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Abstract

The study of evolutionary dynamics on graphs is an interesting topic for researchers in vari-

ous fields of science and mathematics. In systems with finite population, different model

dynamics are distinguished by their effects on two important quantities: fixation probability

and fixation time. The isothermal theorem declares that the fixation probability is the same

for a wide range of graphs and it only depends on the population size. This has also been

proved for more complex graphs that are called complex networks. In this work, we propose

a model that couples the population dynamics to the network structure and show that in this

case, the isothermal theorem is being violated. In our model the death rate of a mutant

depends on its number of neighbors, and neutral drift holds only in the average. We investi-

gate the fixation probability behavior in terms of the complexity parameter, such as the

scale-free exponent for the scale-free network and the rewiring probability for the small-

world network.

Author summary

In this work, we examine an evolutionary model that considers the effect of competition

between the mutated individuals for acquiring more resources. This competition has an

effect on the death rate of mutants. The model purposes that the death rate of each mutant

depends on the number of its neighbors, while the average death rate in the population is

equal to one. The birth rate for all individuals is assumed to be the same and equal to one.

This situation is called here the ‘neutral drift in average’. We study the dynamics of the

model on complex networks to take into account the non-uniformity of the environment.

The results show the fixation probability differs from the Moran model. For the construc-

tion of this model, we were biologically motivated by the avascular tumour, which consists

of a population of normal and cancer cells. The cancer cells likely need more oxygen than

normal cells. There is a competition between cells for consuming oxygen, and cancer cells

are far more sensitive to the amount of oxygen in the environment than normal cells. This

means the death rate of a cancer cell grows by increasing the number of its neighbors.
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Introduction

Evolutionary dynamics is the study of the mathematical principles governing the evolution of

biological organisms. It studies the variation of the population size according to the reproduc-

tion, mutation and selection processes. In an asexual population a member reproduces a copy

of itself when it becomes mature without needing any other members. The member can also

be mutated if this process involves mistakes, or under the influence of environmental factors.

The mutated member has a chance to fixate in the population if it has acquired the qualities to

make it more capable of reproduction and/or resistant to death. In evolutionary dynamics, we

define a quantity called fitness to include all these qualities. Therefore, the fitness function may

depends on the birth rate and/or the death rate of individuals.

Population structure affects the outcome of ecological and evolutionary dynamics. Evolu-

tionary graph theory provides a useful model for representing population structure [1]. In this

approach, the population members are considered as the graph’s nodes, and the edges of graph

represents the interaction between them [1]. At each step of evolution, a member may die,

reproduce or undergo no changes. The neighbours of a member on a graph determine the

probability for its dying or reproducing. In a constant size population, the important question

is how the phenotypic mutation in a member can be fixed during the evolutionary process.

The fixation process is characterized by knowing two quantities, the probability and the time

required for fixation when the process starts with one mutant in the population. Over the past

two decades, many studies have investigated the effect of graph structures on the fixation prob-

ability and/or fixation time [2–12]. In addition, it has been shown that other factors such as

the initial location of the mutant on a graph can affect the fixation probability [1, 13–17].

A significant result in the graph based evolutionary dynamics is the isothermal theorem. It

states that the fixation probability of mutants in a large group of graph structures (known as

isothermal graphs, which include regular graphs) coincides with that for the mixed population.

The Moran model is one of the well-known and essential process used in the study of evolu-

tionary dynamics [18]. In this model, we deal with a constant population of N members and

two types of individuals (or cells), the wild type and the mutant. The sizes of sub-populations

are changed by passing through the time. At each time step, there are two possible scenarios

for the Moran process. In a birth–death (BD) process (or the invasion process), a birth event is

followed by a death event, and in a death–birth (DB) process (or voter models), a death event

happens first. Kaveh et al. [19] examined the extension of the isothermal theorem for the BD

and DB models. They proved that for general BD and DB processes with arbitrary birth and

death rates of mutants, the fixation probabilities of mutants can be different from those

obtained in the mass-action populations. In the case that “self” is included in the neighborhood

graph, the BD and DB processes are identical, and the probability of fixation is given by:

r1 ¼
1 � d=r

1 � ðd=rÞN
ð1Þ

where d = dB/dA and r = rB/rA. Here, dB (rB) and dA (rB) are death (proliferation) rates for

mutant (B) and wild type (A). However, if “self” is not included, then the BD and DB processes

are not the same, and the difference is of the order of 1/N. If r = 1 (or d = 1) for the DB (or BD)

process, Eq (1) holds, which can be interpreted as the isothermal theorem for the mass action

scenario. The isothermal theorem was initially proven in [1] to hold for the d = 1 BD update,

and Kaveh et al. [19] showed that it also holds for the r = 1 DB update.

Moreover, the fitness of a species may vary in space and time due to the influence of envi-

ronment. In particular, mutant evolution in random environments has been studied by evolu-

tionary biologists and and mathematicians for decades. It has been shown that both fixation
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probability and fixation time are affected due to randomly fluctuating environments, even for

the neutral drift [20–22]. The fixation probability and fixation time depend on the variability

of fitness or its statistics [23–29]. Recent studies on social networks and biological systems

have investigated these kind of models as well [30–32].

In this paper, we intend to study the evolutionary process on complex networks and couple

its dynamics to the topology (or the structure) of the networks. We consider a network con-

taining mutants and wild types. Each node in the network is connected to a different number

of other nodes. The fitness of both mutants and wild types are one, and the relative death rate,

d, is considered to be equal to its normalized degree, that is, the degree divided by the average

degree (i.e. the average number of neighbors for any node). The reason for this choice is we

want to consider the case of the neutral drift condition, in which the average relative death is

one (the death rate for the wild type is one). This is a kind of generalization of the neutral drift

which have been previously presented in literature [20, 22, 29]. At the first step, we examine

this model analytically for a star graph that has a simple structure, and then solve it numeri-

cally. Then, we use simulations to study this model for networks with more complex structure

such as small-world and scale-free networks. Complex networks are realistic graph structures

observed in the nature that simultaneously included both the randomness and the regularity

in the structure [33, 34].

Model

Complex networks and the average neutral drift are two topics that distinguish this work from

other works. In this section we explain these topics, the first one in brief because of the exis-

tence of a large amount of literature on this topic, but the latter one needs more explanation.

After elaborating on these concepts, we describe the simulation algorithm which we use to

implement the model. At the end of this section, some elucidating points about this model are

discussed.

Complex networks

Nowadays, the complex networks theory appears as a useful method for studying many phe-

nomena in various disciplines of science and technology [35–38]. There are many systems in

nature which can be modeled by complex networks such as neural networks [39], cells [40],

internet [41, 42], earthquakes [43–48] and climate network [49–51]. Every network is charac-

terized by knowing the nodes and how they are connected to one other. For example, the

brain is a network which its nodes are neurons and synapses connect the neurons together

[52].

In many natural and technical systems, it is very difficult to quantitatively understand the

interaction between different system’s parts. The complex networks are a simple way to model

these systems without knowing details of interactions. The network properties, like the degree

distribution function, clustering coefficient, and average shortest path length can describe the

system on the whole [53]. The degree distribution function, p(k) is the most important quan-

tity that is used to classify network topologies (or structures). It shows the probability of find-

ing a node in the network with k neighbors. In practice, we use the following method to

compute the degree distribution function:

pðkÞ ¼ Nk=N ð2Þ

where Nk is the number of nodes with k neighbors and N is the total number of nodes. Accord-

ing to the degree distribution, we can distinguish two categories of networks. First, networks

with power law degree distribution, p(k) � k−γ, are called scale-free networks. In such
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networks, it is very likely to find a node with a large number of neighbors. A node with high

degree is called a hub. The power law exponent γ is mathematically more than one but for

most of the real networks is bounded between 2 and 3. The existence of growth and preferen-

tial attachment mechanism are two major reasons for the emergence of scale-free networks.

The internet is an instance for these kind of networks [54].

The second category of networks have Poisson (exponential) degree distribution,

p(k) � exp(−k/k0). Nodes with approximately k0 neighbors are the most frequent nodes in

this type of networks. Hence, we call these networks homogeneous, unlike the scale-free net-

works that are heterogeneous.

The clustering coefficient measures the tendency of nodes to make a cluster together in a

network. In a graph, a triangle is created when two neighbors of a node are neighbors with

each other. This situation may not happen for all neighbors. Therefore, among all possible

triangles, only some of them may actually exist in the network. For a node, the clustering

coefficient is defined as the number of existing triangles to all possible triangles which

this node is common for them. The clustering coefficient of the network is derived by aver-

aging over all node’s coefficients. In a random network, which is constructed by connecting

nodes randomly, the clustering coefficient is very small in comparison with regular networks

with the same number of links and nodes. In a regular network, all nodes have the same

degree.

The minimum number of edges for traversing between two nodes is called geodesic. Aver-

aging this quantity over all pairs in network gives the average shortest path length, which is a

characteristic for the network size. Random networks have small value of the average shortest

path length, but it is opposite for the regular networks.

In a wide variety of the real networks like the electrical power grid, we observe that they

have small value of the average shortest path length, but a large clustering coefficient in com-

parison with the random networks. This category of networks have the small world property,

or they are simply called small-world networks [55]. A small world network can be constructed

by random rewiring edges of the regular networks. These kind of networks have Poisson

(exponential) degree distribution in the large number of nodes limit.

In S1 Appendix the properties of main network classes are shown in brief. This classifica-

tion is based on three characteristics of networks. It is possible to categorize networks in terms

of other properties. In addition there are several hybrid models which incorporate some of

these characteristics together.

Neutral drift in average

Consider a constant population with N members, which consists of two types of species, A

(wild type) and B (mutant). This population evolves under a BD Moran process, in which the

fitness depends on the death rate. There are two fixed points for this process, i.e. the states of

system that all members in the population become identical and then there is no change in the

system. When the process starts with one mutated member in the population, it could finally

be in the state with all members are mutants, i.e., mutation is fixed. The probability for this

event happening is called fixation probability. In the case of neutral drift the wild type and

mutant species have similar fitness and there is no preference between them. The fixation

probability for mutation under neutral drift condition is equal to inverse of the population

size, 1/N.

The environment and time may have an effect on the fitness of the species. In this case, we

need to extend the meaning of similarity for the species’ fitness. Thus, we assume that some

mutants have larger fitness than the wild types and others vice versa, while on average, they are
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the same. This situation is called the average neutral drift, and it is interesting to find a relation

between the fitness variance and fixation probability [20].

In reality, fitness is influenced by the birth and death rates, which may vary for various

members due to their access to vital resources. For example, if a cell has a large number of

neighbour cells, then its death rate increases since there will be a competition for space and

nutrients. In this work, we assume the fitness variance arises from a different number of neigh-

bours for each member or, in other words, the population structure. In such conditions, we

can use the concept of average neutral drift and explore the effect of variance in the number of

neighbours on the fixation probability.

In the following we focus on the BD process on heterogeneous networks. This process con-

sists of two main steps: in the beginning, an individual is randomly chosen among the popula-

tion for reproduction, then one of its neighbors are selected at random for dying according to

their death rate. We consider the same value for the birth rate of all members, regardless of

whether it is a wild type (A) or mutant (B), rA = rB = 1. The death rate for all wild types are

equal to one independent of their location on the network, dA = 1. However, for mutants, the

death rate depends on the number of its neighbors. If the mutant is located on the i-th node,

its death rate is, dðiÞB ¼ ki= < k >, where ki is used for the degree of i-th node and< k> is the

average degree of the network. It is clear that the average death rate of mutants is equal to one,

< dB> = 1. By choosing such a distribution for the death rates, we couple the dynamics of the

system to the structure of the network. This is a novel way to apply heterogeneity in the system

if we consider the evolution process on the heterogeneous networks.

To understand the above model more clearly, we have sketched an example of such a net-

work in Fig 1. The node 11 could be selected randomly with a probability 1/12 for reproduc-

tion. Its offspring will be placed in one of the neighboring nodes, so one of the neighbors

Fig 1. General graph. A graph with 12 nodes which some of them are occupied by wild-types (blue circles) and the

others by mutants(red circles).

https://doi.org/10.1371/journal.pcbi.1009537.g001
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should be selected to die according to its death rate. The node 11 has six neighbors, {1, 2, 4, 6,

7, 10}. Three nodes among them are wild type, {1, 4, 7}, and have the death rate equal to one.

The nodes {2, 6, 10} are mutants with degree k2 = 2, k6 = 2 and k10 = 5. The average degree for

this network is,< k> = 3, then the death rates for mutants are: dð2ÞB ¼ 2=3; dð6ÞB ¼ 2=3 and

dð10Þ

B ¼ 5=3. Now, the probability of placing the offspring in these neighboring nodes are p1 =

1/6, p2 = 1/9, p4 = 1/6, p6 = 1/9, p7 = 1/6 and p10 = 5/18.

Simulation algorithm

Algorithm 1: Simulation Steps Simulation steps for the birth-death (BD) process
Data: Number of Nodes, Average Degree, Rewiring Probability or Scale-
Free Exponent and Ensemble Size
Results: Fixation Probability
Number of Succession = 0;
for s  1 to Ensemble Size do
-Generate network with predefined number of nodes, average Degree

and rewiring probability or scale-free exponent;
-Set birth rate equal to one for all nodes;
-Determine death rate for all nodes (if node has wild type state it

is equal to one and for mutant state it depends on the number of
neighbors);
-Set the state of all nodes as wild type;
-Choose randomly a node and set its state as mutant;
while Number of mutant is not equal to zero or equal to the number of

nodes
do
-Choose randomly a node for reproduction;
-Choose randomly one of its neighbors for dying according to their

death rate;
-Change the state of dead node to the state of reproducing node;

if Number of mutants is equal to the number of nodes then
-Increase number of succession by one;

-Fixation probability is equal to number of succession dividing by the
ensemble size;

In most cases, where we have an unstructured network with a large number of nodes, the

simulation is the best and sometimes the only way to compute the fixation probability. The

simulation has a very straightforward algorithm. However, it may be time-consuming in the

absence of any symmetry in the network.

At the first step, we must generate a network with predefined characteristics such as the

number of nodes, the average degree and the rewiring probability (scale-free exponent). Then,

we assign to each node four quantities: the wild-type birth rate, the wild-type death rate, the

mutant birth rate and the mutant death rate. These quantities remain unchanged until the end

of the simulations. In our model, these quantities for the i-th node are {1, 1, 1, ki/< k>},

where ki stands for the node degree and< k> describes the average degree of the network.

We also attribute a state variable to each node, which shows it is occupied by a wild-type or a

mutant. Initially, all nodes are wild-type except one that is randomly selected as a mutant. The

simulation begins by randomly choosing a node for reproduction. Then, one of its neighbors

is randomly selected for dying according to their death rate. The state of the dead node

changes to the state of the mother node. This process is repeated until the state of all nodes is

the same. We should repeatedly run this process and count the number of times which all

nodes have the mutant state, i.e. the number of successions. The fixation probability is

obtained by dividing this number by the number of runs. A simple pseudocode for this simula-

tion is written in Algorithm 1.
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Relation to biological systems

Recently, many authors have been interested in studying the evolutionary dynamics in the het-

erogeneous population [3, 20, 22, 29]. Here, we look at this issue from a new perspective.

In realistic cases, the resources are distributed irregularly in an environment. Those species

that have access to a resource are assumed to be neighbors with each other. The distinct

resources may also have different volumes, which implies heterogeneity in the environment.

The non-uniformity in the pattern of resources in an environment results in the complex

structure in the neighborship of species which is represented by a complex network. The

small-world network is a suitable candidate for studying the effect of randomness in the popu-

lation structure; by increasing the rewiring parameter, we can construct networks with a high

amount of randomness from a regular graph to a totally random graph. The heterogeneity in

the population is modeled by using the scale-free networks. The scale-free exponent can be

considered as a measure for the network heterogeneity, and we reach a random graph by

increasing this exponent.

Limitation in the volume of resources causes the species to compete with one another.

Therefore, the number of neighbors becomes an important factor in the population dynamics

in a system. In other words, the evolution process is coupled to the network structure.

The neutrality assumption guarantees that there is no bias in the species’ fitness for domina-

tion in the population. We try to keep this assumption even statistically; for this purpose, the

average neutral drift is defined.

One example of this model is the competition between cancer and normal cells in an avas-

cular tumour. Most solid tumours first go through an avascular state, up to a maximum size of

about 1–2 mm in diameter, before the lack of oxygen and other essential nutrients prevent fur-

ther growth. In avascular tumours, cancer cells (mutants) need more oxygen than normal cells

(wild-types). There is a competition between cells for consuming oxygen, and cancer cells are

more sensitive to the amount of oxygen in the environment than normal cells. If the number

of neighbors is large, each cell’s share decreases, and then the death probability (rate) for can-

cer cells grows [56, 57]. The selection of network class for a tumour depends on the chemo-

physical properties of the extra-cellular matrix and how the cells are distributed on it. In addi-

tion, what the resource is that they compete for it. For example, if the cells compete for a nutri-

ent that spreads in a limited range, then a few numbers of cells can be connected to each other

in the vicinity of a resource. Therefore, we do not have any node with a high number of con-

nections, and a small-world network is better for modeling than a scale-free network.

Results and discussions

Writing a master equation for an arbitrary grid is not easy in most cases and we need to use

numerical simulations for computing quantities such as the fixation probability. In the next

part, we first write a master equation for the simple heterogeneous network of the star graph

[11]. We solve the equations numerically and compare the solutions with the simulation

results to ensure about the simulation accuracy.

Average neutral drift for star graph

In this section, we examine the BD process for star graphs, assuming the death rate of each

mutant depends on the degree of the node in which it is located, as we described in the previ-

ous section.

A star graph is a graph with a central core and n leaves. The degree of the central core is, ko = n
and all leaves have degree equal to one, k = 1. The average degree of graph is< k> = 2n/(n + 1).

PLOS COMPUTATIONAL BIOLOGY The effect of network structure on the fixation probability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009537 October 27, 2021 7 / 16

https://doi.org/10.1371/journal.pcbi.1009537


Then, by simple calculation we can find the death rate for a mutant in the core node, do = (n + 1)/

2, and for leaves d = (n + 1)/2n.

There are 2(n + 1) configurations according to the position of mutants on the graph. We

denote each configuration by an ordered pair, (u, v), wherein the first element in pair is the

number of mutants located on leaves. This number varies between 0 and n. The second ele-

ment indicates whether the core node is occupied or not. It can be 0 or 1. It is obvious that the

number of mutants comes from the sum of these numbers. In the BD process, only transitions

between some of these configurations are allowed; those transitions that lead to an increase or

decrease in the number of mutants by one. In Fig 2, we show the possible configurations and

the allowed transitions between them for a star graph with 8 leaves.

By simple algebraic manipulations, we can calculate the probability for allowed transitions

in the BD process. They could be classified as follows:

Wðði; 0Þ ! ði � 1; 0ÞÞ � a0
i ¼

1

nþ 1
�

id
idþ ðn � iÞ

Wðði; 0Þ ! ði; 1ÞÞ � b0

i ¼
i

nþ 1

Wðði; 0Þ ! ði; 0ÞÞ ¼ 1 � a0
i � b

0

i

Wðði; 1Þ ! ðiþ 1; 1ÞÞ � a1
i ¼

1

nþ 1
�

n � i
idþ ðn � iÞ

Wðði; 1Þ ! ði; 0ÞÞ � b1

i ¼
n � i
nþ 1

Wðði; 1Þ ! ði; 1ÞÞ ¼ 1 � a1
i � b

1

i

ð3Þ

Fig 2. Configurations of star graph. A star graph with N = 8 + 1 nodes. The diagram shows all possible configurations

for the star graph. An ordered pair, (u, v), indicates a configuration exclusively wherein u is the number of mutants

located on the leaves, and v shows whether the core node is occupied by a mutant or not. The wild-type and mutant are

distinguished by blue and red colors respectively. The arrows exhibit the allowed transitions between these

configurations.

https://doi.org/10.1371/journal.pcbi.1009537.g002
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Two coupled equations which explain this process are,

p1
i ¼ a

1
i p

1
iþ1
þ b

1

i p
0
i þ ð1 � a

1
i � b

1

i Þp
1
i

p0
i ¼ a

0
i p

0
i� 1
þ b

0

i p
1
i þ ð1 � a

0
i � b

0

i Þp
0
i

ð4Þ

Here, p1
i is the fixation probability when we begin with i mutants located on the leaves, and

a mutant is placed in the central core as well. p0
i is the fixation probability by starting from the

i mutants are on leaves, and in the central core a resident exists.

By introducing the following parameters,

Pi ¼
a0
i

a0
i þ b

0

i

¼
id

id þ iðid þ n � iÞ

Pi# ¼
b

0

i

a0
i þ b

0

i

¼
id þ n � i

d þ idþ n � i

Pi! ¼
a1
i

a1
i þ b

1

i

¼
1

1þ idþ n � i

Pi" ¼
b

1

i

a1
i þ b

1

i

¼
idþ n � i

1þ idþ n � i

ð5Þ

into Eq (4), and performing simple algebraic manipulations, the master equation can be writ-

ten in the matrix form Xi = Ai Xi−1:

p1
i

p0
i

" #

¼

1

Pi� 1!
�

Pi� 1"

Pi� 1!

Pi#
Pi� 1!

ðPi �
Pi� 1"Pi#
Pi� 1!
Þ

2

6
4

3

7
5

p1
i� 1

p0
i� 1

" #

ð6Þ

It is clear that Xn = An An−1 � � � A1 X0. Then, by applying the boundary conditions, p0
0
¼ 0

and p1
n ¼ 1, we arrive at the following equation:

1

p0
n

" #

¼
Yn

i¼1

1

Pi� 1!
�

Pi� 1"

Pi� 1!

Pi#
Pi� 1!

ðPi �
Pi� 1"Pi#
Pi� 1!
Þ

2

6
4

3

7
5

0

B
@

1

C
A

p1
0

0

" #

ð7Þ

This equation can be numerically solved to find p1
0

and p0
n. Then, by using Eq (6), the other

p1
i and p0

i are successively obtained. In Fig 3, the fixation probabilities p1
0

and p0
1

are plotted in

terms of n, the number of the leaves. The simulation result is in good agreement with the

numerical solution. We explain the simulation steps in detail below.

As observed in Fig 3, the p1
0

decreases more rapidly than the Moran model at first, but the

distance between two curves is reduced by increasing the number of leaves very slowly and

finally reaches a constant distance. This is an expected behavior because the leaves are not con-

nected to each other and if a mutant is located on a leaf it cannot put its offspring on the other

leaves directly. It should first occupy the core node and then reach to the other leaves. This

two-step process depends on the death rate of mutant in the core node which is increased with

n. This means the process of spreading mutant between leaves is facilitated by increasing the

number of leaves, and therefore the difference with the Moran model becomes constant.

By using Eqs (5) and (6), it can be proved analytically that p0
1
¼ ½ðnþ 1Þð2n2 þ 1Þ=

ð2n2 þ 2Þ� p1
0
. The behavior of p0

1
is determined by the competition between decreasing
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function p1
0

and the increasing coefficient that approaches n + 1 for large n. As it is shown in

Fig 3, p0
1

has a minimum at n = 5 and then saturates for large n.

Simulation results for complex networks

For larger and more complicated graphs the simulation is an affordable or only way for com-

puting the fixation probability. In this section, we focus on simulation of the BD process on

complex networks.

There are two important classes of networks, the small-world and the scale-free networks.

The small-world networks are placed between the regular and random graphs. For construct-

ing a small-world network, we begin with a regular graph with the same number of nodes and

links. Then, all the links are rewired by the probability q. For q = 0, the network remains regu-

lar and with q = 1 we generate a random graph. The middle values of q result in the small-

world networks. The properties of such networks depend on the rewiring probability q. The

scale-free network is constructed dynamically. We begin with one node, or a small-size regular

graph, and then add new nodes successively. The new node preferentially links to the previous

nodes with higher degree. Thus, some nodes become a hub with a degree more than the aver-

age. The degree distribution of such networks has a power-law relationship and the value of

the exponent characterizes them. In the following, we study the effect of rewiring probability

and the scale-free exponent on the fixation probability.

First, we examine the effect of rewiring probability q on the fixation probability ρ1. For this

purpose, we consider different values for q in the interval [0, 1]. Then, for each value of q, the

simulation is run 10000 times for 100 different networks with similar structure; the same num-

ber of nodes and the average degree, then the fixation probability is computed as the final

result. Fig 4 shows the obtained results. When q = 0, we have an exact regular graph. In this

case, the degree of all nodes are the same and equal to the average degree, so the death rate is

equal to one for all of them. For a regular graph with N nodes, the fixation probability is 1/N
and identical to the fixation probability for the Moran model. By increasing q, the fixation

Fig 3. Fixation probability of star graph. Fixation probability of the star graph, obtained numerically and by simulation based on our model: (A) The mutant is located

on the core node, the inset shows the ratio of the fixation probability for this configuration to the Moran model. (B) The mutant is located on one of the leaves, the inset

shows its saturation for large number of leaves. The simulation runs 106 times for each point, and the error bars represent the standard deviation of simulation results.

https://doi.org/10.1371/journal.pcbi.1009537.g003
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probability is also increased. The reason is that rewiring creates shortcuts between nodes. In

addition, ρ1 decreases by increasing the average degree. To justify these results, it is worth

nothing that the degree distribution for small world networks is similar to Poisson which is

skewed for small degrees, and therefore in the selection of neighbor species for death, the

mutants are less likely to be in average chosen because their death rates are less than one. Fur-

thermore, by increasing the average degree, the Poisson distribution approaches a Gaussian

distribution which is symmetric, and thus it is more likely to choose a mutant for death, result-

ing in a decrease in the fixation probability. In the extreme case of very large < k>, we have a

complete graph and so the fixation probability is obtained by the the Moran model.

It should be noted that for non-uniform systems, the fixation probability depends on the

standard deviation of fitness [20, 22]. Here, in our model, the fitness of mutants is only a

function of their death rate, and the death rate itself depends on the node’s degree that a

mutant occupies. This means the fixation probability is function of the degree fluctuation, i.e.

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<k2>

<k>2 � 1

q

. In mathematical view, the degree distribution of the small-world network is a

combination of several Poisson distributions with coefficients that are functions of the rewir-

ing probability [58]. Although an exact form for the average degree or the fluctuation does not

exist, we can realize numerically that the fluctuation is ascending by increasing the rewiring

probability and descending by growing the average degree. This is the same behavior that we

observe in the results.

The behavior of the fixation probability for the small world shows that randomness in the

environment and the sparse neighborship structure are favored for the mutants to be domi-

nant in a population. Here q measures the randomness, and the sparsity of the structure is

demonstrated by the average degree.

Fig 4. Fixation probability of small-world networks. Fixation probability of the small-world networks with 1000

nodes in terms of the rewiring probability. The Moran model (dashed line) is plotted for the comparison. Fixation

probability increases smoothly by increasing the rewiring probability. The increase is proportional with inverse of the

average degree. (The error bars represent the standard deviation of simulation results).

https://doi.org/10.1371/journal.pcbi.1009537.g004
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The result for the fixation probability on scale-free networks are plotted in Fig 5. We con-

struct 100 networks with the same number of nodes and the average degree then repeat the

simulation 2560 times for each distinct network. The two regions are distinct: 2< γ� 3 and

γ> 3. The latter shows networks with a finite value of the degree standard deviation [59]. The

existence of a node with degree less than the average is more probable because of the decreas-

ing behavior of the power law function. The mutant benefits from this fact, and thus we

expected the fixation probability to be greater than the Moran model. When the scale-free

exponent is increased the standard deviation becomes narrower and therefore the probability

of selection of mutant for death is close to the wild type. This result in a decrease in the fixation

probability toward the value of Moran model by increasing the scale-free exponent. When we

fix the minimum degree of the network, the standard deviation of the degrees only depends on

the scale-free exponent, hence the fixation probability does not depend on the average degree

for γ> 3.

For 2< γ� 3, by the same reason as mentioned above, the mutants benefit from the totally

skewed distribution of nodes degree to fixate in the system. However, in this case, the standard

deviation of degrees depends on both the scale-free exponent and the size of the network. As a

consequence, we observe that the fixation probability depends on the average degree as well as

the scale-free exponent.

The existence of hubs, nodes with a high degree, is the reason for the heterogeneity of a

network. The probability of finding a hub decreases when the scale-free exponent becomes

greater. Therefore, we can consider the inverse of γ as an indicator for heterogeneity. The

results show that mutants benefit from the system’s heterogeneity and randomness, which we

have discussed previously.

Fig 5. Fixation probability of scale free networks. Fixation probability of the scale-free networks with 256 nodes in

terms of the scale free exponent. The fixation probability decreases by increasing the scale-free exponent, however,

different behaviors are observe in two regions; 2< γ� 3 and γ> 3, regarding to the average degree. (The error bars

represent the standard deviation of simulation results).

https://doi.org/10.1371/journal.pcbi.1009537.g005
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As we mentioned above, the fixation probability in heterogeneous systems depends on the

standard deviation of death rates [19, 20, 22]. It is obvious that this argument leads to depen-

dency of the fixation probability on the fluctuation of the nodes degree. For the region γ> 3,

the degree fluctuation is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg� 2Þ2

ðg� 1Þðg� 3Þ
� 1

q

[59] which is only function of γ. While in the

region 2< γ< 3 it is D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg� 2Þ2

ðg� 1Þðg� 3Þ
ð1 � ðg� 1

g� 2

kmax
<k>Þ

3� g
Þ � 1

q

where kmax is the largest degree in

the network which scales with the network size (see S2 Appendix).

Conclusion

In this work, we defined the concept of neighborship between species in terms of accessing a

resource. This kind of definition differs from the common view that takes into account the

proximity of a neighbor. The randomness and heterogeneity in the distribution of resources in

an environment result in a complex pattern of relation between species. The neighborship pat-

tern can be represented mathematically by a complex network. Here, we proposed a model for

the BD process on complex networks to study the influence of the environmental irregularity

on the fixation of mutant species. We assumed that the death rate for a mutant depends on the

number of neighbors while the other parameters were equal to one. The most significant con-

tribution of the current work was the coupling between dynamics and structure, resulting in a

violation in the isothermal theorem. We examined the model numerically for the star graph

and used the simulation for the two main categories of complex networks, i.e. small-world and

scale-free networks. We obtained that the fixation probability for the star graph is less than the

complete graph (the Moran model), but their different approaches to a constant value for a

large number of leaves. The results for the small-world network exhibited that by increasing

the rewiring probability, the fixation probability increases in comparison to the complete

graph. This increase becomes negligible for the large values of the average degree. It was found

that the fixation probability for the scale-free decreases and approaches the value for the com-

plete graph by increasing the scale-free exponent. Two regions could be distinguished: γ> 3,

where all networks with the same number of nodes behave similarly despite the average degree,

while in the interval 2< γ< = 3 the fixation probability depends on the average degree as well

as the scale-free exponent. All these results can be justified by knowing that the fixation proba-

bility depends on the fitness standard deviation, which is tied to the degree fluctuation in the

network.

Generally, it can be deduced that the mutants benefit from the environment’s non-unifor-

mity. The randomness and heterogeneity help the mutant to fixate in a system with higher

probability.

It would be interesting to investigate the fixation time in this model, and also to study the

other implication of the model such as finding the survivorship curve for some categories of

organisms.
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37. Lü J, Chen G, Ogorzalek MJ, Trajković L. Theory and applications of complex networks: Advances and

challenges. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013). IEEE;

2013. p. 2291–2294.

38. Abe S, Suzuki N. Scale-free network of earthquakes. EPL (Europhysics Letters). 2004; 65(4):581.

https://doi.org/10.1209/epl/i2003-10108-1

PLOS COMPUTATIONAL BIOLOGY The effect of network structure on the fixation probability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009537 October 27, 2021 15 / 16

https://doi.org/10.1371/journal.pcbi.1007529
http://www.ncbi.nlm.nih.gov/pubmed/31951612
https://doi.org/10.1038/s41598-017-00107-w
http://www.ncbi.nlm.nih.gov/pubmed/28250441
https://doi.org/10.1038/s42003-018-0078-7
https://doi.org/10.1038/s42003-018-0078-7
http://www.ncbi.nlm.nih.gov/pubmed/30271952
https://doi.org/10.1098/rsos.140465
https://doi.org/10.1098/rsos.140465
http://www.ncbi.nlm.nih.gov/pubmed/26064637
https://doi.org/10.1038/s41598-017-05375-0
http://www.ncbi.nlm.nih.gov/pubmed/28701726
https://doi.org/10.1016/j.tpb.2010.05.001
https://doi.org/10.1016/j.tpb.2010.05.001
http://www.ncbi.nlm.nih.gov/pubmed/20488197
https://doi.org/10.1098/rsos.181661
http://www.ncbi.nlm.nih.gov/pubmed/30800394
https://doi.org/10.1007/BF02426816
https://doi.org/10.1073/pnas.0607105104
http://www.ncbi.nlm.nih.gov/pubmed/17287357
https://doi.org/10.1038/srep15211
http://www.ncbi.nlm.nih.gov/pubmed/26477392
https://doi.org/10.1038/nrg2603
https://doi.org/10.1038/nrg2603
http://www.ncbi.nlm.nih.gov/pubmed/19546856
https://doi.org/10.1371/journal.pcbi.1005864
http://www.ncbi.nlm.nih.gov/pubmed/29176825
https://doi.org/10.1038/s41467-019-08727-8
http://www.ncbi.nlm.nih.gov/pubmed/30770812
https://doi.org/10.1103/PhysRevLett.96.188104
http://www.ncbi.nlm.nih.gov/pubmed/16712402
https://doi.org/10.1016/j.jtbi.2014.01.009
http://www.ncbi.nlm.nih.gov/pubmed/24462897
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
http://www.ncbi.nlm.nih.gov/pubmed/11258382
https://doi.org/10.1016/S1053-8119(09)71822-1
https://doi.org/10.1016/S1053-8119(09)71822-1
https://doi.org/10.1209/epl/i2003-10108-1
https://doi.org/10.1371/journal.pcbi.1009537


39. Goh AT. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in

Engineering. 1995; 9(3):143–151. https://doi.org/10.1016/0954-1810(94)00011-S

40. Kitano H. Computational systems biology. Nature. 2002; 420(6912):206. https://doi.org/10.1038/

nature01254 PMID: 12432404

41. Maslov S, Sneppen K, Zaliznyak A. Detection of topological patterns in complex networks: correlation

profile of the internet. Physica A: Statistical Mechanics and its Applications. 2004; 333:529–540. https://

doi.org/10.1016/j.physa.2003.06.002

42. Eriksen KA, Simonsen I, Maslov S, Sneppen K. Modularity and extreme edges of the Internet. Physical

review letters. 2003; 90(14):148701. https://doi.org/10.1103/PhysRevLett.90.148701 PMID: 12731952

43. Abe S, Suzuki N. Complex-network description of seismicity. Nonlinear Processes in Geophysics.

2006; 13(2):145–150. https://doi.org/10.5194/npg-13-145-2006

44. Lotfi N, Darooneh A. The earthquakes network: the role of cell size. The European Physical Journal B.

2012; 85(1):23. https://doi.org/10.1140/epjb/e2011-20623-x

45. Lotfi N, Darooneh AH. Nonextensivity measure for earthquake networks. Physica A: Statistical Mechan-

ics and its Applications. 2013; 392(14):3061–3065. https://doi.org/10.1016/j.physa.2013.03.010

46. Rezaei S, Darooneh AH, Lotfi N, Asaadi N. The earthquakes network: Retrieving the empirical seismo-

logical laws. Physica A: Statistical Mechanics and its Applications. 2017; 471:80–87. https://doi.org/10.

1016/j.physa.2016.12.003

47. Darooneh AH, Lotfi N. Active and passive faults detection by using the PageRank algorithm. EPL (Euro-

physics Letters). 2014; 107(4):49001. https://doi.org/10.1209/0295-5075/107/49001

48. Lotfi N, Darooneh AH, Rodrigues FA. Centrality in earthquake multiplex networks. Chaos: An Interdisci-

plinary Journal of Nonlinear Science. 2018; 28(6):063113. https://doi.org/10.1063/1.5001469 PMID:

29960414

49. Donges JF, Zou Y, Marwan N, Kurths J. Complex networks in climate dynamics. The European Physi-

cal Journal Special Topics. 2009; 174(1):157–179. https://doi.org/10.1140/epjst/e2009-01098-2

50. Steinhaeuser K, Chawla NV, Ganguly AR. Complex networks as a unified framework for descriptive

analysis and predictive modeling in climate science. Statistical Analysis and Data Mining: The ASA

Data Science Journal. 2011; 4(5):497–511. https://doi.org/10.1002/sam.10100

51. Kittel T, Ciemer C, Lotfi N, Peron T, Rodrigues F, Kurths J, et al. Global teleconnectivity structures of

the El Niño-Southern Oscillation and large volcanic eruptions–An evolving network perspective. arXiv

preprint arXiv:171104670. 2017.

52. Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear bio-

medical physics. 2007; 1(1):3. https://doi.org/10.1186/1753-4631-1-3 PMID: 17908336

53. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: Structure and dynamics.

Physics reports. 2006; 424(4-5):175–308. https://doi.org/10.1016/j.physrep.2005.10.009

54. Barabási AL, Albert R. Emergence of scaling in random networks. science. 1999; 286(5439):509–512.

https://doi.org/10.1126/science.286.5439.509 PMID: 10521342

55. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. nature. 1998; 393(6684):440.

https://doi.org/10.1038/30918 PMID: 9623998

56. Eales KL, Hollinshead KE and Tennant DA. Hypoxia and metabolic adaptation of cancer cells. Onco-

genesis. 2016; 5(1):e190. https://doi.org/10.1038/oncsis.2015.50 PMID: 26807645

57. Vishwakarma M. and Piddini E. Outcompetingcancer. Nat Rev Cancer, 2020; 20:187–198. https://doi.

org/10.1038/s41568-019-0231-8 PMID: 31932757

58. Barrat A., Weigt M. On the properties of small-world network models European Physical Journal B.

2000; 13 (3): 547–560. https://doi.org/10.1007/s100510050067

59. Newman ME. Power laws, Pareto distributions and Zipf’s law. Contemporary physics. 2005; 46(5):323–

351. https://doi.org/10.1080/00107510500052444

PLOS COMPUTATIONAL BIOLOGY The effect of network structure on the fixation probability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009537 October 27, 2021 16 / 16

https://doi.org/10.1016/0954-1810(94)00011-S
https://doi.org/10.1038/nature01254
https://doi.org/10.1038/nature01254
http://www.ncbi.nlm.nih.gov/pubmed/12432404
https://doi.org/10.1016/j.physa.2003.06.002
https://doi.org/10.1016/j.physa.2003.06.002
https://doi.org/10.1103/PhysRevLett.90.148701
http://www.ncbi.nlm.nih.gov/pubmed/12731952
https://doi.org/10.5194/npg-13-145-2006
https://doi.org/10.1140/epjb/e2011-20623-x
https://doi.org/10.1016/j.physa.2013.03.010
https://doi.org/10.1016/j.physa.2016.12.003
https://doi.org/10.1016/j.physa.2016.12.003
https://doi.org/10.1209/0295-5075/107/49001
https://doi.org/10.1063/1.5001469
http://www.ncbi.nlm.nih.gov/pubmed/29960414
https://doi.org/10.1140/epjst/e2009-01098-2
https://doi.org/10.1002/sam.10100
https://doi.org/10.1186/1753-4631-1-3
http://www.ncbi.nlm.nih.gov/pubmed/17908336
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.1038/oncsis.2015.50
http://www.ncbi.nlm.nih.gov/pubmed/26807645
https://doi.org/10.1038/s41568-019-0231-8
https://doi.org/10.1038/s41568-019-0231-8
http://www.ncbi.nlm.nih.gov/pubmed/31932757
https://doi.org/10.1007/s100510050067
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1371/journal.pcbi.1009537

