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Background. Indoleamine-2,3-dioxygenase (IDO) mediated tryptophan (TRP) depletion has antimicrobial and immuno-regu-
latory effects. Increased kynurenine (KYN)-to-TRP (KT) ratios, reflecting increased IDO activity, have been associated with poorer 
outcomes from several infections.

Methods. We performed a case-control (1:2; age and sex matched) analysis of adults hospitalized with influenza A(H1N1)
pdm09 with protocol-defined disease progression (died/transferred to ICU/mechanical ventilation) after enrollment (cases) or sur-
vived without progression (controls) over 60 days of follow-up. Conditional logistic regression was used to analyze the relationship 
between baseline KT ratio and other metabolites and disease progression.

Results. We included 32 cases and 64 controls with a median age of 52 years; 41% were female, and the median durations of in-
fluenza symptoms prior to hospitalization were 8 and 6 days for cases and controls, respectively (P = .04). Median baseline KT ratios 
were 2-fold higher in cases (0.24 mM/M; IQR, 0.13–0.40) than controls (0.12; IQR, 0.09–0.17; P ≤ .001). When divided into tertiles, 
59% of cases vs 20% of controls had KT ratios in the highest tertile (0.21–0.84 mM/M). When adjusted for symptom duration, the 
odds ratio for disease progression for those in the highest vs lowest tertiles of KT ratio was 9.94 (95% CI, 2.25–43.90).

Conclusions. High KT ratio was associated with poor outcome in adults hospitalized with influenza A(H1N1)pdm09. The clin-
ical utility of this biomarker in this setting merits further exploration.
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L-tryptophan (TRP) is an essential amino acid for many life forms 
including humans. Tryptophan is also an essential amino acid 
for protein synthesis for some bacteria, many fungi, and possibly 
some viruses. It is also the precursor molecule for several impor-
tant neurotransmitters, that is, serotonin and melatonin. The role 

of tryptophan in the immune response to many pathogens (eg, 
fungi, tuberculosis, trypanosomiasis, chronic viral infections) 
is an area of increased interest [1–3]. There is also considerable 
interest in the central role of tryptophan in the immune response 
and/or surveillance of malignant cells/tumors, and inhibitors of 
tryptophan metabolism (indoleamine 2,3-dioxygenase [IDO] 
inhibitors) are being developed as adjunctive immunotherapeu-
tics in the cancer setting [4].

With respect to the role in the immune response to some 
pathogens, tryptophan depletion through the catabolic enzyme, 
IDO, is thought to be a mechanism to “starve” pathogens of this 
essential amino acid, but in turn it is coupled with a damping 
down of the immune response, as downstream metabolites 
of tryptophan affect the host immune response as well. There 
appear to be 3 tryptophan-catabolizing enzymes [5], of which 
IDO1 appears to be most important in the immune response 
to pathogens. IDO1 catabolizes TRP to kynurenine (KYN), an 
aryl hydrocarbon receptor ligand; subsequent catabolism of 
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KYN leads to a number of KYN pathway metabolites (Figure 1). 
IDO1, found in the placenta, gut, and T cells, appears to play an 
important role in immune tolerance. IDO activity is induced 
by the immunomodulatory cytokine interferon-gamma (IFN-γ;  
which also appears to play an important role in mobilizing 
tryptophan into cells), other pro-inflammatory cytokines 
including interleukin-1 (IL-1) and tumor necrosis factor alpha 
(TNF-α), amyloid peptides, and lipopolysaccharides. Increased 
IDO activity ultimately leads, via the production of KYN (the 
“L-Kynurenine shunt”), to T-cell apoptosis, reduced T-cell pro-
liferation, and an anergic state, with increased immunosup-
pressant, T-regulatory cells [6, 7]. The exact pathways for the 
interaction between antigen-presenting cells and the suppres-
sion of T-cell activity via IDO is not completely understood.

Increased plasma KYN levels and KYN-to-TRP (KT) ratios 
(as a measure of IDO activity) have been found in patients with 
systemic inflammatory response syndrome, sepsis, and septic 
shock, but as yet, it is unclear what the findings mean [8]. Suzuki 
and colleagues [9] explored the correlation between KT ratio 
and clinical outcome in patients hospitalized with communi-
ty-acquired pneumonia (CAP). In this group of patients, there 
was a significant positive correlation between both KYN levels 
and KT ratio with severity of CAP. Moreover, when these CAP 

patients were divided into nonsepsis, sepsis, severe sepsis, and 
septic shock categories, there was a clear correlation between 
increasing sepsis severity and increasing levels of KYN, decreas-
ing levels of TRP, and, as a result, increasing KT ratios indicative 
of IDO activation. Nonsurvivors also had significantly higher 
KT ratios than survivors [9].

To date, relatively little is known about the role of IDO in 
the human immune response to influenza, with most published 
data from murine influenza models. In the murine influenza 
model, influenza induced IDO activity in mouse lung tissue and 
draining lymph nodes [10]. Moreover, IDO knockout mice and 
mice treated with IDO inhibitors had better outcomes [11, 12].

In a multiplex biomarker analysis of patients enrolled with 
influenza A(H1N1)pdm09 virus in FLU003 Plus (see the 
Methods), Davey and colleagues [13] found several biomarkers 
that predicted poor clinical outcomes (defined as death, in-pa-
tient stay of >28 days, or intensive care unit [ICU] admission), 
including markers of macrophage activation/chemokines, 
T-cell activation, and acute phase reactants.

We therefore hypothesized that increased KT ratio would be 
associated with poor clinical outcomes (as defined by Davey 
and colleagues [13]) from influenza. In this analysis, we present 
novel data on the association of increased KT ratio and disease 
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progression and the association of KT ratio with the selected bio-
markers identified by Davey and colleagues [13] and, additionally, 
interleukin-17 (IL-17) and interferon-gamma (IFN-γ), chosen 
specifically because of their role in regulating IDO activity.

METHODS

FLU003Plus is an ongoing, international observational study 
of adults hospitalized with influenza that began in 2009, fol-
lowing the emergence of the influenza A(H1N1)pdm09 virus 
[14]. Participants are eligible for enrollment in FLU003Plus 
if they have laboratory-confirmed influenza based on a local 
nucleic acid test (NAT) or influenza is suspected and a local 
NAT test has been performed. At enrollment, an upper respira-
tory tract swab is sent to a central laboratory for confirmation 
of influenza using polymerase chain reaction (PCR)–based 
NAT. FLU003Plus captures a wide range of clinical informa-
tion, including the reasons for hospitalization, type of ward to 
which the patient was first admitted, and in subsequent visits at 
day 28 and day 60, clinical status including death. The primary 
end point of FLU003Plus is disease progression, defined as a 
composite of death, prolonged hospitalization >28  days, and 
postenrollment intensive care/mechanical ventilation/extra-
corporeal membrane oxygenation (ECMO) within 60 days of 
enrollment.

Ethics Statement

The FLU003Plus protocol and information statement and con-
sent form were approved by both the local institutional eth-
ics committees/review boards of the participant sites and the 
ethics committee of the sponsor of this study, the University 
of Minnesota. All participants or their representatives (when 
participants were unable to consent for themselves and where 
the ethics permission allowed for consent by a third party) pro-
vided written informed consent prior to their enrollment.

Study Design and Objectives

This was a matched case-control study. Cases were FLU003Plus 
patients with PCR-confirmed influenza A(H1N1)pdm09 virus 
with disease progression; controls had PCR-confirmed influ-
enza A(H1N1)pdm09 virus and were matched on age (+/-4 
years) and sex. Cases and controls were chosen from a subset 
of 209 FLU003Plus participants who were the focus of previous 
work on biomarkers [13]. Our primary objective was to explore 
the association of baseline (ie, the sample taken at the time of 
enrollment into FLU003Plus) KT ratio, as a marker of IDO 
activity, with disease progression. Key secondary objectives 
explored the association of baseline KT ratio with death, the 
multiplex panel of inflammatory biomarkers (as described by 
Davey et al. [13]), and baseline IFN-γ and IL-17. As described 
by Davey et al. [13], biomarkers were classified as belonging to 
1 of 4 groups, that is, macrophage proinflammatory activation 
response, acute phase response, T-cell activation response, and 
macrophage chemokine response.

Laboratory Methods

Plasma Samples Preparation
Local labs at the sites stored plasma samples using the method-
ology described in the FLU003Plus laboratory manual. At study 
enrollment, blood was drawn into EDTA tubes and processed 
within 4 hours. All samples were centrifuged at room temper-
ature at 1200 g × 15 minutes, and the plasma aliquoted. These 
aliquots were then either stored immediately at –70/–80°C or 
initially at –20°C for a maximum of 4 days before being moved 
(on dry ice) into a –70/–80°C freezer. All samples used in this 
analysis had undergone 1 freeze-thaw cycle.

Mass Spectrometry Analysis

Sample Preparation
The method used is as described by Gulcev and colleagues 
[15]. Aliquots of 100 µL plasma had a heavy standard of 3 μL 
of 100  μM of kynurenine D6 and 3  µL of 1  mM tryptophan 
13C11 (Cambridge Isotope Laboratories, Inc., Tewksbury, MA) 
added prior to any preparation. These aliquots were then mixed 
with 400 µL of ice-cold solvent (100% methanol), vortexed, and 
placed on ice for 10 minutes. Samples were then centrifuged 
at 13 000× g for 10 minutes at 4°C, and the supernatant was 
removed and transferred into a clean low-retention vial. This 
step was repeated once. Samples were concentrated using a vac-
uum centrifuge to ~50 µL. Formic acid was used to acidify the 
plasma samples that were added to the starting buffer used in 
ultraperformance liquid chromatography (5% acetonitrile, 95% 
water, 0.1% formic acid) to 100 µL.

Untargeted Mass Spectrometry Analysis
Undiluted sample (10 uL) was injected into a Thermo 
Q-Exactive liquid chromatography–mass spectrometry (LC-
MS; ThermoFisher Scientific, Marietta, OH) at 40°C. The sam-
ples were subjected to a gradient going from Buffer A to Buffer 
B over 15 minutes, then flushing for 5 minutes. Buffer A con-
sisted of 99.9% water with 0.1% formic acid, while Buffer B was 
99.9% acetonitrile with 0.1% formic acid.

XCMS Processing
The RAW files from the Q-exactive were converted into mzXML 
using MSconvert [16] and processed using XCMS online under 
the Q-Exactive parameters. The resulting file was used to ex-
tract intensities of a specific tryptophan and kynurenine metab-
olite’s m/z and RT.

Liquid Chromatography–Tandem Mass Spectrometry Selective 
Reaction Monitoring Analysis of Tryptophan and Kynurenine
Diluted (1:1000 tryptophan and 1:100 for kynurenine) samples 
(20 µL) were subjected to injection using an Agilent autosampler 
liquid chromatography–tandem mass spectrometry (LC-MS/
MS) with an analytical Waters Symmetry C18, 3.5-µm column 
connected to the 5500 iontrap (Sciex, Framingham, MA) fitted 
with a turbo V electrospray source. The samples were subjected 
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to a linear gradient of 2% acetonitrile, 0.1% formic acid to 98% 
acetonitrile 0.1% formic acid for 10 minutes at a column flow 
rate of 250 µL/min. Transitions monitored are in Table S1. The 
data were analyzed using MultiQuant (Applied Biosystems, 
Foster City, CA), which provided the peak area for the tran-
sitions. A standard curve was constructed using concentration 
ratios of heavy tryptophan/tryptophan and heavy kynurenine/
kynurenine from fentomole to nanomole in 20 µL.

Measurement of IL-17 and IFN-γ
IL-17 and IFN-γ were measured using the Luminex platform 
at the University of Minnesota Cytokine Reference Laboratory 
(CLIA’88 licensed). Following the manufacturer’s instructions, 
fluorescent magnetic beads (R&D Systems, Minneapolis, MN) 
coated with IL-17 and IFN-γ antibodies were added to each 
sample. After incubation and washing, biotinylated detection 
antibody was added, followed by phycoerythrin-conjugated 
streptavidin. The beads were read on a dual-laser fluidics–based 

Luminex instrument (Bioplex 200) that determines the analyte 
being detected via color coding; the other measures the magni-
tude of the PE signal from the detection antibody, which is pro-
portional to the amount of analyte bound to the bead. Samples 
were run in duplicate, and values were interpolated from 5-par-
ameter fitted standard curves.

Measurement of Other Inflammatory Biomarkers
Other inflammatory markers (see Table 1) were previously pub-
lished [13] and were used in this current analysis.

Statistical Methods

With 96 samples, power was 80% to detect a difference of 
0.089 mM in KT ratios between cases and controls. Descriptive 
statistics were used to summarize the baseline characteristics. 
Spearman rank correlation coefficients were used to explore 
associations of baseline biomarkers with KT ratio. Conditional 
logistic regression was used to summarize the association of 

Table 1. Clinical Characteristics, Kynurenine, Tryptophan, and KT Ratio, Multiplex Panel of Inflammatory Biomarkers of Cases and Controls Hospitalized 
With Influenza A(H1N1)pdm09

Case (n = 32) Control (n = 64)

P ValueaNo. (%) or Median (25th, 75th %) No. (%) or Median (25th, 75th %)

Femaleb 13 (41) 26 (41) -

Ageb 52 (41, 60) 53 (40, 60) -

Nonwhite race 7 (22) 13 (20) .84

Smoker 10 (36) 22 (34) .86

Days since onset of influenza symptoms 8 (6, 10) 6 (4, 7) .04

Asthma or chronic obstructive pulmonary 
disease

6 (19) 14 (22) .70

Immune suppressive condition/treatment 8 (25) 7 (11) .33

Cardiovascular or chronic liver/renal disease 8 (25) 11 (17) .10

KYN μM 6.1 (3.9, 12.2) 3.9 (3.0, 5.9) .003

TRP μM 32.4 (23.7, 40.7) 37.0 (27.1, 44.9) .10

KT ratio 0.24 (0.13, 0.40) 0.12 (0.09, 0.17) <.001

Macrophage proinflammatory activation response biomarkers

IL-6, pg/mL 17.2 (12.9, 24.5) 10.7 (4.2, 19.0) .01

TNA-α, pg/mL 14.4 (11.2, 18.4) 12.4 (10.3, 16.1) .02

CD163, ng/mL 1608 (963, 2629) 710 (516, 1078) <.001

sICAM-1, ng/mL 526 (294, 791) 237 (95.7, 404) .002

IL-8, pg/mL 50.4 (26.0, 77.3) 23.5 (13.7, 44.7) .004

Acute phase response biomarkers

D-dimer, μg/mL 3.55 (1.4, 5.0) 1.04 (0.6, 1.7) <.001

LBP, μg/mL 35.4 (14.1, 57.3) 18.2 (9.7, 45.0) .07

sVCAM-1, ng/mL 715 (527, 970) 392 (177, 667) .002

T-cell activation response biomarkers

IL-2, pg/mL 3.67 (2.4, 7.9) 2.08 (1.2, 4.2) .009

IL-10, pg/mL 26.7 (11.6, 95.5) 10.8 (6.7, 19.4) .003

Macrophage chemokine response biomarkers

MCP-1, pg/mL 1164 (539, 2440) 585 (379, 930) .001

IP-10, pg/mL 3160 (919, 7308) 1068 (518, 2453) .009

For biomarkers, values are log10 transformed for significance testing.

Abbreviations: IL, interleukin; KT, kynurenine-to-tryptophan ratio; KYN, kynurenine; LBP, lipopolysaccharide-binding protein; TRP, tryptophan.
aUnivariate conditional logistic.
bMatching factor.
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the baseline KT ratio at enrollment with disease progression. 
Odd ratios (ORs) for upper and middle vs lower tertiles of the 
KT ratios are provided with the 95% confidence intervals and 
P values. This analysis was repeated with adjustment for dur-
ation of symptoms at enrollment, with and without additional 
adjustment for log10 transformed biomarkers IL-10, sVCAM1, 
IL-2, and MCP-1. These particular biomarkers were chosen as 
they represented the biomarkers most strongly related to dis-
ease progression in the categories of macrophage proinflamma-
tory activation response, acute phase response, T-cell activation 
response, and macrophage chemokine response, respectively. P 
values were not adjusted for these multiple comparisons.

RESULTS

Thirty-two participants met our case definition; 22 of these 
died. Two controls were available for all cases. Cases had been 
symptomatic for a median of 8 days, whereas controls had been 
symptomatic for a median of 6 days (P = .04 for the difference) 
(Table 1). Median baseline KT ratios were 2-fold higher for cases 
(0.24 mM/M; 25th, 75th percentiles, 0.13, 0.40) than controls 
(0.12 mM/M; 25th, 75th percentiles, 0.09, 0.17; P ≤  .001). All 
12 inflammatory biomarkers except lipopolysaccharide-bind-
ing protein were significantly elevated in cases compared with 
controls (Table 1). The correlation of KYN, TRP, and KT ratios 
with each of the 12 biomarkers is described in Table 2; all 12 of 
these biomarkers correlated with the KT ratio.

When KT ratios were divided into tertiles (Table 3), 60% of 
cases vs 20% of controls had a KT ratio in the highest tertile 
(0.21–0.84 mM/M), and 16% of cases vs 39% of controls had a 

ratio in the lowest tertile (0.04–0.10 mM/M). Table 3 shows the 
unadjusted and adjusted (for duration of symptoms at the time 
of enrollment) conditional logistic analyses. The unadjusted 
odds ratio (cases vs controls) was 5.94 (95% CI, 1.7–20.3) for 
those in the highest tertile of KT ratio as compared with the 
lowest tertile. When adjusted for symptom duration alone, the 
OR for disease progression (ie, case vs control status) for those 
in the highest vs lowest KT ratio tertile was 9.94 (95% CI, 2.25–
43.90; P ≤ .001). When restricted to the cases who died (n = 22), 
the OR for death (cases vs controls, and adjusted for symptom 
duration) for those in the highest vs lowest KT ratio tertile was 
12.14 (95% CI, 1.69–87.25; P = .004; data not shown).

The analysis was repeated adjusting for duration of symp-
toms at enrollment and log10 transformed biomarkers IL-10, 
sVCAM1, IL-2, and MCP-1. With this adjustment, the pre-
dictive value of the highest KT ratio tertile vs the lowest tertile 
for disease progression, was attenuated to 3.34 (95% CI, 0.55–
20.33; P = .06; data not shown).

In addition, we explored the relationship of poor outcome 
with downstream metabolites of L-kynurenine (Figure 1). We 
found clear associations between poor outcomes and higher 
levels of downstream KYN metabolites that included kynurenic 
acid, anthranilic acid, 3-hydroxykynurenine, and quinolinic 
acid (Table 4). One downstream metabolite, glutaryl-CoA, was 
decreased in cases compared with controls.

IFN-γ and IL-17 were measured in cases and controls; 83% 
of the IFN-γ levels were below the lower detection limit (data 
not shown), and therefore we could not analyze relationships 
between IFN-γ and outcomes. IL-17 levels (Table 5) were cat-
egorized as below the lower detection limit, and approximate 
median levels in those with detectable results. Equivalent num-
bers of cases and controls had IL-17 levels below the detection 
limit at study enrollment.

DISCUSSION

Despite the relatively small cohort of patients studied, our data 
reveal a strong association between high KT ratio and poor 
clinical outcome in adults hospitalized with influenza.

The high levels of metabolites of the tryptophan metabolic 
pathway also strengthen the evidence for IDO activation in this 
setting. IDO is induced by pro-inflammatory cytokines such as 
TNF-α and IFN-γ following viral infection. In murine models, 
influenza induces IDO expression in lung tissue and lymph 
nodes [10, 11], and IDO inhibitors improve T-cell responses 
toward the virus [12]. Most of the effects of tryptophan catabol-
ism come from accumulation of its active downstream metabo-
lites, many of which modulate the inflammatory state. Kynurenic 
acid is a potent agonist of the orphan G-protein-coupled recep-
tor GPR35, whose expression in T cells leads to an immuno-
suppressive phenotype [17]. In monocytes and macrophages, 
the interaction of GPR35 with kynurenic acid downregulates 
the pro-inflammatory effects of bacterial lipoloysaccharide 

Table 2. Correlation of Baseline Biomarkers With KYN, TRP, and the KT 
Ratio

KYN TRP KT Ratio

Coeff P Value Coeff P Value Coeff P Value

Macrophage proinflammatory activation response biomarkers

IL-6, pg/mL 0.44 <.001 –0.06 .55 0.40 <.001

TNA-α, pg/mL 0.53 <.001 –0.04 .69 0.47 <.001

CD163, ng/mL 0.51 <.001 –0.13 .20 0.50 <.001

sICAM-1, ng/mL 0.20 .05 –0.12 .25 0.26 .010

IL-8, pg/mL 0.62 <.001 –0.08 .45 0.55 <.001

Acute phase response biomarkers

D-dimer, μg/mL 0.42 <.001 –0.09 .36 0.45 <.001

LBP, μg/mL 0.38 <.001 –0.05 .66 0.35 <.001

sVCAM-1, ng/mL 0.24 .02 –0.08 .44 0.28 .005

T-cell activation response biomarkers

IL-2, pg/mL 0.54 <.001 –0.05 .64 0.49 <.001

IL-10, pg/mL 0.51 <.001 –0.13 .19 0.53 <.001

Macrophage chemokine response biomarkers

MCP-1, pg/mL 0.56 <.001 –0.19 .06 0.58 <.001

IP-10, pg/mL 0.63 <.001 –0.08 .45 0.56 <.001

P Values are from a univariate conditional logistic model.
Abbreviations: IL, interleukin; KT, kynurenine-to-tryptophan ratio; KYN, kynurenine; LBP, 
lipopolysaccharide-binding protein; TRP, tryptophan.
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[18–20]. Quinolinic acid is an end-product of L-kynurenine 
metabolism and is a known agonist to N-methyl-D-aspartate 
receptors in nerve cells. Quinolinic acid also generates 

reactive oxygen species capable of inducing the secretion of 
potent chemokines and pro-inflammatory cytokines [21, 22].  
The metabolite 3-hydroxykynurenine (3-HK) is a redox active 

Table 4. Odds Ratios for Tertiles of KYN Metabolites

Tertiles (log10)

Case (n = 32) Control (n = 64) Unadjusteda Adjusteda

No. Pct. No. Pct. ORa 95% CI ORa 95% CI

Kynurenic acid

6.54–6.93 8 25.0 24 37.5 ref. ref.

6.93–7.13 9 28.1 23 35.9 1.01 0.29–3.46 0.88 0.24–3.17

7.14–8.99 15 46.9 17 26.6 2.86 0.94–8.70 2.34 0.72–7.62

P value, trend .002 .004

Anthranilic acid

6.34–6.71 6 18.8 26 40.6 ref. ref.

6.72–6.90 9 28.1 23 35.9 1.84 0.52–6.44 1.88 0.50–7.00

6.91–7.72 17 53.1 15 23.4 5.45 1.52–19.44 5.59 1.43–21.84

P value, trend <.001 .002

3-hydroxykynurenine

6.26–6.72 6 18.8 26 40.6 ref. ref.

6.73–7.09 8 25.0 24 37.5 1.10 0.32–3.78 1.49 0.38–5.90

7.10–8.25 18 56.3 14 21.9 3.98 1.39–11.36 5.18 1.54–17.42

P value, trend .003 .003

Quinolinic acid

5.66–6.58 7 21.9 25 39.1 ref. ref.

6.59–6.92 7 21.9 25 39.1 1.09 0.31–3.92 1.59 0.38–6.60

6.93–8.32 18 56.3 14 21.9 4.01 1.28–12.54 5.21 1.42–19.10

P value, trend .001 .001

Glutaryl-CoA

5.03–6.59 17 53.1 15 23.4 37.52 4.19–336.1 27.39 3.01–249.4

6.60–6.92 13 40.6 19 29.7 16.96 2.16–133.4 16.07 2.02–127.8

7.08–7.72 2 6.3 30 46.9 ref. ref.

P value, trend .003 .009

Abbreviations: KYN, kynurenine; OR, odds ratio.
aConditional logistic. Adjusted model contains a covariate for duration of symptoms at time of enrollment. P value shown is for lab result as a continuous variable.

Table 3. Odds Ratios for Tertiles of KYN, TRP, and KT Ratio

Tertiles

Case (n = 32) Control (n = 64) Unadjusteda Adjusteda

No. Pct. No. Pct. ORa 95% CI ORa 95% CI

Kynurenine, μM

2.00–3.67 6 18.8 26 40.6 ref. ref.

3.68–5.89 9 28.1 23 35.9 1.55 0.51–4.70 2.61 0.64–7.28

5.90–33.9 17 53.1 15 23.4 4.25 1.39–12.98 5.95 1.60–22.08

P value, trend .003 .005

Tryptophan, μM

9.7–28.3 13 40.6 19 29.7 2.46 0.80–7.58 3.73 1.07–13.01

28.4–41.0 12 37.5 20 31.3 2.10 0.70–6.27 3.11 0.90–10.67

41.1–62.1 7 21.9 25 39.1 ref. ref.

P value, trend .10 .06

KT ratio, mM/M

0.04–0.10 5 15.6 25 39.1 ref. ref.

0.11–0.20 8 25.0 26 40.6 1.50 0.40–5.64 1.96 0.44–8.79

0.21–0.84 19 59.4 13 20.3 5.94 1.74–20.33 9.94 2.25–43.90

P value <.001 <.001

Abbreviations: KT, kynurenine-to-tryptophan ratio; KYN, kynurenine; OR, odds ratio; TRP, tryptophan.
aConditional logistic. Adjusted model contains covariates for duration of symptoms at time of enrollment. P value shown is for lab result as a continuous variable.
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compound that regulates the local oxidative status. In a pro-ox-
idative state, 3-HK demonstrates cellular toxicity [23].

Although the effect of downstream metabolites was diluted 
somewhat when we controlled for baseline levels of other 
cytokines, there was still a trend to significance for the highest 
KT ratio tertile compared with the lowest as a predictor of poor 
clinical outcome. It is important to note that we did not set out 
to show that KT ratio performed better than the multiplex panel 
of inflammatory cytokines/vascular markers. Rather, our aim in 
exploring this association was to try and understand the bio-
logical relationship between these inflammatory markers and 
the IDO pathway in this setting. Our data suggest that activa-
tion of the IDO pathway might contribute to poor outcomes, 
independent of other inflammatory pathways.

We were unable to quantify IFN-γ levels in the majority 
of patients in this subanalysis, which we suspect was due to a 
technical issue related to the samples utilized having already 
undergone 1 freeze-thaw cycle [24] and this cytokine being vul-
nerable to a freeze-thaw cycle in a way that assessment of amino 
acids and their metabolite measured using LC-MS/MS are not. 
Another reason for this may have been the prolonged interval 
from symptom onset to sampling or inadequate responses [25]. 
IL-17 appears to have a dual role both as a pro- and anti-inflam-
matory cytokine, especially when produced by regulatory T 
cells [26–29]. With respect to IL-17, there was no clear differ-
ence in the baseline levels between cases and controls, and as 
such, in this analysis at least, we have no evidence that IL-17 was 
contributing to the cytokine storm or, conversely, and reflecting 
its dual role, contributing to an immunosuppressive state.

In this analysis, we chose death and/or mechanical ventila-
tion as the end points of interest, as both are clinically impor-
tant, robust, and verifiable. While sites were required to report 
suspected/confirmed infections with other pathogens including 
bacteria, the study did not require the submission of supporting 
documentation. As such, we felt we could not verify these sep-
sis/bacterial infection events with sufficient certainty to include 
them as either an end point or covariate in the analysis. Our 
findings, however, may still represent the net effect of influenza 
plus secondary bacterial (and/or other pathogen) infections 
in both cases and controls, especially as they are similar to 
the findings revealed by other groups that have demonstrated 
a strong association between elevated IDO activity and poor 

clinical outcomes in those with CAP +/- sepsis and septic shock 
[3, 9] or sepsis alone [30]. Moreover, in these other studies, IDO 
activity was predictive of mortality, unlike the respiratory rate or 
the C-reactive protein level [9]; in 1 study of sepsis, decreases in 
the median KT ratio over time correlated with decreases in the 
Sequential Organ Failure Assessment score, an objective assess-
ment of improving clinical outcome [30]. While tryptophan 
deficiency alone can lead to cell dysfunction or death, most of 
the effects of tryptophan catabolism come from accumulation of 
its active downstream metabolites, such as kynurenine [31, 32],  
which inhibits the clonal expansion of CD4+ T cells, leading to 
increased tolerance and immunosuppression. Quinolinic acid, 
another downstream metabolite, in nanamolar concentrations, 
is metabolized to nicotinic acid mononucleotide and the nico-
tinamide adenine dinucleotide via a salvage pathway, but in 
high concentration, it is directly toxic to cells [22, 32].

It will be important to expand our understanding of the role 
of this immunoregulatory metabolic pathway in all types of in-
fluenza (and other concurrent infections) and the relative bal-
ance of immune activation vs immunosuppression. These data 
will help discern whether the many IDO inhibitors currently in 
development as adjunctive therapies for cancer may have po-
tential clinical utility as therapeutic agents in severe influenza 
and/or other infections. However, clinicians considering the use 
of IDO inhibition in this setting should proceed with caution, as 
drugs inhibiting 1 part of an interlinked and complex metabolic 
pathway may have a detrimental effect via the upregulation of 
compensatory pro-inflammatory and/or immunosuppressive 
pathways.

Conclusion and Future Directions

In summary, in this small case-control study, we have shown 
that adults hospitalized with influenza A(H1N1)pdm09 and 
high KT ratio have greater odds of progression to death or 
mechanical ventilation. Measurement of this biomarker can be 
performed on plasma or serum, utilizing a standard tandem 
mass spectrometry approach available in most analytical labo-
ratories; moreover, the assay is robust and reproducible across 
different laboratories. While this initial study reveals IDO activ-
ity as a putative biomarker to identify those at risk of deteri-
oration, our findings need to be confirmed in further studies 
of all types/subtypes of influenza, preferably with longitudinal 

Table 5. Odds Ratios for Categories of Baseline IL-17 Levels

IL-17 Levels

Case (n = 32) Control (n = 64) Unadjusteda Adjusteda

No. Pct. No. Pct. ORa 95% CI ORa 95% CI

Undetectable 15 46.9 30 46.9 ref. ref.

0.16–0.59 pg/mL 6 18.8 18 28.1 0.61 0.18–2.06 0.33 0.08–1.33

0.60–15.5 pg/mL 11 34.4 16 25.0 1.30 0.49–3.43 0.98 0.34–2.78

Abbreviation: OR, odds ratio.
aConditional logistic. Adjusted model contains covariate for duration of symptoms at time of enrollment.
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sampling, in which clinical outcomes are rigorously captured. 
Lastly, future studies in which peripheral blood mononuclear 
cells are collected and isolated would potentially identify the 
cellular production of IDO and give insight into the relationship 
of this metabolic pathway with the innate immune response.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
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sponding author.
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