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A B S T R A C T

Traumatic brain injury (TBI) is a global health burden and a major cause of disability and mortality. An early
cascade of physical and structural damaging events starts immediately post-TBI. This primary injury event
initiates a series of neuropathological molecular and biochemical secondary injury sequelae, that last much
longer and involve disruption of cerebral metabolism, mitochondrial dysfunction, oxidative stress, neuroin-
flammation, and can lead to neuronal damage and death. Coupled to these events, recent studies have shown
that lifestyle factors, including diet, constitute additional risk affecting TBI consequences and neuropatho-
physiological outcomes. There exists molecular cross-talk among the pathways involved in neuronal survival,
neuroinflammation, and behavioral outcomes, that are shared among western diet (WD) intake and TBI path-
ophysiology. As such, poor dietary intake would be expected to exacerbate the secondary damage in TBI.
Hence, the aim of this review is to discuss the pathophysiological consequences of WD that can lead to the
exacerbation of TBI outcomes. We dissect the role of mitochondrial dysfunction, oxidative stress, neuroin-
flammation, and neuronal injury in this context. We show that currently available data conclude that intake
of a diet saturated in fats, pre- or post-TBI, aggravates TBI, precludes recovery from brain trauma, and reduces
the response to treatment.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:

TBI
Western diet
Oxidative stress
Mitochondrial dysfunction
Microbiota
Neuroinflammation
ogy and Toxicology, Faculty of
.

2@aub.edu.lb (F.H. Kobeissy).

B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. A healthy metabolic state is required for normal brain function

1.1. Brain metabolism: a unique metabolic profile

The brain is an energy-intensive organ that can utilize glucose or
ketone bodies as energy sources according to metabolite availabil-
ity. Therefore, regulation of metabolic rates is especially vital in the
central nervous system (CNS). Consequently, a rapid distortion of
cerebral function could result from any metabolic imbalance
compromising the availability of glucose without a compensatory
ketogenic response as in the case of hyperinsulinemia or insulin
resistance, for instance [1]. Interestingly, metabolic dysfunction is a
direct risk factor for behavioral, cognitive and mood disorders [2].
As well, obesity has been linked to a higher risk of neurodegenera-
tive disorders such as Alzheimer’s disease [3]. Notably, these meta-
bolic disorders and neuronal changes have been linked to common
pathways involving inflammation, mitochondrial dysfunction and
insulin resistance as will be discussed below.
1.2. Mitochondria: impact on brain function and cognition

Mitochondria are unique cytoplasmic energy production organ-
elles with a separate genome, the mitochondrial DNA (mtDNA) [4].
Due to its proximity to increased reactive oxygen species (ROS) lev-
els, its lack of histones, and its limited DNA proofreading and repair
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Abbreviations

(AMPK) adenosine monophosphate activated protein
kinase

(ATP) adenosine triphosphate
(BBB) blood-brain barrier
(BMI) body mass index
(BDNF) brain-derived neurotrophic factor
(CR) caloric-restricted
(CREB) cAMP-response element-binding protein
(CNS) central nervous system
(CBF) cerebral blood flow
(WD) western diet
(IL) interleukin
(mTOR) mammalian target of rapamycin
(RNS) reactive nitrogen species
(ROS) reactive oxygen species
(TLR-4) Toll-Like Receptor 4
(TBI) traumatic brain injury
(TCA) tricarboxylic acid
(T2DM) type 2 diabetes mellitus.
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capacities, mtDNA is more susceptible to damage than nuclear DNA
[5]. mtDNA damage can be caused by metabolic insults such as
redox homeostasis imbalance resulting from overconsumption of
diets rich in fats, for instance. Interestingly, mitochondrial dysfunc-
tion may lead to the development of insulin resistance, which will
be discussed in the next section [6]. The brain is vulnerable to mito-
chondrial defects given its dependence on mitochondrial function
for neurogenesis, neurotransmitter synthesis, calcium homeostasis,
and neuronal survival, plasticity, and excitability [7]. In fact, litera-
ture shows that mitochondrial dysfunction underlies the etiology of
several neurodegenerative diseases such as Alzheimer’s disease [8].

1.3. Insulin regulates metabolism and affects cognition

Insulin is the main hormone regulating blood-glucose levels and
tissue glucose uptake . An abnormal blood insulin level, is a major
marker of the metabolic syndrome [9]. Due to its ability to cross the
blood brain barrier (BBB), insulin acts as a neuropeptide and acti-
vates neuronal insulin receptor signaling, which is critical for neuro-
nal growth, survival, and differentiation [10]. Additionally, neuronal
insulin signaling enhances neurogenesis, increases neuronal sur-
vival and reduces neuroinflammation [11]. Mounting evidence cor-
relates insulin resistance in the brain to neurological diseases [12]
and cognitive deficits [13]. In fact, insulin-mediated signaling path-
ways play important roles in the regulation of brain functions under
normal and disease states [9]. For instance, insulin treatment in
individuals with Alzheimer’s disease improved memory perfor-
mance [14]. These observations led to the notion that enhancing
insulin signaling can be an attractive therapeutic target following
brain injury.

2. Western diet (WD) alters brain metabolism

2.1. The western diet can lead to obesity, inflammation, and
mitochondrial dysfunction

The shift towards WD (i.e. a diet rich in saturated fats and
refined sugars) is correlated with an increased incidence of meta-
bolic disorders including obesity and type 2 diabetes [15]. Of spe-
cific interest, WD has been shown to impair cognitive performance
and synaptic plasticity, as well as increase the risk of dementia
[16]. A large body of evidence correlates obesity with cognitive
decline [17]. This is further compounded by the finding that obe-
sity negatively impacts the outcome of a frontal head collision
where obese patients had a higher likelihood of increased injury
severity or death [18]. Remarkably, obesity can compromise and
delay patient recovery post brain injury and can pose a burden to
rehabilitation [19].

Mechanistically, WD intake and obesity have been shown to be
accompanied by systemic inflammatory responses, which can cause
cognitive decline and worsen brain injury outcomes [17, 20]. Adipo-
cytes secrete pro-inflammatory mediators, which can promote
metabolic dysregulation and insulin resistance [21]. Interestingly,
WD-induced hyperinsulinemia and insulin resistance are thought to
reciprocally drive this process via the trophic effect of insulin on
adipocytes as the ensuing hypertrophy, in response to excess caloric
intake, leads to hypoxia and inflammatory cell infiltration [22]. Pro-
inflammatory cytokines usually induced by WD such as IL-1b and
IL-6 can disrupt neural circuits involved in cognition and memory
[23]. Moreover, evidence shows that WD consumption leads to
inflammatory changes leading to brain insulin resistance [20].
Alongside, WD-induced neuronal pathologies are exacerbated by
mitochondrial dysfunction including reduced activities of citrate
synthase and complexes I and III [24] and increased mitochondrial
ROS production [25].
2.2. High-fat diets are not created equal

Although the present review focuses on the effects of WD, it is
prudent to differentiate its detrimental effects from the protec-
tive effects of another type of high-fat diet, the ketogenic diet
(KD). KD is a fat-rich diet low in proteins and carbohydrates.
Unlike WD, KD has low obesogenic and addictive potentials, and
is neuroprotective [26, 27]. Reduced carbohydrate content, in the
KD, mimics the beneficial effects of caloric restriction or fasting
[28]. Under such conditions, sugar stores of the body are
exhausted and the rate of gluconeogenesis is insufficient to pro-
vide glucose fast enough to meet brain energy needs. Metabolism
is shifted towards the use of fats as the primary fuel source and
liver catabolism of fatty acids is increased leading to subsequent
rises in ketone bodies levels, which serve as an alternative energy
supply for the brain [29]. Contrary to WD, the KD can reduce neu-
ronal inflammation [30], decrease behavioral patterns of depres-
sion in animal models [31], ameliorate cognitive defects [32], and
mitigate neuronal injury [33].
2.3. Low-fat traditional diets promote brain health

A large body of evidence supports the efficacy of low-fat dietary
patterns in ameliorating age-related cognitive dysfunction and
reducing risk of Alzheimer’s dementia [34]. A recent longitudinal
investigation of the effect of one such diet, the Mediterranean diet
(MD), on cognitive health indicated that MD consumption was
associated with reduced risk of dementia and better memory and
language performance [35]. Smaller clinical trials had supported
the conclusions regarding the cognitive impact of MD [36, 37].

Animal studies indicated that antioxidants and flavonoids from
fruits and vegetables in these diets suppress neuro-inflammation by
reducing oxidative stress and apoptosis via inhibiting NF-KB-depen-
dent inflammatory signaling [34]. In direct contrast to WD, the MD
was shown to reduce systemic insulin resistance in humans, not
necessarily as a consequence of body weight modulation [38]. Other
low fat dietary patterns have also been associated with an insulin
sensitizing effect [39]. However, there is a paucity of studies investi-
gating the direct impact of these dietary patterns on brain cognitive
functions.
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3. Traumatic brain injury: classification, secondary injury, and
disruption of brain metabolism

3.1. TBI severity and secondary injury

Traumatic brain injury (TBI) is a life-threatening progressive brain
insult, following a mechanical impact, leading to neurobehavioral dys-
function. Yearly, it is estimated that» 50million TBIs occur worldwide
with an overall cost reaching USD 400 billion [40]. TBI can be classified
into focal injury due to blunt or penetrating impact or diffuse non-pen-
etrating injury due to blast waves or inertial loading. Clinically, TBI
severity is classified using the Glasgow Coma Scale coupled with neu-
roimaging techniques [40]. Typically, severe and moderate TBIs exhibit
overt gross structural damage and “focal” abnormalities including sub-
arachnoid hemorrhage, hematomas, and bleeding detected using neu-
roimaging. However, mild TBI (mTBI) or concussion injury shows
negative neuroimaging results; nevertheless, this does not preclude
future neurological defects [40].

The pathophysiological events in TBI occur as primary and sec-
ondary brain injuries. Primary injury represents the immediate direct
mechanical damage at the site of injury including tissue damage,
impaired regulation of cerebral blood flow (CBF), subarachnoid hem-
orrhage, epidural hematoma, subdural hematoma, and contusion.
The secondary injury (non-mechanical damage) involves a cascade of
downstream interacting cellular, and molecular events initiated by
the primary insult [41]. The secondary brain injury involves diffuse
axonal injury, inflammation, ischemia, excitotoxicity, and energy
failure. Both, primary and secondary injuries interact to produce a
complex pattern of evolving damage [42].

In the focal, open head injury, the primary and secondary brain
injury phases are quite discernible. This penetrating brain trauma is
associated with blood-brain barrier (BBB) disruption, recruitment of
blood borne immune cells, and thus, a rapid inflammatory response
at the injured neuronal site [43]. Contrarily, mTBI injury phases are
more obscure with no spatial separation when compared to open
head injury. This is commonly observed in sports injury where rota-
tional and linear acceleration forces are applied to the brain with no
penetrating injury [44, 45]. As a result, around 10�40% of mTBIs
evolve into post-concussion syndrome and long-term cognitive and
behavioral deficits associated with white matter injury without
apparent neural cell degeneration [46].

3.2. TBI induces metabolic and oxidative stress: implications for
mitochondrial dysfunction

An energy crisis emerges post-TBI as the increased energetic
demand cannot be met due to mitochondrial dysfunction contribut-
ing to the progression of secondary injury [47]. Moreover, following
TBI, glucose metabolism is altered, in part due to oxygen deprivation
[48]. An elevation in the Lactate/Pyruvate ratio is observed post-TBI
indicating a shift towards anaerobic metabolism in animal models
[49, 50] and human subjects [51]. As such, shortly following TBI, the
brain experiences a period of hyperglycolysis, during which glucose
utilization is increased so as to meet the metabolic demands com-
pounded by mitochondrial dysfunction [52]. The latter could result
from the reduced activity of several mitochondrial enzymes post-
TBI. Indeed, mitochondrial pyruvate dehydrogenase complex activ-
ity is decreased post-TBI [53], as well as the enzymatic activities of
mitochondrial complexes I and IV, which compromises oxidative
metabolism and leads to a decreased ATP/ADP ratio [53].

Mitochondrial dysfunction post-TBI may also result from its Ca2+

buffering function. Under normal physiological conditions, neuronal
Ca2+homeostasis is maintained by mitochondria [7]. Following TBI,
aberrant release of neurotransmitters takes place, including the excit-
atory glutamate, leading to excitotoxicity [54]. Excitotoxicity is mainly
mediated by the pathophysiological activation of voltage-gated
calcium channels and the subsequent Ca2+ build up within neural cells.
Consequently, excessive uptake of Ca2+ by mitochondria occurs, caus-
ing Ca2+ toxicity. This can lead to increased mitochondrial membrane
permeability, dysfunctional mitochondrial enzymes and mitochondrial
DNA damage [55]. Moreover, following TBI aberrant translocation of
the mitochondrial-encoded protein dynamin-related protein 1 (DRP 1)
to the outer mitochondrial membrane leads to excessive mitochon-
drial fission. This effectively decreases mitochondrial count possibly
leading to neurodegeneration [56].

3.3. Individual differences in response to TBI

Differences in response to TBI have been noted among patients,
where some may suffer from severe and persistent outcomes while
others do not [57]. Several physiological and psychological factors
can predispose individuals to the likelihood of these symptoms.
These include: pre-existing psychological problems, gender, being
older, and having previous head injuries [58�60].

A prospective cohort study conducted among patients with mTBI
concluded that patients with negative mTBI perceptions, stress, anxi-
ety and depression had worse outcomes [57]. Several studies were
conducted in regards to age as a risk factor for poor prognosis post-
TBI. In one study, adults aged > 60 had the highest rates of TBI-related
hospitalization and death [59, 60].

Many studies reported a sex difference in the outcomes of TBI.
Considering that the incidence of TBI is higher in males, most of the
animal and clinical studies focus on the male population [61]. In fact,
many studies have reported that females exhibit better outcomes
post-TBI. This observation was related to female hormones and their
ability to act as neuroprotective agents [62, 63]. Nevertheless, other
studies reported worse outcomes of TBI in females following a con-
cussion, with more symptoms and more persistent sequelae [59, 60].

4. WD, but not KD, worsens brain functional and metabolic
outcomes post-TBI

4.1. WD exacerbates TBI-induced injury

Most studies evaluating the impact of altered dietary composition
on TBI focused on its neuropathological and behavioral outcomes
independent of the brain injury modes or severity context, i.e.
whether it is mTBI or more pronounced penetrating head injury, or
even on the level and timing of intervention, which represent key
elements in defining a specific TBI model [64�66]. The lack of these
correlational studies depicts major caveats in the field of nutritional
supplementation/needs in TBI. In one study, the outcomes of second-
ary injury outcomes from a closed head injury with single hit (mTBI)
were evaluated in WD-fed obese C57 BL/6 mice as compared to lean
mice. At a chronic time point (30 days), the obese mice showed
marked microglial activation along with a chronic inflammatory
state, attributed to perturbation of the hypothalamic-pituitary adre-
nal axis [67]. Another study assessed the effect of chronic fructose
consumption on hippocampal molecular changes and mitochondrial
bioenergetics following diffuse brain injury. The authors did not
notice differences one week after injury, whereas a more chronic
time point (»one month) showed the secondary injury characteristic
in this mTBI model [65]. Along the same lines, a high-fat/sucrose diet
induced behavioral changes post-open head injury, where outcomes
were assessed at 21 days post-injury. Brain-injured rats on the high
fat/sucrose diet had more severe somatosensory dysfunction com-
pared to rats in the sham group. Furthermore, the experimental
group exhibited working memory impairment in addition to having
significantly higher loss of cortical tissue post-injury. Nevertheless, the
neurobehavioral outcomes were correlated primarily to the dietary
intake rather than the open head TBI pathophysiology [64]. Similarly,
four weeks of high-fat/sucrose feeding followed by experimental mild
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diffused brain injury led to exacerbation of the TBI-induced
impairment of spatial learning capacity. This decline in learning ability
was confirmed by decreases in the levels of brain-derived neurotro-
phic factor (BDNF) in the CA3 and dentate gyrus of the hippocampus.
Also, pronounced decreases were observed in the levels of active phos-
phorylated synapsin I protein, a major pre-synaptic protein, and
cAMP-response element-binding protein (CREB), a downstream tran-
scription factor that modulates synaptic transmission. Yet again, these
changes were assessed only one week post-injury overlooking the
secondary pathophysiological injury that needs to be checked at
chronic time points relevant to the model used [66]. Similar results
were obtained in other studies [68, 69]. Nevertheless, these results
still suggest that WD can affect the molecular machinery responsi-
ble for maintaining neuronal function and homeostasis following
brain injury.

It is noteworthy that all WD combinations associated with detri-
mental outcomes post-TBI (Table 1) have a non-ketogenic composi-
tion [27]; high in refined sugar and carbohydrate content, an
essential factor contributing to the induction of hyperinsulinemia
and insulin resistance. Significantly, obese mice subjected to repeated
TBI showed prolonged reduction in PKB/ Akt activation, a down-
stream effector pathway of insulin signaling [70]. In this context, the
question of gender differences arises. For a given BMI, females are
more insulin sensitive than males [71]. Moreover, studies showed
that females are less prone to develop insulin resistance following
WD feeding [72]. As well, WD induced less inflammatory changes in
females compared to males [73]. This could partly explain gender
bias in TBI outcomes in patients on WD.

4.2. KD produces an opposite effect post-TBI

As part of the adaptive metabolic response to injury, the brain
shifts towards ketone body metabolism as an alternative energy
source [33, 74, 75] reducing the inefficient glycolytic breakdown of
glucose and increased lactate production. This can decrease oxidative
damage, improve ATP production, increase ATP hydrolysis, decrease
inflammation and free radical production, and increase autophagy
[30, 76]. Moreover, KD feeding for 72 h post-TBI significantly reduced
release of cytochrome c from brain mitochondria, leading to
decreased mitochondria-induced apoptosis [77]. Importantly, KD
reduced TBI-induced oxidative stress, increase protein expression of
cytosolic and mitochondrial antioxidant factors such as Nrf2/ARE,
induced NAD (P)H dehydrogenase quinone-1 and superoxide dismu-
tase, and increase ATP production by promoting the activity of com-
plex II [78]. Overall, KD can decrease the impact of brain injury by
enhancing cerebral bioenergetics and metabolism.

5. Mechanisms underlying the effects of WD in TBI

5.1. WD disrupts normal neuron-glial cell communication

The increased release of glutamate following TBI could stimulate
astrocytic glycolysis and lactate production [79]. Astrocytic clearance
of glutamate from the synaptic cleft, which takes place through
sodium coupled reuptake, induces Na+/K+ ATPase in astrocytes. The
Na+/K+ ATPase then stimulates glucose uptake and its subsequent gly-
colysis in astrocytes. The lactate, formed as a byproduct of glycolysis
in astrocytes, is then shuttled to neurons and used as an energy
source [80]. Several studies support the role of lactate in cerebral
metabolism following brain injury, a concept known as “lactate as
energy on demand”. Yet, this metabolite can only be used in neurons
receiving enough oxygen and having functional mitochondria [81].
Findings in animal models back the potential benefit of lactate
metabolism in humans following TBI. For example, brain-injured rats
supplied with intravenous lactate showed improved cognitive abili-
ties [82]. Furthermore, the ability of the brain to use lactate as a fuel
may be one of the key predictors of the outcome of TBI in humans
[83]. Interestingly, it was shown that the expression of astrocytic glu-
tamate transporters is reduced in hippocampi of mice on a WD,
which correlated with decreased lactate levels [84]. Glutamate trans-
porter downregulation could also lead to the accumulation of gluta-
mate in the synaptic cleft, thus contributing to excitotoxicity [84]. In
addition, WD was shown to decrease astrocytic expression of con-
nexin-43, a protein component of gap junctions that connect neigh-
boring astrocytes. Gap junctions are essential for the formation of the
astrocyte metabolic network and for proper lactate dynamics [84]. In
this context, WD could interfere with the metabolic supply, further
contributing to the metabolic dysfunction post TBI.

5.2. WD induced-dysbiosis contributes to the secondary injury

The gut-brain axis constitutes a signaling link between
the gastrointestinal tract and the CNS [85]. Around 3£ 1013 bacterial
cells colonize the human body [86]. Of specific interest, this microbial
diversity influences the gut-brain axis through a bidirectional inter-
action. The gut flora can contribute to the production of a range of
neuroactive molecules, such as acetylcholine, histamine, melatonin,
and serotonin [87]. In addition, several studies show that gut micro-
biota composition can impact insulin resistance, which is known to
compromise cognitive functions as discussed above. Commensal gut
bacteria may enhance insulin sensitivity by modulating the produc-
tion of the incretin hormone glucagon-like peptide-1 [88]. Moreover,
alterations in microbial diversity has been linked to microglial activa-
tion, BBB disruption, anxiety-like behavior and neurodegenerative
diseases such as Parkinson’s disease, all of which may indicate a pos-
sible impact on TBI outcomes [89].

Following TBI, the gastrointestinal tract is affected possibly due to
autonomic nervous system disruption [90]. Specifically, decreased
contractility, mucosal atrophy, decreased tight junction proteins
and increased permeability were observed [91, 92]. Concurrent
with the increased intestinal permeability following TBI, more
pathogenic substances such as LPS are able to penetrate the vascular
system of the host causing endotoxemia. In this context, endotoxe-
mia-induced systemic inflammation is hypothesized to influence
the TBI-activated microglia, further contributing to the secondary
injury. Importantly, intestinal permeability positively correlated
with levels of markers of inflammation and the levels of endotoxins
in the plasma post TBI [93].

The gut microbiome is altered as early as 2 h post-TBI in rodent
models. Representation of the beneficial bacteria of the Firmicutes
phylum was decreased while representation of pathogenic bacterial
families of the Proteobacteria and Bacteroidetes phyla increased. Inter-
estingly, injury lesion volume positively correlated with the
increased levels of Proteobacteria and negatively correlated with the
levels of Firmicutes [94].

Along the same lines, WD altered the Firmicutes to Bacteroidetes
ratio and decreased the overall microbial diversity [95, 96]. Mice on
WD exhibited decreased levels of Bifidobacteria, a group of bacteria
shown to have protective functions. In addition, WD was noted to
increase endotoxin production by the gut microbiota as well as
plasma endotoxin concentrations [95]. Interestingly, other studies
demonstrated that WD caused decreased hippocampal-related func-
tions accompanied by alteration of gut bacteria [97]. Treatment of
WD mice with A. muciniphila successfully reversed the cognitive defi-
cits and improved cognitive performance [97]. In this context, it is
evident that intake of WD induces an intestinal dysbiosis that can
worsen the inflammation state as well as TBI outcomes (Fig. 1).

5.3. WD induces inflammation through the TLR-4 pathway

In the context of neuronal inflammation, WD has been associated
with increased microglial reactivity [98]. Interestingly, microglial



Table 1.
The detrimental effects of HFD on the metabolism and cognition of the traumatically injured brain of experimental animals.

WD relative toTBI Composition of the diet given Species and age of experimen-
tal animals

Endpoint Brain injury model Outcome and results References

Before Diet rich in saturated and
mono-unsaturated fats
(»39%) and sucrose (»40%).

Male
Sprague-Dawley rats

(200�240 g)

High sucrose diet mimicking the
western diet given for four weeks
before the induction of the injury.

Mild TBI: fluid percussion injury - WD aggravated TBI-induced defects in
spatial memory

- # Learning performance
- # Levels of BDNF and its downstream
effectors CREB and synapsin I

(66)

Before High fat sucrose diet with 45%
fat, 70% carbohydrate, and
20% protein.

Male Sprague-Dawley rats
(14�15 week old)

High sucrose diet mimicking the
western diet given for eight weeks
before the induction of the injury.

Bilateral frontal cortical contusion
injuries

- WD aggravated TBI-induced impairments
in working memory

- WD aggravated TBI-induced somatosen-
sory dysfunctions

- " Loss of cortical tissue

(64)

Before High fat diet with»60% of
total calories derived from
fat; 20% of calories from car-
bohydrates, and 20% of calo-
ries from proteins.

Pups of female Sprague
Dawley rats. Mothers were
on the HFD diet

Pups born to females on HFD. Pups
continued on the same diet before
induction of the brain injury at
P30 and/or P60.

Mild TBI using the modified weight
drop technique

- Exacerbated mTBI-induced defects in
motor functioning (" Average number of
hind legs foot slips in beam-walking test),
short-term working memory, and depres-
sive symptoms

- # Telomere length
- Alteration in genes involved in regulating
dietary-dependent changes in neuroplas-
ticity (i.e. BDNF, CREB etc.)

(69)
(68)

Before High-fat diet (D12492 from
Research Diets, 60% of total
calories from fat sources and
enriched in refined sugars,
sucrose, 10% by weight).

Male pups of female C57/BL6
mice. Mothers on the HFD

Pups born to females on HFD. Male
pups continued on the same diet
until receiving the brain injury at
six weeks of age.

Mild TBI: 1 or 2 hits 24 h apart using
the controlled cortical impact
model

- Brain insulin resistance (demonstrated by
the absence of insulin stimulated Akt
phosphorylation)

- Exacerbated TBI-induced neuroinflamma-
tion ("Microglial activation), learning
and memory deficit, and anxiety-like
behaviors

(70)

Before High-fat diet (60% of total calo-
ries derived from fat
sources).

Male and female C57 BL/6
mice (six month old)

HFD was given for four months before
induction of the brain injury

Mild TBI: controlled cortical impact
model

- # Corticosterone levels and weight gain in
obese male mice subjected to TBI com-
pared to non-injured mice.

- HFD-exacerbated TBI-induced microglia
activity in male mice

- HFD-exacerbated TBI-induced anxiety in
male mice

(67)

HFD: high fat diet; BDNF: Brain-derived neurotrophic factor; CREB: cAMP response element-binding; bHB: b-hydroxybutyrate; CCI: controlled cortical impact.
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Fig. 1. WD aggravates the neuronal insult post-TBI: By impacting similar molecular pathways as TBI, WD can dramatically worsen the outcomes that follow TBI. For example WD can
exacerbate TBI-induced energy crisis and metabolic dysfunction leading to an exacerbated neuroinflammation. Several potential pathways appear to contribute to the increased vul-
nerability of the brain to the outcomes of TBI in individuals who are on a WD. These contributing pathways that range from gut dysbiosis to epigenetic modulation in addition to
induction of inflammatory pathways, alteration of autophagic/oxidative flux and the alteration of the adipokine profile. All of these pathways culminate in an augmented neuronal
injury.
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reactivity is shown to be mediated by Toll-Like Receptor 4 (TLR-4), a
pattern recognition receptor that is highly expressed on brain micro-
glia and known to bind saturated fatty acids [98, 99]. In addition,
WD-fed rodents exhibited high expression of TLR-4 in the CNS, con-
currently with increased microglial activation. Indeed, TAK-242, a
TLR-4 antagonist, reduced hippocampal microglial inflammation in
WD-fed mice while having no effect on mice fed the normal chow
[98]. Downregulation of TLR-4 by TLR-4 shRNA also decreased WD-
induced hypothalamic microglial inflammation and successfully
restored the WD-induced alteration of glucose homeostasis [99].

In the context of TBI, TLR-4 was studied as a therapeutic target in
the management of TBI outcomes. TLR-4 was found to be upregulated
in hippocampal astrocytes and neurons post-injury in a manner that
correlated with the extent of neuroinflammation, brain edema and
neurologic deficits [100]. Silencing cerebral TLR-4 expression in rats
by administering TLR-4 shRNA pre-injury successfully decreased the
TBI-induced neuroinflammation. Similarly, the experimental group
showed decreased brain edema and improved neurobehavioral out-
comes [100]. Taken together, one can recognize that TLR-4 is a key
mediator of neuroinflammation and neurobehavioral deficit both in
the context of WD and TBI. We therefore hypothesize that WD exac-
erbates TBI outcomes by further contributing to TLR-4 activation,
leading to the aggravation of the neuroinflammatory insult and the
secondary injury cascade.
5.4. WD alters mTOR signaling and autophagy

The mammalian target of rapamycin (mTOR) is a highly conserved
serine/threonine kinase that plays an integral role in cell growth and
differentiation. It has been shown to be of specific importance in neu-
ron physiology, where it regulates synaptic plasticity, learning and
memory [101]. However, dysregulation and hyperactivation of mTOR
has been associated with insulin resistance, systemic inflammation
[102] and microglial activation [103]. Interestingly, WD-fed mice
exhibit increased phosphorylation of mTOR in the brain coinciding
with increased microglial activation and cognitive dysfunction [104].
Moreover, the increased signs of neuroinflammation post TBI,
observed in high-caloric intake mice compared to normal caloric-
intake mice, were accompanied by increased levels of mTOR, which
demonstrates that WD contributes to the secondary brain injury in
part through activation of mTOR [105]. Alternatively, mTOR acts as a
potent inhibitor of autophagy. In this context, the autophagic flux
was altered in the hippocampi of WD-fed mice associated with
increased accumulation of amyloidogenic plaques [106]. In the con-
text of TBI, calorie-restricted (CR) mice showed increased levels of
Beclin1 and LC3B as compared to normal and high calorie-intake
mice post-injury. Another study observed that administration of
rapamycin (inhibitor of mTOR) post-TBI was associated with
improved TBI outcomes and a decrease in apoptotic index [107]. In
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conclusion, mTOR activation plays a role in the secondary injury post-
TBI, a situation which can be aggravated by the intake of WD. Specific
targeting of this pathway can therefore have beneficial consequences
in the management of TBI, especially in obese individuals (Fig. 2).

5.5. WD increases oxidative stress parameters by impacting BDNF and
anti-oxidant defense systems

Indeed, TBI is known to induce lipid peroxidation in the form of
excessive accumulation of oxidized phospholipids that is almost
instantaneously triggered post-injury [108]. Chronic WD feeding
increased lipid peroxidation in mouse hippocampus [109]. Apart
from that, the expression levels of anti-oxidant defense system
proteins superoxide dismutase-2 and catalase were significantly
decreased upon WD consumption [110], as well as the activation of
Nrf2, the primary transcription factor responsible for regulation of
phase II antioxidant response [111]. WD feeding before and after
mTBI aggravated oxidative damage manifested as increased protein
oxidation [112]. In the same study, WD exacerbated the effects of TBI
on synaptic plasticity and cognitive functions by the enhanced sup-
pression of BDNF, Synapsin I, and CREB expression, already attenu-
ated by TBI. These results are in agreement with other evidence
showing that TBI-induced oxidative stress can affect the injured brain
by acting through the BDNF system, which modulates synapsin I and
CREB to alter synaptic plasticity and cognition [113, 114]. At the same
time, WD-induced oxidative stress can also suppress BDNF levels in
various brain regions including the hippocampus and frontal cortex
[115]. Together, it is evident that WD can exacerbate TBI-induced
alteration of the BDNF system leading to impaired synaptic plasticity
and cognitive functions (Fig. 1).

5.6. WD alters the adipokine profile

Adipokines are bioactive molecules, secreted by adipose tissue,
that act in an autocrine, paracrine or endocrine manner and play spe-
cific roles in obesity-dependent inflammation and insulin resistance
[116]. Based on their target receptors and downstream signaling,
Fig. 2. HFD exacerbates the effects of TBI on synaptic plasticity and cognitive functions: HFD alte
stasis following brain injury. HFD increases oxidative stress parameters by impacting BDN
nounced decreases of CREB protein levels (a downstream transcription factor that modulate
enhances the incidence of insulin resistance, systemic inflammation and microglial activation
adipokines can be classified into hormones such as leptin and adipo-
nectin, angiogenic factors such as resistin and neuregulin, or cyto-
kines including IL-1b, IL-6, IL-10, TNF-a, and TGF-b [117]. Indeed,
various adipokine receptors are present in the brain indicating that
the metabolic state of the adipose tissue has the potential to modu-
late neuronal function [118]. Adipose tissue expands in response to
excessive caloric intake [119]. This leads to aberrant secretion of adi-
pokines including pro-inflammatory cytokines IL-1b, IL-6 and TNF-a.
This adipokine imbalance appears to be involved in the mechanisms
that take place in the secondary injury post-TBI. During this period of
high energy demand, the expression of neuroinflammatory cytokines
such as TNF-a is induced [120] mediating the metabolic changes
observed following brain injury [121]. While WD feeding alters the
expression levels and signaling pathways of leptin and adiponectin
[122, 123] leading to inflammatory outcomes similar to these
observed in Alzheimer’s disease and dementia [124], little is known
about the possible role of either mediator in the secondary injury
post-TBI and the potential alteration of their function in the context
of WD feeding (Fig. 1).

5.7. WD induces epigenetic dysregulation exacerbating secondary injury

Emerging findings have shown that dietary intake can induce
changes in gene expression through alterations in the epigenetic
machinery [125]. Studies of normal brains have established the vital
role of epigenetic modulators in neuroplasticity, learning and mem-
ory [126]. Several epigenetic mechanisms, including DNA methyla-
tion, histones post-translational modifications, and miRNA regulation
of gene expression are increasingly implicated in the pathophysiol-
ogy post-TBI [127]. Interestingly, WD feeding was shown to impact
neuroplasticity and behavioral changes through the modification of
the bdnf gene methylation status in rats [128]. As mentioned previ-
ously, the BDNF system malfunction has been implicated in the
pathology of TBI. Significantly, studies of the effect of different dietary
patterns on bdnfmethylation showed that WD enhanced bdnfmethyl-
ation with a negative impact on cognitive function that was mediated
by the downregulation of several cellular metabolic and mitochondrial
rs the molecular machinery responsible for maintaining neuronal function and homeo-
F and components of the anti-oxidant defense systems. This is accompanied by pro-
s synaptic transmission). Likewise, HFD can worsen the dysregulation of mTOR which
.
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factors including Sirt1 and PGC-1a [128]. This adds a further layer of
complexity to the effect of WD on neuronal resilience post-TBI as the
ensuing epigenetic changes will not only compromise BDNF-mediated
neuronal recovery, but also exacerbate the energy crisis. Of particular
interest, the epigenetic neuronal impact of WD may persist for several
generations. Dietary choices during the critical window of germ line
development may profoundly characterize the phenotype of subse-
quent generations and maternal feeding on a WD can create an
unfavorable intrauterine environment during pregnancy leading to
long-term health outcomes after birth such as the predisposition to
neurological disorders [129].

6. Exercise can ameliorate the metabolic effects of the WD and
TBI

Exercise contributes to the amelioration of WD- and TBI-induced
changes by affecting the molecular pathways involved in energy
metabolism and synaptic plasticity [130, 131]. Its effects include
being anti-oxidant, anti-inflammatory and anti-apoptotic, in addition
to augmentation of neurogenesis and neuroplasticity [131, 132].
Exercise can enhance neurogenesis by increasing the levels of BDNF,
IGF-1 and VEGF [133, 134]. Additionally, exercise-induced mitochon-
drial biogenesis can assist in repair mechanisms post-TBI [135]. A
widespread mitochondrial biogenic response occurs by up-regulating
PGC1a, SIRT1 and the mitochondrial enzyme citrate synthase in
different regions of the brain [136]. All these mechanisms can help
explain the role exercise plays in the amelioration of cognitive
deficits post-TBI [137].

The beneficial effects of exercise also extend to the amelioration of
the negative impacts of WD on brain function. Exercise can enhance
mitochondrial performance and restore insulin sensitivity by increas-
ing TCA cycle flux and by coupling ligand-induced PPAR activity. This
pathway also includes remodeling of downstream metabolic pro-
cesses mediated by PGC1 [138, 139]. Interestingly, exercise has been
shown to prevent WD-induced dysbiosis. WD-fed mice that exer-
cised exhibited decreased Firmicutes/Bacteriodetes ratio in high-fat-
fed male mice [140]. In this context, it is evident that exercise can
slow down or halt the metabolic changes induced by WD and as a
result can alter TBI outcomes.

7. Conclusion

TBI is a debilitating brain insult associated with significant conse-
quences, mainly due to the secondary injury. Although TBI outcomes
can be silent, especially in case of mild injury, they are associated
with long term impairment in brain function. Given the drastic
change in eating habits in the past century, more effort towards the
elucidation of mechanisms of interaction between increased caloric
intake and TBI is warranted. The aim of such an effort will be to
develop effective interventions to reduce the secondary injurious cas-
cades post-TBI. By impacting similar molecular pathways as TBI, WD
can dramatically worsen post-injury outcomes by exacerbating neu-
roinflammation (Fig. 1). Several potential pathways appear to con-
tribute to the increased vulnerability of the brain to traumatic injury
in individuals on western diet. These pathways include gut dysbiosis,
epigenetic modulation, induction of inflammatory pathways, alter-
ation of autophagic/oxidative flux, and alteration of the adipokine
profile, and ultimately culminate in an augmented neuronal injury.

8. Outstanding questions

Rigorous systematic investigation of the effect of WD feeding on
the progress of secondary injury in TBI patients together with the
interaction with metabolic comorbidities is required. Careful experi-
mental design with respect to the adoption of the appropriate time-
frames to study different types of injury as well as the establishment
of causal relationships will permit the elucidation of crucial signaling
pathways with high potential for corrective outcomes after interven-
tion. Moreover, the study of the differential effect of KD as opposed
to WD is warranted. Finally, the translation of these concepts into
clinical practice is prudent.

9. Search criteria

To address these questions, studies on the topic were identified by
searches of MEDLINE, PubMed, Google Scholar and references from
relevant articles using the search terms “High-fat diet AND Cognitive
function”, “HFD AND TBI”, “Ketogenic diet AND TBI”, ''Lactate AND
HFD OR TBI'', ''HFD AND TBI AND inflammation OR oxidative stress
OR insulin resistance OR oxidative stress''. Additionally, searches
were performed based on investigator name. Articles published
between 1974 and 2019 in English and non-English languages were
included.
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