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Cell-free gene expression systems with linear DNA expression templates (LDETs) have
been widely applied in artificial cells, biochips, and high-throughput screening. However,
due to the degradation caused by native nucleases in cell extracts, the transcription
with linear DNA templates is weak, thereby resulting in low protein expression level,
which greatly limits the development of cell-free systems using linear DNA templates.
In this study, the protective sequences for stabilizing linear DNA and the transcribed
mRNAs were rationally designed according to nucleases’ action mechanism, whose
effectiveness was evaluated through computer simulation and cell-free gene expression.
The cell-free experiment results indicated that, with the combined protection of designed
sequence and GamS protein, the protein expression of LDET-based cell-free systems
could reach the same level as plasmid-based cell-free systems. This study would
potentially promote the development of the LDET-based cell-free gene expression
system for broader applications.

Keywords: cell-free expression, cell-free protein synthesis, degradation inhibition, linear DNA expression
template, rational design

INTRODUCTION

Cell-free synthetic biology (Garamella et al., 2016; Caschera, 2017; Damiati et al., 2018; Smolskaya
et al., 2020) has rapidly developed as a powerful and flexible technology to overcome the inherent
limitations of synthetic biology with living cells. By eliminating the constraint of sustaining life,
cell-free systems provide unprecedented control over the molecular context for gene expression
and metabolism (Silverman et al., 2020). Over the past 20 years, practical improvements (Dopp
et al., 2019) in cell-free gene expression systems have seen its widespread adoption in basic research
and industrial applications (Carlson et al., 2012; Silverman et al., 2020), such as genetic prototyping
(Moore et al., 2017), artificial cells (Noireaux and Libchaber, 2004; Lai et al., 2020), high-throughput
screening (Contreras-Llano and Tan, 2018), and biosensing (Verosloff et al., 2019). Compared
with traditional cell-based approaches, one of the advantages of cell-free approaches is that linear
DNA could be used as expression templates. The linear DNA could be mass-produced by PCR
(polymerase chain reaction) (Schinn et al., 2016), which shortens the experimental period from 1 or
2 weeks to 1 or 2 days. Thus, there is a growing interest in studying cell-free gene expression systems
with linear DNA expression templates (LDETs). Because of its natural configuration, linear DNA is
more suitable for binding to materials than circular plasmids (Finkler and Ott, 2019). Currently,
LDET-based cell-free systems have also been widely used in many aspects, such as biochip
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(Bar and Bar-Ziv, 2009; Heyman et al., 2012; Karzbrun et al.,
2014), artificial cells (Xu et al., 2016), and high-throughput
screening (Woodrow et al., 2006; Wu et al., 2007). The principle
of these studies is to build cells from the bottom up, explore the
origin of life, and promise industrial application.

However, compared with plasmid-based cell-free systems,
LDET-based cell-free systems often suffer from low protein
expression yield, which limits its further development. The main
reason is that linear DNA can be easily degraded by native
nucleases in cell extracts (Ahn et al., 2005). For example, in
Escherichia coli cell extracts, RecBCD DNase complex (Klocke
et al., 2018) has been shown to degrade linear DNA in the cell-
free gene expression system. Now, researchers mainly overcome
this problem in three ways. The first way is genomic alteration.
Hong et al. (2015) tested five potential negative effectors to obtain
more effective cell extract to improve cell-free protein synthesis.
Unfortunately, genomic alteration always results in a slow growth
rate and low cell viability, making preparing cell extracts difficult.
The second way is finding DNase inhibitors. A kind of Gam
protein from bacteriophage λ, GamS (Wilkinson et al., 2016b),
has been found to be an effective inhibitor of RecBCD DNase
complex (Sitaraman et al., 2004). However, the protein expression
yield of LDET-based cell-free systems with GamS is only one-
third of plasmid-based cell-free systems (Sun et al., 2014). There
were also several studies focusing on DNA-binding proteins,
such as Ku (Yim et al., 2020) and scCro (Zhu et al., 2020),
to block the binding of native nucleases. There is still much
room for improvement. Marshall et al. (2017) showed that short
double-stranded DNA encoding chi sites could also be an efficient
inhibitor. The third possible way is the alteration of template
geometry. For example, the T7 terminator sequence, poly(G)
sequence, and other non-coding sequences (Ahn et al., 2005) have
been explored to improve the expression yield of LDET-based
cell-free systems (Schinn et al., 2016). However, these studies
only concentrate on adding additional inhibitors and ignore the
potential of DNA sequence design on inhibiting the activity of
native nucleases.

In this study, a novel in silico design strategy was proposed to
improve the stability of linear DNA in cell-free gene expression
systems (Figure 1). The binding sites of native nucleases to
linear DNA are always located at the end of linear DNA, so
rationally designing protective sequences at the end of linear
DNA can be an effective way to protect linear DNA from
native nucleases. Furthermore, both computer simulation and
cell-free gene expression experiments were used to evaluate the
effectiveness of the linear DNA design strategy. It is hoped that
this design strategy would be a useful and convenient way to
improve the expression yield of LDET-based cell-free systems and
promote the development of cell-free synthetic biology.

RESULTS AND DISCUSSION

Design Strategy for GC Content in
Protective Sequence
Initially, different protective sequences with different GC
contents were designed to explore their effects on the stability of

linear DNA. At present, the most common way to obtain linear
DNA was by PCR. In this study, the protective sequence was
amplified to the end of the linear DNA by designing primers
with a protective sequence (Figure 2A). The first principle of
the protective sequence design was that the GC content affected
the stability of linear DNA (Woodrow et al., 2006), so protective
sequences were designed with different GC contents to explore
the best GC content. Moreover, considering that an excessively
long primer would lead to higher reaction temperatures and
make PCR more difficult, the length of the protective sequence
was limited to 20 bp. If the length of the protective sequence
was more than 20 bp, there might be a mismatch, and the PCR
product would be multiple. The PCR results proved that when
the length of the protective sequence was 20 bp, linear DNA was
constructed well (Supplementary Figure 1). At the same time,
to reduce the effect of GC arrangement, two sets of protective
sequences were designed with different GC arrangement modes
(Figure 2B). One was “GCGC” arrangement mode, and the other
was “GGCC” arrangement mode.

The computer simulation was used to evaluate the design
strategy, and DNA Sequence to Structure webserver (Arnott
et al., 1976) was finally selected for predicting and modeling
the 3D structure of the target linear DNA sequence. Another
webserver, HDOCK SERVER (Huang and Zou, 2008, 2014; Yan
et al., 2017a,b, 2020), was used to evaluate the binding efficiency
of RecBCD DNase complex with the designed linear DNA.
The RecBCD DNase complex is composed of three different
subunits called RecB, RecC, and RecD. Among these subunits,
RecB subunit was 3′-5′ helicase, RecC subunit recognized Chi
sequence, and RecD subunit was 5′-3′ helicase (Wilkinson
et al., 2016a). According to this principle, RecB subunit and
RecD subunit (Supplementary Table 1 and Supplementary
Figures 2A,B) were selected for simulation (Figures 2C–F and
Supplementary Figure 3). Combined with the results of the four
groups of experiments, it could be concluded that when the GC
content of the protective sequence was close to 60%, the docking
scores of RecB subunit and RecD subunit with the designed
linear DNAs were the highest in each group. A higher docking
score represented a worse docking efficiency, which meant it
was difficult for RecBCD DNase complex docking with linear
DNA. In addition, it was also found that no matter what the GC
arrangement method was, in the simulation results of linear DNA
with RecD subunit, the gap between different docking scores was
far smaller than the results of linear DNA with RecB subunit.
This finding showed that RecB subunit was more sensitive to
the change of the protective sequence, which indicated that RecB
subunit was more suitable to represent the docking efficiency
of linear DNA with RecBCD DNase complex. The results also
showed that the different docking scores of “GCGC” groups
were all lower than those of “GGCC” groups, which meant that
the interaction between RecBCD DNase complex and “GGCC”
groups was much weaker.

Based on this point, to further optimize the GC content
of the protective sequences, the GC content was further
refined (Figure 3A). The docking simulation results showed
that when GC content was 65%, the docking score of
linear DNA and RecB subunit was the highest (Figure 3B
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FIGURE 1 | Schematic diagram of the linear DNA design strategy for the optimization of LDET-based cell-free systems. The computer simulation was used to
evaluate the effectiveness of the linear DNA design strategy. Cell-free experiments were carried out to verify the results of the computer simulation. This design
strategy could help to promote the development of cell-free systems for various applications.

FIGURE 2 | Protective sequences with different GC content. (A) The protective sequences were added to the ends of linear DNA by PCR. The protective sequences
could protect linear DNA from the degradation of native nucleases. (B) Protective sequences with different GC arrangement and GC content. GC arrangement
included GCGC and GGCC. GC content included 20, 40, 60, and 80%. The length of protective sequences was 20 bp. The diagram on the right side was native
nuclease binding with the protective sequence. (C) Simulation results of RecB subunit with different protective sequences. These protective sequences were GCGC
arrangement mode and had different GC contents. (D) Simulation results of RecD subunit with different protective sequences. These protective sequences were
GCGC arrangement mode and had different GC contents. (E) Simulation results of RecB subunit with different protective sequences. These protective sequences
were GGCC arrangement mode and had different GC contents. (F) Simulation results of RecD subunit with different protective sequences. These protective
sequences were GGCC arrangement mode and had different GC contents.

FIGURE 3 | Simulation results of protective sequences with different GC contents. (A) Protective sequences with different GC contents. GC contents included 55,
60, 65, and 70%. The length of protective sequences was 20 bp. (B) Simulation results of RecB subunit with different protective sequences. These protective
sequences were GGCC arrangement mode and had different GC contents. (C) Simulation results of RecD subunit with different protective sequences. These
protective sequences were GGCC arrangement mode and had different GC contents.
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FIGURE 4 | Simulation results of protective sequences with different GC distributions. (A) Schematic diagram of protective sequences with different GC distributions.
The GC distribution modes included front, middle, and back. (B) Protective sequences with different GC distributions, arrangements, and contents. The length of
protective sequences was 20 bp. (C) Simulation results of RecB subunit with different protective sequences. The 60% and 65% meant different GC contents. The
letter F, M, and E meant the GC distribution mode was front, middle, and back. These protective sequences had two different GC arrangement modes, including
GCGC and GGCC.

and Supplementary Figure 4A). When the GC content was
between 55 and 65%, the docking score of linear DNA
and RecD subunit was significantly higher (Figure 3C and
Supplementary Figure 4B). In this case, the docking score of
linear DNA and RecB was −275.89, while the docking score of
normal linear DNA and RecB subunit was −319.04. This result
indicated that the protective sequence did improve the stability of
linear DNA. The reason was that the increase of GC content could
increase the number of hydrogen bonds between DNA double
strands, to enhance the stability of linear DNA and increase the
difficulty of native nucleases binding. It should be noted that
since the length of the protective sequence was only 20 bp, the
variation of only one base pair could result in a 5% GC content
change. It was difficult to further optimize the GC content
of the protective sequences. In this part, by comprehensively
analyzing the docking simulation results of linear DNA and
two subunits, it was concluded that the best GC content was
between 60 and 65%.

Design Strategy for GC Distribution in
Protective Sequence
To further optimize the protective sequences, the distribution of
GC sequences was worthy of exploration. In the previous docking
simulation, to avoid the interference of GC distribution on the
simulation results, GC sequences were uniformly distributed at
the front end of the designed linear DNA. Since the best GC
content was between 60 and 65%, 60 and 65% GC content were
selected for further docking simulation. In addition, considering
that GC arrangement might also affect the docking between linear
DNA and nucleases, both “GCGC” and “GGCC” arrangement
modes were still adopted in the design process. The previous
docking simulation had confirmed that RecB subunit was more
suitable to characterize the docking efficiency of linear DNA and

nucleases. Therefore, only the docking efficiency of linear DNA
and RecB subunit was simulated to reduce the workload.

Based on the above points, several protective sequences with
different GC distribution modes were designed (Figures 4A,B).
DNA Sequence to Structure webserver was still used to predict
and model the 3D structure of the target linear DNA sequence.
HDOCK SERVER was used to evaluate the binding efficiency
of RecB subunit with the designed linear DNA (Figure 4C
and Supplementary Figure 5). From the perspective of GC
distribution mode, it was found that, compared with the four
groups where GC sequences were distributed in the front of
the protective sequence, the docking scores of other groups
with GC sequences distributed in the middle or the back of the
protective sequence were higher, which meant more difficulty for
RecB subunit docking with linear DNA. From the perspective
of GC content, when GC sequences were distributed in the
middle or the back of the protective sequence, the docking
simulation results of each group with GC content of 60% were
not significantly different from those with GC content of 65%.
However, when GC sequences were distributed in the front
of the protective sequence, the docking scores of groups with
65% GC content were higher than those with 60% GC content.
Furthermore, from the perspective of GC arrangement mode, the
results showed that there was no significant relationship between
the docking score and GC arrangement.

According to the above docking simulation results, the current
optimal GC distribution mode was that the GC sequence was
located at the middle or the back of the protective sequence.
It was worth noting that when the GC distribution mode was
back and the GC arrangement was GCGC, the docking score
was −235.06, while the normal docking score was −319.04. The
results indicated that the protective sequence could greatly reduce
the docking efficiency of linear DNA with nucleases and improve
the stability of linear DNA.
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Design Strategy for Stem-Loop Structure
at 3′ End of mRNA
In the LDET-based cell-free system, the expression yield of
the target protein was restricted by two factors. One was that
linear DNA was easy to degrade with native nucleases. The
other was that mRNA could be easily degraded by RNase,
resulting in a short duration of translation and low expression
yield. In the previous sequence design process, the protective
sequence had been designed for the first case. Therefore, further
sequence design would be developed for the second case. In cell-
free gene expression systems, RNase mainly included RNase II,
RNase III (Court et al., 2013), PNPase, and RNase E. All of
them were 3-terminal exonuclease (Łabno et al., 2016) except
RNase E (Grunberg-Manago, 1999). Poly(G) sequence had been
proven to inhibit the activity of PNPase well (Ahn et al., 2005).
Therefore, RNase II and RNase III (Supplementary Table 1 and
Supplementary Figures 2C,D) were selected for simulation in
the end. In 2018, Deng et al. used synthetic repetitive extragenic
palindromic (REP) sequences as an effective mRNA stabilizer
in two typical prokaryotic microbes (Deng et al., 2019). REP
sequence was a kind of regulatory sequence located in the
untranslated operon region in most bacteria, which could form
a stable stem-loop structure based on its palindromic properties
(Deng et al., 2019). Therefore, it could be a great attempt to
introduce the REP sequence (Liang et al., 2015) into the linear
gene template for the cell-free gene expression system. Based
on the action mechanism of degrading enzymes, REP sequences
were added to 3′ end of mRNA to improve mRNA stability. The
design of REP sequences could form a stem-loop structure to
block the binding of RNase (Figures 5A,B).

In this study, the effectiveness of REP sequences was
evaluated by computer simulation, which improved the screening
efficiency. Considering that different REP sequences would form
different stem-loop structures with different lengths, the effect of
the length of the stem-loop structure was ignored at first. Only the
length of the mRNA sequence used for simulation was kept the
same. To achieve this, the REP sequences were attached to the end
of the mRNA. In total, 17 different REP sequences from natural
E. coli gene sequences with single stem structures were selected
for docking simulation (Supplementary Table 2). These REP
sequences were all selected from RNAstem database1. Vfold2D
webserver (Cao and Chen, 2005, 2009; Xu et al., 2014; Xu and
Chen, 2016) was used to predict the secondary structure of the
designed mRNA sequences, and 3dRNA v2.0 webserver (Wang
et al., 2015, 2017, 2019) was used to construct the 3D structure
of mRNA. At last, HDOCK SERVER was still used to simulate
and evaluate the docking status between mRNA and RNase
II. The results indicated that after adding REP sequences, the
docking efficiency of mRNA and RNase II had been decreased,
which meant the stem-loop structure improved the stability of
mRNA (Figure 5C and Supplementary Figure 6). Among these
sequences, six different sequences (Number 5, 7, 8, 13, 16, and
17), whose docking scores were all higher than −290, were
selected for the following docking simulation with RNase III

1http://bioinformatics.bc.edu/meyerlab/RNAstem

(Figure 5D and Supplementary Figure 7). Finally, it was found
that the sequence number 17 had the highest docking score with
the two RNases, which was later used to optimize the length of
the stem-loop structure.

The length of the stem-loop structure was further adjusted
by increasing the number of G and C bases (Figure 6A). The
design principle was that the number of hydrogen bonds between
GC base pairs was three, which was larger than the number of
hydrogen bonds between AU base pairs. The stem-loop structure
formed was more stable this way. HDOCK SERVER was used to
simulate and evaluate the docking status between mRNA and two
different RNases (Figures 6B,C and Supplementary Figure 8).
As seen from the simulation results, when the length of the
stem-loop structure was 20 bp, the docking scores of mRNA
sequences and the two RNases were the highest. In the case
where the stem-loop structure was too long or too short, the
docking score of mRNA and RNase decreased, and the stability
of mRNA decreased. However, the existence of the stem-loop
structure might affect the process of translation and decrease the
protein expression level of the cell-free gene expression system.
Therefore, the designed REP sequence needed to be verified in
the following experiments.

Cell-Free Experimental Verification of
Protective Sequence Design
Considering that the computer simulation results might be
different from the actual binding of linear DNA to native
nucleases in the cell-free gene expression system, a cell-free
experiment was carried out to verify the effectiveness of in silico
design of linear DNA. In this study, the green fluorescent protein
sfGFP (Supplementary Figure 9) was used as a model protein,
and the fluorescence of sfGFP was used to represent the protein
expression yield. Different from the simulation results of REP
sequences, the experimental results showed that there was no
significant improvement in protein expression yield after adding
the REP sequence (Figure 7A). The unexpected results might
be attributed to two possible reasons. One reason was that the
simulation result did not match the actual situation, and the other
reason was that the existence of a stem-loop structure might
negatively affect the whole translational process.

In contrast, the results also indicated that the addition
of GC-rich sequences was highly efficient. Therefore, cell-free
experiments were carried out to verify the results of GC-
rich sequence design further. There were some differences
between the experimental results and simulation results of
GC-rich sequence design (Figure 7B). Previous simulation
results showed that the optimal GC distribution mode was that
the GC sequence was located at the back of the protective
sequence. However, the results showed that, compared with
the groups where GC sequences were distributed in the
middle of the protective sequence, the sfGFP expression of
other groups with GC sequences distributed in the front
and back of the protective sequence was much higher. It
seemed that distributing GC sequences in the front of the
protective sequence was the best choice. The differences between
simulation results and experimental results were mainly due

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 May 2021 | Volume 9 | Article 670341

http://bioinformatics.bc.edu/meyerlab/RNAstem
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-670341 May 18, 2021 Time: 13:17 # 6

Chen and Lu In silico Linear DNA Design

FIGURE 5 | REP sequences could form a stem-loop structure to block the binding of RNase. (A) The secondary structure of stem-loop structure formed by REP
sequence. (B) The stem-loop structure could block the end of mRNA. In this way, the REP sequence could protect mRNA from the degradation of RNase.
(C) Simulation results of RNase II and REP sequences. The numbers on the abscissa represented different REP sequences, and the number 0 represented the
control group without REP sequence. (D) Simulation results of RNase III and REP sequences. The numbers on the abscissa represented different REP sequences.

FIGURE 6 | Simulation results of REP sequences with different stem-loop structure lengths. (A) REP sequences with different stem-loop structure lengths. The
model REP sequence was the sequence number 17. (B) Simulation results of RNase II with different REP sequences. These REP sequences had different lengths,
which ranged from 10 to 30 bp. (C) Simulation results of RNase III with different REP sequences. These REP sequences had different lengths, which ranged from 10
to 30 bp.

to the errors generated during the simulation. Parameters used
in simulation could not completely reflect the actual situation.
Nevertheless, in silico design still provided very effective guidance
for the inhibition of linear DNA degradation. Combining
simulation and experimental results, the protein expression
yield of linear DNA with protective sequence had reached
75% of that of plasmid and was six times of that of normal
linear DNA. It indicated that the protective sequence could
indeed greatly improve the expression yield of the LDET-based

cell-free system. This phenomenon was because a protective
sequence could effectively decrease the docking efficiency of
linear DNA and RecBCD DNase complex, thereby ensuring
the integrity of the gene expression template in the cell-
free gene expression system. To prove this point, additional
nucleases were added to the cell-free gene expression system
(Supplementary Figure 10). After adding additional nucleases,
the protein expression yield of the cell-free system with normal
linear DNA decreased a lot, while there was still considerable
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FIGURE 7 | Cell-free experimental verification of protective sequence design. (A) Comparison of typical templates and linear templates with REP sequence. The REP
sequence used was the REP sequence number 17. Only the plasmid group did not add the REP sequence. Linear DNA meant the linear expression templates did
not add protective sequences. The GCGC meant protective sequences with GCGC arrangement mode were added to the linear expression templates. The GGCC
meant protective sequences with GGCC arrangement mode were added to the linear expression templates. The GC distribution mode of these protective
sequences was front. The fluorescence of the cell-free system with plasmid was set to 1. Error bars represented standard deviations from three replicates.
(B) Experimental results of different expression templates in cell-free systems. The letters F, M, and E meant GC distribution mode was front, middle, and back. The
fluorescence of the cell-free system with plasmid was set to 1. Error bars represented standard deviations from three replicates. (C) The kinetics of cell-free reactions
with different expression templates. Error bars represented standard deviations from three replicates. (D) Comparison of sequence-based protection and
GamS-based inhibition. The fluorescence of the cell-free system with normal plasmid was set to 1. Error bars represented standard deviations from three replicates.
(E) Time curves of relative fluorescence for different protection strategies. The GC distribution mode of these protective sequences was front. The fluorescence of
the cell-free system with the co-protection of protective sequence and GamS was set to 1. Error bars represented standard deviations from three replicates. (F) The
co-protection of protective sequence and GamS inhibited the degradation from RecBCD complex. With the co-protection of the designed sequence and GamS, the
protein expression yield of LDET-based cell-free systems could reach the same level as the plasmid-based cell-free systems.

expression in the groups with protective sequences. This result
proved that protective sequences decreased the degradation
of linear gene expression templates in the cell-free gene
expression system.

To investigate whether the protective sequence affected the
kinetics of cell-free reactions, the change of mRNA level in the
cell-free gene expression system was detected with the increase
of reaction time (Figure 7C). Compared to the typical linear

DNA, the groups with a protective sequence had an obviously
higher mRNA level. This result indicated that after the addition
of the protective sequence, the transcription level of the cell-free
gene expression system was greatly improved. However, there
was still a gap between linear DNA with a protective sequence
and the plasmid.

GamS is a common RecBCD DNase complex inhibitor.
The mechanism involved saw GamS bind to RecBCD DNase
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complex to prevent the binding of complex and linear DNA
(Wilkinson et al., 2016b). Therefore, the comparative cell-
free experiment of sequence-based protection and GamS-based
inhibition was carried out to explore the protective mechanism
(Figure 7D). The results showed that the protein expression
yield of plasmid-based cell-free systems was not changed with
GamS. However, the protein expression yield of the group
with typical linear DNA was slightly improved with GamS,
which was lower than that with protective sequences. This
comparison proved the effectiveness of our protective sequence
design. There was also a further interesting finding. With
the co-protection of the designed sequence and GamS, the
protein expression yield of LDET-based cell-free systems could
reach the same level as the plasmid-based cell-free systems.
A further experiment was carried out to prove the co-
protection of the designed sequence and GamS (Figure 7E).
The overall expression level showed that, after 3 h of reaction,
the expression level of the cell-free gene expression system
with typical linear DNA template reached the peak, indicating
that the linear DNA had been completely degraded, and the
cell-free reaction stopped. However, with the co-protection of
the designed sequence and GamS, the duration of the LDET-
based cell-free system was longer, and the expression level
was much higher. These results showed that the co-protection
of the designed sequence and GamS could effectively inhibit
the degradation of linear DNA in cell-free gene expression
systems (Figure 7F).

CONCLUSION

In this study, an in silico linear DNA design strategy was
proposed to improve the stability of linear DNA in cell-free
gene expression systems. The computer simulation was used to
judge the effectiveness of different design strategies and provide
guidance for the experiments. These strategies included the
rational design of GC content, GC arrangement, GC distribution,
and stem-loop structure. The simulation results not only helped
determine the best GC content and stem-loop structure, but
also provided a general direction for GC arrangement and GC
distribution design. Later, by amplifying the protective sequence
to the end of the linear DNA through primer design, the cell-free
experiment results showed that the best GC content was between
60 and 65%, and distributing GC sequences in the front of the
protective sequence was the best choice. This sequence design
strategy improved the protein expression yield of the LDET-
based cell-free system to 75% of that of the plasmid. Furthermore,
with the co-protection of the designed sequence and GamS, the
protein expression yield of the LDET-based cell-free system had
reached the same level as that of the plasmid. These results
not only highlighted the importance of DNA sequence design
strategy on linear DNA stability, but also provided a novel
method combining two different strategies to co-protect linear
DNA from the degradation of native nucleases. This work could
also promote the development of LDET-based cell-free systems
and expand its application, such as in artificial cells, biochips, and
high-throughput screening.

MATERIALS AND METHODS

Simulation Tools
Three-Dimensional Structure of DNA
This study used DNA Sequence to structure webserver (Arnott
et al., 1976)2 to predict the 3D structure of DNA sequences and
build the 3D model.

Secondary Structure of RNA
This study used Vfold2D (version2.0): Predicting RNA 2D
structures webserver (Cao and Chen, 2005, 2009; Xu et al., 2014;
Xu and Chen, 2016)3 to predict the secondary structure of RNA.

Three-Dimensional Structure of RNA
This study used 3dRNA v2.0: Automatic building of ncRNA 3D
structures webserver (Wang et al., 2015, 2017, 2019)4 to build the
3D model of RNA.

Protein-DNA/RNA Docking
This study used HDOCK SERVER (Huang and Zou, 2008, 2014;
Yan et al., 2017a,b, 2020)5 to simulate the docking between DNA
and protein or RNA and protein.

Three-Dimensional Structure Visualization
This study used iCn3D (I-see-in-3D) (Wang et al., 2020), a web-
based three-dimensional structure browser6, for visualization of
the simulation results.

Plasmid DNA and Linear DNA
Preparation
Plasmids used in this study were performed following standard
molecular biology techniques. The green fluorescent protein
pET-23a-sfGFP (Supplementary Figure 9) was used as a model
protein. The sequences of plasmids were verified by TianYi
Biotechnology (Beijing, China). Linear DNA used in this study
was produced by PCR. PCR reagents were from Beyotime
(Shanghai, China). Several primers were designed for the
synthesis of linear DNA (Supplementary Table 3). First, all
reaction components (50 µL reaction) were assembled on ice.
These components included 38 µL ddH2O, 5 µL 10 × pfu buffer,
1 µL 10 mM dNTPs, 1.75 µL template DNA, 2 µL 10 µM
forward primer, 2 µL 10 µM reverse primer, and 0.25 µL pfu
polymerase. PCR tubes were transferred from ice to a PCR
machine with the block preheated to 94◦C, and thermocycling
began. The program was run at 94◦C for 3 min, followed by 30
cycles of 94◦C for 30 s, 57◦C for 30 s, and 72◦C for 140 s. The final
extension was run at 72◦C for 5 min and 4◦C for the remaining
time. PCR product was mixed with 0.1 volume of sodium acetate
(3 mol/L, pH = 5.2). Two volumes of ethanol were added to the
sample and were frozen at−20◦C for at least 1 h or overnight for
best results. The sample was centrifuged at full speed for 20 min

2http://scfbio-iitd.res.in/software/drugdesign/bdna.jsp
3http://rna.physics.missouri.edu/vfold2D/index.html
4http://biophy.hust.edu.cn/3dRNA
5http://hdock.phys.hust.edu.cn/
6https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html
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to collect all materials. The sample was washed with 70% ethanol.
After that, the sample was centrifuged for 10–15 min to pellet the
DNA. The ddH2O was added to dissolve DNA. DNA was stored
at−20◦C for standby use.

Overlap PCR
Linear DNA with REP sequence was produced by overlap PCR.
First, all reaction components were assembled (50 µL reaction)
on ice. These components included 10 µL 5 × Q5 buffer, 10 µL
high GE enhancer, 1 µL 10 mM dNTPs, 50 ng forward template,
50 ng reverse template, 0.5 µL Q5 polymerase, and ddH2O. PCR
tubes were transferred from ice to a PCR machine with the block
preheated to 98◦C, and thermocycling was begun. The program
was run at 98◦C for 30 s, followed by 15 cycles of 98◦C for 10 s,
57◦C for 30 s, and 72◦C for 33 s. Forward template and reverse
template were added for another 20 cycles. The final extension
was run at 72◦C for 2 min and 4◦C for the remaining time.
The PCR product was mixed with 0.1 volume of sodium acetate
(3 mol/L, pH = 5.2). 2 volumes of ethanol were added to the
sample and were frozen at−20◦C for at least 1 h or overnight for
best results. The sample was centrifuged at full speed for 20 min
to collect all material. The sample was washed with 70% ethanol.
After that, the sample was centrifuged for 10–15 min to pellet the
DNA. The ddH2O was added to dissolve DNA. DNA was stored
at−20◦C for standby use.

GamS Protein Purification
The composition of buffers used was as follows: buffer A
(per liter), 29.22 g NaCl, an 2.422 g Tris, with pH set to
7.4 with hydrochloric acid; buffer B (per liter), 29.22 g NaCl,
2.422 g Tris, and 34 g imidazole, with pH set to 7.6 with
hydrochloric acid. A frozen stock of GamS in a BL21(DE3)
E. coli strain (Supplementary Figure 11) was grown overnight
in LB-carbenicillin media. 20 mL was used to inoculate 1 L LB-
carbenicillin to an OD 600 nm of 0.6–0.8 at 37◦C, 220 rpm. 0.1%
IPTG (Isopropyl-beta-D-thiogalactopyranoside) was added, and
cells were grown for four additional hours at 37◦C, 220 rpm. Cells
were resuspended in buffer A, mechanically lysed, and purified
with gravity flow columns (His GraviTrap, GE Healthcare).
25% sucrose was added, and protein was stored at −80◦C
for further use.

Cell-Free Reactions
The cell-free reaction mixture included 1.5 mM spermidine,
1 mM putrescine, 0.33 mM NAD, 1.2 mM ATP, 0.86 mM CTP and
GTP, 0.86 mM UTP, 0.27 mM Coenzyme A (CoA), 170 µg/mL
tRNA, 34 µg/mL folinic acid, 33 mM phosphoenolpyruvate
(PEP), 2 mM of each of the 19 amino acids, 175 mM
potassium glutamate, 10 mM ammonium glutamate, 2.7 mM
potassium oxalate, 1 mM Mg2+, 4 mM GSSG, 1 mM GSH,
2.5% PEG8000, and 30% (volume) of E. coli extract (Rosetta
DE3). Cell-free reactions (20 µL) were incubated at 30◦C
for 16 h. The fluorescence was determined by the enzyme-
labeled instrument. The excitation wavelength was 485 nm,
and the absorptive wavelength was 535 nm. Because the
fluorescence of sfGFP increased linearly with the concentration
of protein, this was consistent with the result of Western

blot (Supplementary Figure 12). In panel A of Figure 7, the
relative fluorescence 1 meant 755240 A.U. fluorescent intensity,
which meant the protein concentration was 0.76 mg/mL.
In panel B of Figure 7 the relative fluorescence 1 meant
525740 A.U. fluorescent intensity, which meant the protein
concentration was 0.53 mg/mL. In panel D of Figure 7, the
relative fluorescence 1 meant 602250 A.U. fluorescent intensity,
which meant the protein concentration was 0.61 mg/mL.
In panel E of Figure 7, the relative fluorescence 1 meant
603540 A.U. fluorescent intensity, which meant the protein
concentration was 0.61 mg/mL.

RNA Extraction and Target mRNA
Quantification
The total mRNA was extracted from the samples by RNAsimple
Total RNA Kit (TIANGEN, DP419). The kit was stored at
−80◦C, or the reverse transcription was performed immediately
by FastKing RT Kit (With gDNase) (TIANGEN, KR116). The
cDNAs were quantified by SuperReal PreMix Plus (SYBR
Green) (TIANGEN, FP205-02). The PCR product of sfGFP
was amplified by the same primers as qPCR for the standard
curve (Supplementary Figure 13) to relate the sfGFP cDNA
concentrations with CT values read by ABI 7300 Real-
Time PCR system.
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