
Can G, Odobez JM, Gatica-Perez D (2018) How to tell ancient signs apart? Recognizing and visualizing

Maya glyphs with CNNs. J Comput Cult Herit 11(4):1–25. https ://doi.org/10.1145/32306 70
Cauzin Systems, Inc (1986a) It’s amazing what you can reveal when you strip. BYTE Small Syst J

11(3):294–295
Cauzin Systems, Inc (1986b) Reader spec: technical specification for the Softstrip reader interface. https

://archi ve.org/detai ls/Cauzi nSoft strip . Accessed 18 June 2020
Cauzin Systems, Inc (1986c) Softstrip system application notes. https ://archi ve.org/strea m/Cauzi nSoft

strip /Softs trip%20Sys tem%20App licat ion%20Not es, accessed 18 June 2020
Cauzin Systems, Inc (n.d.a) The art of stripping. https ://archi ve.org/strea m/Cauzi nSoft strip /The%20Art

%20Of%20Str ippin g, accessed 18 June 2020
Cauzin Systems, Inc (n.d.b) Softstrip: the business computing edge. https ://archi ve.org/strea m/Cauzi

nSoft strip /Softs trip%20Bus iness %20Adv antag e, accessed 18 June 2020
Chenot JH, Laborelli L, Noiré J (2018) Saphir: optical playback of damaged and delaminated analogue

audio disc records. J Comput Cult Herit. https ://doi.org/10.1145/31835 05
Denso ADC (2012) QR code essentials. White paper, http://www.blues tarin c.com/filea dmin/blues tar-

typo3 /US_Manuf actur er_Micro sites /Denso /PDFs/DENSO _ADC_QR_Code_White _Paper .pdf,
accessed 18 June 2020

https://github.com/MR2011/Cauzin-Softstrip-Decoder
https://github.com/MR2011/Cauzin-Softstrip-Decoder
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.apple2scans.net/
https://web.archive.org/web/20190412161821/https://www.apple2scans.net/
https://web.archive.org/web/20190412161821/https://www.apple2scans.net/
https://doi.org/10.1145/3230670
https://archive.org/details/CauzinSoftstrip
https://archive.org/details/CauzinSoftstrip
https://archive.org/stream/CauzinSoftstrip/Softstrip%20System%20Application%20Notes
https://archive.org/stream/CauzinSoftstrip/Softstrip%20System%20Application%20Notes
https://archive.org/stream/CauzinSoftstrip/The%20Art%20Of%20Stripping
https://archive.org/stream/CauzinSoftstrip/The%20Art%20Of%20Stripping
https://archive.org/stream/CauzinSoftstrip/Softstrip%20Business%20Advantage
https://archive.org/stream/CauzinSoftstrip/Softstrip%20Business%20Advantage
https://doi.org/10.1145/3183505
http://www.bluestarinc.com/fileadmin/bluestar-typo3/US_Manufacturer_Microsites/Denso/PDFs/DENSO_ADC_QR_Code_White_Paper.pdf
http://www.bluestarinc.com/fileadmin/bluestar-typo3/US_Manufacturer_Microsites/Denso/PDFs/DENSO_ADC_QR_Code_White_Paper.pdf

293

1 3

Archival Science (2021) 21:281–294

Durno J, Trofimchuk J (2015) Digital forensics on a shoestring: a case study from the University of Vic-
toria. Code4Lib 27, https ://journ al.code4 lib.org/artic les/10279

Glaberson J, Santulli S (1989) Card reader for receiving a card bearing an imprinted data strip, self posi-
tioning the card in a pre-determined position and scanning the imprinted data strip in two directions.
US Patent 4,886,957

Halvorson MJ (2020) Code nation: personal computing and the learn to program movement in America.
ACM Books, New York

Johnson LG (1986) New solutions to storage hassles. Am Bar Assoc J 72(6):90
van der Knijff J (2019) Recovering ’90s data tapes: experiences from the KB web archaeology project. In:

iPRES: 16th international conference on digital preservation
Levi C (2011) Five hundred 5.25-inch discs and one (finicky) machine: a report on a legacy e-records

pilot project at the archives of Ontario. Archivaria 72:239–246
MacUser (1987) The Editors’ choice awards for 1986. MacUser 3(1):53–56
McNally T (2018) Practical digital solutions: a DIY approach to digital preservation. Master’s thesis,

University of Manitoba
Memon J, Sami M, Khan RA, Uddin M (2020) Handwritten optical character recognition (OCR): a

comprehensive systematic literature review (SLR). IEEE Access. https ://doi.org/10.1109/ACCES
S.2020.30125 42

Nooney L, Driscoll K, Allen K (2020) From programming to products: Softalk magazine and the rise of
the personal computer user. Inf Cult 55(2):105–129

Osborn C (2016a) Another retro challenge has arrived: CauzCoin! http://www.insen trici ty.com/a.cl/266/
anoth er-retro -chall enge-has-arriv ed-cauzc oin, accessed 18 June 2020

Osborn C (2016b) Distripitor. Github, https ://githu b.com/FozzT exx/Distr ipito r, accessed 18 June 2020
Rankin JL (2018) A people’s history of computing in the United States. Harvard University Press,

Harvard
Reimsbach M (2018) Reverse engineering the Cauzin Softstrip. Master’s thesis, Saarland University of

Applied Sciences
Sandberg-Diment E (1985) Supermarket bar codes are applied to software. New York Times, 15 October,

Page C00004
Savetz K, Brass B, D’Amato P (2016) Cauzin Softstrip. ANTIC The Atari 8-bit Podcast, https ://atari

podca st.libsy n.com/antic -inter view-115-bob-brass -and-peter -damat o-cauzi n-softs trip, accessed 18
June 2020

Savetz K, Picard D, Garretson K, Enzenauer N (2017) Databar OSCAR. ANTIC The Atari 8-bit Podcast,
https ://atari podca st.libsy n.com/antic -inter view-321-datab ar-oscar , accessed 18 June 2020

Sowerbutts W (2016) Solving the CauzCoin Retro BattleStations challenge. http://sower butts .com/cauzc
oin/, accessed 18 June 2020

Teuwen P (2016) OSCAR. Github, https ://githu b.com/doego x/Oscar , accessed 18 June 2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Michael Reimsbach graduated from the Saarland University of Applied Sciences and is currently an inde-
pendent researcher.

John Aycock is an associate professor in the Department of Computer Science at the University of Cal-
gary. His research interests include exploring the implementation of old computer games and technology.

https://journal.code4lib.org/articles/10279
https://doi.org/10.1109/ACCESS.2020.3012542
https://doi.org/10.1109/ACCESS.2020.3012542
http://www.insentricity.com/a.cl/266/another-retro-challenge-has-arrived-cauzcoin
http://www.insentricity.com/a.cl/266/another-retro-challenge-has-arrived-cauzcoin
https://github.com/FozzTexx/Distripitor
https://ataripodcast.libsyn.com/antic-interview-115-bob-brass-and-peter-damato-cauzin-softstrip
https://ataripodcast.libsyn.com/antic-interview-115-bob-brass-and-peter-damato-cauzin-softstrip
https://ataripodcast.libsyn.com/antic-interview-321-databar-oscar
http://sowerbutts.com/cauzcoin/
http://sowerbutts.com/cauzcoin/
https://github.com/doegox/Oscar

294 Archival Science (2021) 21:281–294

1 3

Authors and Affiliations

Michael Reimsbach1 · John Aycock2

 Michael Reimsbach
 michael@reimsbach.email

1 Saarland, Germany
2 Department of Computer Science, University of Calgary, 2500 University Drive N.W., Calgary,

AB T2N 1N4, Canada

	Decoding the Cauzin Softstrip: a case study in extracting information from old media
	Abstract
	Introduction
	Anatomy of a Softstrip
	Basics
	Softstrip header
	Data section

	Corpus
	Digital generated Softstrips (Corpus1)
	Animated algorithms (Corpus2)
	Cauzin Softstrip application notes and marketing material (Corpus3)
	Magazine collection (Corpus4)
	StripWare (Corpus5)

	Method and results
	Method
	Header processing
	Row extraction
	Row decoding
	Handling damaged strips

	Results

	Related work
	Discussion and conclusion
	Acknowledgements
	References

