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Background
The number of available sequenced genomes has pro-
vided the biologists with a wealth of sequence informa-

Abstract

Background: Functional genomics has received considerable attention in the post-genomic era,
as it aims to identify function(s) for different genes. One way to study gene function is to investigate
the alterations in the responses of deletion mutants to different stimuli. Here we investigate the
genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased
sensitivity to paromomycin, which targets the process of protein synthesis.

Results: As expected, our analysis indicated that the majority of deletion strains (134) with
increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains
can be divided into smaller functional categories: metabolism (45), cellular component biogenesis
and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These
may represent minor cellular target sites (side-effects) for paromomycin. They may also represent
novel links to protein synthesis. One of these strains carries a deletion for a previously
uncharacterized ORF, YBR26/C, that we term TAE! for Translation Associated Element |. Our
focused follow-up experiments indicated that deletion of TAE/ alters the ribosomal profile of the
mutant cells. Also, gene deletion strain for TAE/ has defects in both translation efficiency and
fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE/ genetically interacts
with 16 ribosomal protein genes. Phenotypic suppression analysis using TAEI overexpression also
links TAEI to protein synthesis.

Conclusion: We show that a previously uncharacterized ORF, YBR261C, affects the process of
protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study
novel gene function(s).

tion containing thousands of genes. Many of these genes
code for proteins with multiple functions, some of which
are not known. Others code for proteins of completely
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unknown function(s). To tackle this challenge, several
large-scale methodologies, under the term functional
genomics, have been developed which aim at revealing
putative gene functions [1-3]. Due to its simple genetics,
ease of manipulation, and conserved pathways, the yeast
Saccharomyces cerevisiae, emerged as a model organism of
choice for functional genomics [4]. While significant
knowledge has been gained from various large-scale
investigations, more experiments are needed to uncover
the details of the functions of genes involved in different
cellular processes. Exploring the function of individual
proteins can greatly advance our understanding of the
biology of a cell as a system.

Genes, which are involved in similar pathways often
genetically, interact with each other. Therefore, one way to
study gene functions is to investigate the interactions they
make with each other [3]. This is based on the assumption
that many eukaryotic pathways are functionally redun-
dant. Thus, deletion of a gene may be tolerated with no
phenotypic consequences. Inactivation of a second func-
tionally related gene however, can cause sickness or even
lethality. Therefore sickness of double mutants or "syn-
thetic lethality" has been used to reveal novel gene func-
tions. In simple terms, synthetic genetic array (SGA)
analysis refers to large-scale investigation aimed at exam-
ining gene functions using double gene knockouts [3].

In addition to its role in functional genomics, availability
of the yeast non-essential gene deletion array (yGDA,
approximately 4700 strains) also provided the opportu-
nity to investigate the cellular target sites of inhibitory
compounds [5-7]. In this way, compounds with unknown
cellular target sites are examined for their inhibitory
effects on yGDA. The hypersensitive strains for genes with
known functions are used to form a genetic profile for the
activity of the target compound. This provides a fast and
effective way to investigate cellular target sites of inhibi-
tory compounds.

Similarly, inhibitory compounds with known modes of
activity could be used to detect novel gene functions. This
is not a novel concept and in various small-scale studies,
numerous gene functions have been examined based on
the increased sensitivity of their gene deletion strains to
different compounds [8,9].

As a final step in the gene expression pathway, the regula-
tion of protein synthesis (translation) is used to control
the expression of a variety of genes under different physi-
ological conditions. For example, during cell division in
the early steps of embryonic development [10,11], or dur-
ing cellular transformation and cancer development [12],
and as well, in stress conditions and apoptosis [13].
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Even though the underlying principles of translation
machinery have been the subject of vigorous investiga-
tions over the last few decades, details of all translation
related proteins, protein complexes and pathways, as well
as their communications and cross-talks with other cellu-
lar processes, have not been fully elucidated. Recently,
several large-scale genomic investigations have uncovered
numerous novel proteins thought to be functionally
related to protein synthesis in S. cerevisiae [14-16], sug-
gesting that there remain other undiscovered translation
proteins.

Here, we applied a large-scale chemical-genetic profile
analysis to identify yeast deletion strains that show
increased sensitivity to aminoglycoside antibiotic paro-
momycin. This compound exerts its activity by targeting
the process of protein synthesis. Focused follow-up exper-
iments provided evidence that YBR261C, a previously
uncharacterized open reading frame (ORF) which is iden-
tified by this screen, affects the process of protein synthe-
sis in yeast.

Results

The Initial screening and identification of TAEI

In order to identify genes that affect protein synthesis, we
screened the entire set of yGDA (~4700) for increased sen-
sitivity to the aminoglycoside paromomycin. Paromomy-
cin binds to the small ribosomal subunit of eukaryotic
cells and compromises the translation fidelity [17]. Previ-
ously, it was shown that deletion of certain translation
related genes caused increased sensitivity to paromomy-
cin [18,19]. Therefore, we employed hypersensitivity to
this drug as a way to detect novel gene candidates
involved in translation. It should be noted that the dele-
tion of certain translation related genes would cause
increased resistance to paromomycin. This however, has
not been investigated in our analysis.

We used yeast colony size reduction (CSR) as a tool to
detect sensitivity to drug treatments. We have previously
shown, that based on the parameters used by us (see
Materials and Methods), CSR analysis can detect approxi-
mately 63% of the sensitive strains that are detected by a
large-scale spot test (ST) analysis with no repeats [20].
Hence, there are a number of sensitive strains that would
be missed by our analysis, that might otherwise be
detected by ST. Similarly, the same large-scale ST analysis
failed to detect 59% of the strains detected by CSR, which
may represent novel/false-positives associated with CSR.

Here, we use sensitivity to paromomycin as a tool to
detect protein synthesis related genes. A draw back for
this, as well as other similar drug-based screening tests, is
the detection of sensitive strains for those genes with no
direct relation to the activity of the target drugs. A major
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source of such false-positives in our experiments may
stem from those genes that play a role in general stress
conditions. Multi-drug resistant genes represent some of
these examples. For instance, it has been shown that the
deletion of QDRI1, a transporter gene and a member of
efflux pumps, confers sensitivity to several unrelated
drugs [21]. To increase the specificity of our selection pro-
cedure, we coupled our initial screen with a secondary
search (based on the same parameters) for increased sen-
sitivity to a second drug, which has no reported activity on
the process of translation. For this purpose, we selected
calcofluor white (CW), which is known to inhibit cell wall
function by binding with chitin [22]. In this way, only
those gene deletions that conferred sensitivity to paromo-
mycin alone may represent meaningful positives.

As expected, our large-scale approach identified numer-
ous translation genes such as TEF4 (translation elonga-
tion factor EF-1 gamma), HCRI (a component of
translation initiation factor 3), RPS18B (a ribosomal pro-
tein of small subunit), etc, which are sensitive to paromo-
mycin and not to CW. The complete list of these genes is
found in Additional file 1. The list of the genes that were
sensitive to both paromomycin and CW is found in Addi-
tional file 2. Of the 325 gene deletions sensitive to paro-
momycin alone, we found 42 genes that often appeared in
our similar drug screenings using different bioactive com-
pounds. These may represent false-positives and should
be treated with caution. From the 325 total reported
genes, 134 have been previously linked to the overall
process of protein biosynthesis. 191 of them however,
have never been connected in any way to this process, and
therefore, may also represent novel/false-positive genes.
These genes can be further classified into 5 smaller catego-
ries based on the cellular processes in which they partici-
pate, plus those which are unknown. As indicated in
Figure 1, the minor categories are: metabolism with 45
genes, cellular component biogenesis and organization
with 28, DNA maintenance with 21, transport with 20
and others with 38 genes. There were also 39 genes, which
are unknown. An explanation for these smaller categories
is that they may represent minor cellular target sites (side-
effects) for paromomycin. Alternatively, they may simply
represent false-positives (see above). It is also possible
that some of these genes might have novel roles during
translation. In this case, they may represent communica-
tion bridges between different cellular processes and pro-
tein synthesis.

One of the previously uncharacterized ORF identified in
this screen is YBR261C. There is no reported information
about this ORF, except that it is computationally pre-
dicted to have a methyltransferases domain [23]. We
therefore hypothesized that this might be a novel transla-
tion related gene. We termed this ORF, TAE1, for Transla-
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tion Associated Element 1, and subjected it to further
analysis for its potential involvement in protein synthesis.
ST analysis was used to confirm our large-scale observa-
tions (Figure 2). When the growth media was supple-
mented with a sub-inhibitory concentration of
paromomycin (13 mg/ml), a deletion strain for TAE1
(taelA) showed a reduction in its growth pattern (Figure
2).

We then examined taelA strain for its increased sensitivity
to 3-amino-1,2,4-triazole (3-AT) and cycloheximide. 3-AT
can affect translation by altering the pool of amino acids
in the cell [24]. Cycloheximide binds to large ribosomal
subunit [25], and inhibits translation elongation by inter-
fering with tRNA translocation [26]. It has previously
been reported that deletion of certain genes that affect
translation may confer sensitivity to multiple drugs that
target translation. For example, deletion of Sfp1, which
regulates ribosome biogenesis, confers increased sensitiv-
ity to both cycloheximide and paromomycin [27]. Shown
in Figure 2, our spot test analysis indicated that in addi-
tion to paromomycin, taelA also showed increased sensi-
tivity to 3-AT. Also some sensitivity for taelA to
cycloheximide was occasionally observed. However, due
to irreproducibility of these observations, this sensitivity
was presumed to be an artifact.

During the preparation of this manuscript, a new study
was reported in which sensitivity of yeast gene deletion
mutants to paromomycin were investigated using a heter-
ozygous diploid yeast gene deletion mutant array [28].
This system is different from ours (haploid based), as its
diploid mutant strains always carry a copy of the wild type
genes and consequently show less obvious growth defects
[29]. Of the 51 mutant strains that were identified by the
authors as sensitive to paromomycin, 39 are shared
between the two systems. Of these, 16 mutants were also
identified by our haploid system. It is worth mentioning
that tael A was not detected to have increased sensitivity to
paromomycin in the heterozygous system, further high-
lighting the difference between the two systems [28].

The effect of TAEI gene deletion on protein synthesis
Translation genes can be involved in different aspects of
translation. To examine the involvement of novel genes in
protein synthesis, we divided translation into three gen-
eral categories. Group one includes those genes that are
associated with ribosome biogenesis, group two contains
genes that alter translation efficiency, and group three is
composed of the genes that affect translation fidelity.
Depending on their molecular function(s), some transla-
tion genes may fall into none [30], one [27,31] or more
[32] of these three categories. If TAE1 is involved in the
process of translation, it might fall into one or more of
these categories.
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Categories of gene deletion strains with increased sensitivity to paromomycin. Distribution of paromomycin hyper-
sensitive yeast deletion strains in percentages according to their cellular functions.

a) Involvement of TAEI in ribosome biogenesis

Ribosome biogenesis and assembly is one of the most
important processes in the protein synthesis pathway
[33]. This process might be explained as the overall step
that leads to the formation and assembly of functional
ribosomes and includes regulation of pre-rRNA transcrip-
tion, and its corresponding mechanisms, pre-rRNA
processing, TRNA transport, IRNA maturation, ribosome
assembly, etc. [34]. We therefore reasoned that depending
on the molecular function(s) of TAEI, if this gene is
involved in ribosome biogenesis or assembly, its deletion
might result in the alteration of the profile of ribosomal
subunits. To examine this possibility, ribosome profile
analysis was performed. As expected, distinct 40S and 60S
subunit peaks, as well as 80S monosomes and polysome
peaks (Figure 3) were detected in both the wild type and
tael A strains. In addition, tael 4 strain showed a reduction

in polysomes and corresponding increases in 80S mono-
somes and 60S subunits (Figure 3). These alterations in
ribosomal profile further indicate the involvement of
TAE1 in protein synthesis.

b) Involvement of TAEI in translation efficiency

If TAEI is involved in protein synthesis, then based on its
molecular function(s), its deletion may alter the cell's effi-
ciency s to synthesize proteins. To investigate this possi-
bility, we used [3°S] methionine incorporations to
measure the rate of total protein synthesis in different
strains. As indicated in Figure 4A, it was observed that on
average, taelA had a reduced level of [35S] methionine
incorporation (approximately 22%) compared to the con-
trol strain. To confirm this observation, we used an induc-
ible B-galactosidase reporter construct (Figure 4B). It was
observed that the deletion of TAEI reduced the level of B-
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Increased sensitivity of taelA to different translation
inhibitory drugs. Deletion of TAE| confers increased sensi-
tivity to different drugs that target translation. Decreasing
numbers of wild type and mutant (taelA) yeast cells were
spotted on solid media. The media was supplemented with
sub-inhibitory concentrations of paromomycin (13 mg/ml), 3-
AT (22 mg/ml), cycloheximide (45 ng/ml), or none (used as a
control and shown in the top panel). Standard organic
(YEPD) media was used for cycloheximide and synthetic
complete (SC) media was used for paromomycin and 3-AT
plates, and for the control plate shown here. Yeast cells were
grown to mid-log phase and diluted 10-3 to 10-6 folds.
Twenty microliters of each dilution (gradually decreasing)
was spotted onto the media and grown at 30°C for 1-2 days.
Deletion of TAE| conferred increased sensitivity to paromo-
mycin and 3-AT. Occasional sensitivity to cycloheximide was
assumed to be an artifact.

galactosidase synthesis from an inducible expression plas-
mid by approximately ten-folds (Figure 4B). These obser-
vations suggest that deletion of TAEI may reduce the
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efficiency of protein synthesis in a cell, and provide fur-
ther support that TAE1 affects protein synthesis.

c) TAEI and Translation fidelity

To make a functional protein, the fidelity of protein syn-
thesis is maintained at almost all stages of translation.
This fidelity is controlled during the start site selection
and elongation when the mis-incorporation of the wrong
amino acid may alter the integrity of the final product, as
well as during termination, when a stop codon might be
read through. If TAET is involved in translation, then it
might be expected that based on its molecular func-
tion(s), the deletion of this gene may alter the fidelity of
translation. Translation fidelity can be studied using spe-
cialized expression systems such as those that contain p-
galactosidase expression cassettes, with premature stop
codons [35]. In this investigation, we used plasmids
pUKC817 and pUKC818 that contain lacZ genes carrying
the nonsense codons UAA and UAG, respectively [35]. It
was observed that the deletion of TAE1 resulted in an
increased level of read through for the nonsense codons
investigated, suggesting that in this deletion strain, the
translation fidelity seem to be compromised (Figure 5A).
For unknown reasons, the average values for B-galactosi-
dase activities in the wild type strain, were systematically
higher than expected.

Since differential levels of B-galactosidase activity in above
experiments may also stem from altered levels of mRNAs,
the content of pB-galactosidase mRNAs of WT and taelA
were investigated using Q-RT-PCR. We observed no signif-
icant variation in the amounts of these mRNAs (Figure
5B), which could explain the observed difference for the
B-galactosidase activities. It was therefore concluded that
the observed differences likely stem from translation read
through. Altogether, the results indicate that the deletion
of TAE1 seems to compromise translation fidelity, provid-
ing further evidence that TAE1 affects translation.

TAE| genetically interacts with translation related genes

The genes that are functionally related and are involved in
similar pathways, often genetically interact with each
other. Consequently, studying the genetic interactions of
a novel gene is often used as a method to infer the func-
tion of that gene [36,37]. If TAE1 is a true translation gene,
then it might be expected that TAE1 would genetically
interact with certain known translation associated genes.
To investigate this possibility, we examined the genetic
interactions of TAE1 with a set of 384 genes, which are
known or thought to be involved in translation. As indi-
cated in Figure 6, it was observed that TAE1 genetically
interacted with numerous translation related genes to pro-
duce sick phenotypes, which are classified as i) very sick,
ii) sick, and iii) moderate. Lethal interactions were not
considered. The interactions between TAEI and transla-
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were collected at the lower half of the gradients (x-axis). The values under the peaks represent the areas under the curve for
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tion related genes were further divided into three catego-
ries with ribosomal proteins forming the largest cluster
(16 genes), followed by those involved in amino acids
and protein production (7 genes), and those involved in
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Figure 4

Protein synthesis profile in the presence and absence
of Tael. In (A) total protein synthesis is measured using
[3>S] methionine incorporation. The average count for [33S]
methionine incorporation for wild type is 11,356,073 (+
1,300,000) counts, which is set to 100%. In the absence of
Tael protein, total protein production is reduced by approx-
imately 22%. t-test analysis indicates that the observed differ-
ence is statistically significant with the p-value of 0.05. In (B)
the efficiency of protein synthesis is measured using an induc-
ible B-galactosidase reporter gene. The average [3-galactosi-
dase activity for wild type is 7.51 (£ 0.6) units, which is set to
100%. In the absence of Tael protein, an approximately ten-
fold reduction in B-galactosidase production is observed.

rRNA synthesis (2 genes). Descriptions of these genes are
listed in Additional file 3. The fact that TAE1 genetically
interacts with different translation associated genes pro-
vides further evidence for the involvement of TAEI in the
process of translation.

Phenotypic suppression by the overexpression of TAEI

To examine the cellular activity of Tael protein, we
employed a high throughput approach, based on the phe-
notypic suppression of the gene deletion mutants that
have known functions. Deletion of genes, which are
involved in a specific pathway, may cause increased sensi-
tivity to treatments that target the same process. Such
hypersensitivities can be compensated by the overexpres-
sion of other genes with similar cellular functions. For
example, it has previously been reported that the absence
of Yku80, involved in telomere maintenance, causes
increased sensitivity to elevated temperature. Overexpres-
sion of either Est2, a catalytic subunit of telomerase, or
Tlc1, the RNA template component of telomerase, com-
pensated for the absence of Yku80 and reversed the heat
hypersensitivity of yku804 [38].

Here, we investigated the activity of Tael protein by exam-
ining the effect of its overexpression in suppressing hyper-
sensitivities to antibiotics neomycin and streptomycin for
the above 384 translation related gene deletion yeast
strains. Like paromomycin, the antibiotics neomycin and
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Figure 5

Effect of TAEI deletion on translation fidelity. (A) Deletion of TAE! resulted in increased levels of 3-gal activity from the
lacZ reporters, pUKC817 and pUKCB8I8, containing premature stop codons, UAA and UAG, respectively. The relative 3-gal

activity is determined by normalizing the activity of the mutant constructs (pUKC817 and pUKC818) to the control construct
(PUKC815), and related to that obtained by the wild type strain (for example, the value for pUKC817/pUKC8IS5 in tae A cells
is related to that of pUKC817/pUKC8I5 in the wild type cells). The average [3-gal activity for the wild type strain transformed
with pUKC815 is 19.05 (z I.1) units. (B) Q-RT-PCR analysis indicates that alterations for the relative contents of LacZ mRNAs
do not explain the difference in -gal activities observed in (A). The C, for the control and experimental samples were calcu-

lated from the threshold cycles. pUKCB8I5 is the background construct without a premature stop codon and used as a control.

streptomycin, belong to the aminoglycoside family,
which binds to ribosomes and disrupts translation [30].
We observed that overexpression of Tael protein, sup-
pressed the drug sensitivity phenotypes for 28 deletion
mutants of known translation genes (Figure 7). These 28
mutants showed sensitivity to treatment with neomycin
and/or streptomycin. Tael overexpression however,
reversed the observed drug sensitivities. These 28 gene
deletion mutants can be categorized into two main groups
of gene deletions for ribosomal proteins (17 genes), and
those for translation control proteins (8 genes). Descrip-
tions of the deleted genes are listed in Additional file 4.
The fact that overexpression of Tael suppresses the phe-
notypes of deletion mutants for translation genes, further
confirms an involvement for TAE1 in protein synthesis.

Discussion

Annotating gene functions has been an important aspect
of post-genomic era. Identifying "which gene does what"
is one of the fundamental tasks of systems biology, and
sets the basis for understanding the biology of a cell. There
are currently numerous uncharacterized genes with no
known functions [4]. Moreover, there are numerous genes
with multiple functions, some of which are not yet eluci-
dated.

One approach to study gene function is to make gene
knockouts, and observe the mutant cells' behavior to
internal and/or external stimuli. Here, we screened the set
of yGDA for sensitivity to paromomycin, which is known
to target protein synthesis machinery. Due to an increased
sensitivity, we hypothesized that a yeast gene deletion
strain for TAET might affect the process of protein synthe-
sis. We observed that the deletion of TAE1 reduced trans-
lation fidelity. This observation might be expected, since
paromomycin is known to decrease the fidelity of transla-
tion. We also observed that deletion of TAE1 reduced the
efficiency of translation, which is not necessarily coupled
with translation fidelity, suggesting a wide-range effect for
TAE1 on translation.

Tael protein is found in the cytoplasm and is bioinfor-
matically predicted to contain an S-adenosylmethionine-
dependent methyltransferase activity. Certain members of
this family of proteins have been shown to methylate dif-
ferent components of the translation machinery. For
example, DIM1 and SPB1, which are nucleolar proteins
involved in rRNA methylation; TRM proteins (such as
TRM1 and TRM?2), which are tRNA methyltransferases
found in both cytoplasm and nucleus; and Mtq2, which
methylates translation release factor SUP45 and is found
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Figure 6

Genetic interaction of TAEI with translation genes. TAE/| genetically interacts with numerous translations related genes
to produce sick phenotypes. These interacting genes could be further divided into two major categories of ribosomal subunits
(16 genes, blue circles), and amino acid and protein production (7 genes, black circles). The interacting genes shown in red cir-
cles are involved in ribosome biogenesis. Strong, moderate and weak interactions are shown by red, green and blue lines,

respectively.

in both cytoplasm and nucleus. Presuming that Tael has
a methyltransferase activity, we can assume that Tael
affects translation by methylating a component of transla-
tion machinery.

In agreement with the observed reduction in translation
efficiency for tael 4, our ribosomal profile analysis indi-
cated an overall decrease in polysomes when TAEI was
deleted. In contrast, the 60S free subunits were specifically
accumulated in taelA cells. Since 40S and 60S subunits
are in equilibrium with 80S monosomes, the increase in
60S subunit may indicate a defect in 40S biogenesis [39].
Assuming that TAE1 is a methyltransferase, a possible
explanation is that TAE1 may effect 40S biogenesis by
either methylating 18S rRNA directly, or by methylating a
factor which affects 40S biogenesis. In agreement with a
role for TAE1 in ribosome biogenesis, TAE1 is found to be

co-regulated with a number of ribosome processing fac-
tors in at least five different microarray analyses [40].

There is also an accumulation of 80S monosomes in tael A
cells, which may indicate a defect in translation initiation.
Formation of defective ribosomes in the absence of TAE1
that cannot readily start elongation, may explain this
accumulation of 80S monosomes. Alternatively, it is pos-
sible that TAE1 might affect translation initiation by mod-
ifying a translation initiation protein. The latter
explanation however, cannot explain the accumulation of
60S subunits. Regardless, further experiments are required
to investigate details of the molecular activity of TAE1,
and to identify its potential substrate(s).

Our genetic analysis revealed that TAE1 genetically inter-
acts with a number of translation genes. In accord with the
above-suggested function for TAE1 in ribosome subunit
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gene deletion strains. Among them, |7 genes belong to ribosomal proteins (blue circles) and 8 genes are involved in translation
control (black circles). Red circles represent other genes. Complete and partial suppressions are shown by green and blue

lines, respectively.

biogenesis, the majority of the observed interactions were
found to be with ribosomal protein genes. Similarly, our
phenotypic suppression analysis indicated a functional
compensation by TAEI overexpression, for the absence of
17 different ribosomal proteins against drug treatments. It
should be noted that our genetic and phenotypic suppres-
sion analysis resulted in two different sets of proteins. This
is expected, as genetic interaction analyses generally target
the genes involved in different pathways within a process
(redundant pathways), whereas phenotypic suppression
analyses generally target genes within the same pathway.
This data can be further used to study the detailed mecha-
nism of TAE1 activity.

Conclusion
In conclusion, we investigated the sensitivity of yGDA to
paromomycin, a drug that targets the process of transla-

tion. One of the mutant strains identified by our screen
was a deletion strain for a previously uncharacterized
OREF, YBR261C, that here we termed TAE1, for Translation
Associated Element 1. Our follow-up experiments indi-
cated that the deletion of TAE1 caused reduction in trans-
lation efficiency and fidelity. Deletion mutant strain for
TAE1 also had an altered ribosome profile. Our genetic
analyses further confirmed the involvement of this gene
in translation. Identification of a new gene in the process
of translation suggests that there may exist other novel
translation genes, which are yet to be discovered.

In addition, the large-scale phenotypic suppression analy-
sis used here can set the path for similar approaches to
investigate other gene functions. Furthermore, our data
also reaffirms that large-scale chemical-genetic profile
analysis can be successfully used in functional genomics.
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Materials and methods

Drug resistance screening for yeast gene deletion array
Sub-inhibitory concentrations of drugs were estimated
from minimum inhibitory concentration (MIC) measure-
ments based on a 96 varied concentration format as
described in [41].

Approximately 4700 MATa haploid yeast, S. cerevisiae
strains (BY4741, MATa ura340 leu240 his3A41 met15A40)
from the non-essential Gene Deletion Array (yGDA)
described in [3,5] was manually arrayed onto agar plates
as previously described [36] in a 384 array format, with
sub-inhibitory concentrations of paromomycin (13 mg/
ml), CW (40 pg/ml) or without a drug (control). All plates
were incubated at 30°C for 1-2 days. The sensitivity of the
gene deletion array to different drugs was investigated as
before [36]. In brief, different strains are pinned on two
plates, one with a sub-inhibitory concentration of a target
drug and one without (used as a control) and incubated
at 30°C for 1-2 days. Digital images of plates were used
to analyze the growth of individual colonies. For every
plate the average size of colonies (white pixels) was calcu-
lated from equation (1).

N
Swe=1/NY, _S; (1)

where N is the total number of colonies present in a given
plate and S;is the area of object i. The deviation of area for
each colony from the plate's average area was used for fur-
ther analysis (relative growth) and was calculated by sub-
tracting the scalar S,,, from the plate's ordered area array
explained in equation (2).

AS,=8,-S,;i=1,..,384 (16 x24=384) (2)

Relative colony size reduction of more than 30% was
counted as a "hit". Each experiment was repeated three
times. The gene deletion strains, which were "hits" in two
or more of the three experiments, were counted as posi-
tives. Colonies with the highest two average reductions of
61% or more and 30-60% were defined supersensitives
and sensitives, respectively.

ST test analysis was performed by growing yeast cell cul-
tures in YEPD media to mid-log, following 10-3 to 10-6
folds dilutions. Twenty microliters of each dilution (grad-
ually decreasing), was then spotted onto media contain-
ing the sub-inhibitory concentrations of the drugs (13
mg/ml paromomycin, 22 mg/ml 3-AT, and 45 ng/ml
cycloheximide), and without (control). YEPD media was
used for cycloheximide and SC media was used for paro-
momycin and 3-AT plates. The growth patterns were com-
pared after 1-2 days at 30°C as in [42].

http://www.biomedcentral.com/1471-2164/9/583

Gene expression analysis

Constitutively  expressed  [B-galactosidase  (using
pUKC815, pUKC817 and pUKC818) was assayed as
described [43]. The units of enzyme activity were calcu-
lated as nanomoles of O-nitrophenyl-a-D-galactopyrano-
side (OPNG) hydrolyzed per microgram of total protein
[44]. All assays were conducted in triplicate. Induced B-
galactosidase (using p416) was assayed as before [45].

In vivo [3°S] methionine incorporation was performed as
previously described by Schwartz and Parker [46] with
modifications. Briefly, yeast strains were grown to mid-log
phase at 30°C in YEPD. The cells were harvested, resus-
pended in pre-warmed minimal medium lacking methio-
nine, and supplemented with 10 pCi/ml of [3°S]
methionine. The cells were incubated for 1 h at 30°C and
harvested by centrifugation. The samples were then
washed with distilled water six times and collected (1 pl
aliquot) on Whatman paper. The paper was air dried and
exposed to storage phosphor screen for 1 h. The counts
were normalized to the final cell totals. Each experiment
was repeated at least four times.

Total RNA was isolated using Bio-Rad RNA isolation kit.
cDNA was constructed from 0.5 pg of total RNA of each
strain using iScript cDNA synthesis kit with SYBR green
supermix (Bio-Rad) according to the instructions of the
manufacturer. The quantification of mRNA was per-
formed using real-time RT-PCR (Q-RT-PCR) on a Rotor-
Gene RG-300 from Corbett research. The PCR quantifica-
tion and melting curves were generated using the Rotor
gene 6 software. The amplification was performed: initial
denaturation 95°C for 10 min followed by 40 cycles at
95°C for 30's, 55°C for 20 s and 72°C for 20 s each with
using 50 nmoles each of the forward (5'-ACTATCCCGAC-
CGCCTTACT) and reverse (5'-TAGCGGCTGATGTT-
GAACTG) primers. The fluorescence was read at the end
of each round of amplification. All standard dilutions and
samples were run in triplicate. Quantification of mRNA
were achieved by comparing the threshold cycle (C,) value
of the sample RNA from deletion strain with the C, value
of WT strain's standard RNA [47].

Ribosome profile analysis

Ribosome profiling was performed as described by Foani
et al 48] with the following modifications. Wild type and
mutant yeast cells were grown in YEPD at 30°C to a den-
sity of 2 x 107 cells/ml. Cycloheximide (50 pg/ml) was
added to each culture and the cultures were quickly
chilled in ice water bath. Cells were then centrifuged at
4000 rpm for 4 min at 4 °C by sorvall SLA-1500 rotor. Cell
pellets were resuspended in 10 ml of ice-cold YA buffer
(breaking buffer A: 10 mM Tris-HCI [pH 7.4], 100 mM
NaCl, 30 mM MgCl,, cycloheximide 50 png/ml, heparin
200 pg/ml) and centrifuged 4000 rpm, 4 min, at 4°C
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(Sorvall SS34 rotor), twice. The pellets were then resus-
pended in 0.5 ml of YA buffer by vortex and stored at -
80° C till the next day. Cells were then thawed on ice water
bath. Glass beads were added and vortex for 20 sec at max-
imum speed, 10 times with 30 sec interval. The superna-
tants were centrifuged at 8,000 x g and 10,000 x g for 10
min and 30 min, respectively. Twenty OD,, units of each
supernatant were fractionated on 8-48% sucrose gradi-
ents containing 50 mM Tris-acetate (pH 7.0), 50 mM
NH,Cl, 12 mM MgCl,, and 1 mM dithiothreitol. The
extracts were then centrifuged for 2.5 hrs at 39,000 rpm
using a SW40-Ti rotor in a Beckman LE-80K at 4°C. The
ribosome profiles were analyzed from the collected gradi-
ent solutions by monitoring the absorbance at 254 nm.
Each experiment was repeated three times with similar
results.

Genetic interaction and phenotypic suppression analysis
Genetic interactions between TAE1 and a set of yeast gene
deletion strains for 384 genes known or thought to be
involved in translation were assessed by synthetic genetic
miniarray profiling as discussed in [49] and the colony
growth differences were assessed as in [20]. Possible syn-
thetic sick interactions were confirmed by a spotting assay
explained in [50]. We divided these interactions into
strong, moderate and weak interactions based on their
double mutant phenotypes of very sick, sick and slightly
sick.

The TAE1 overexpression construct, pGAL1/10-GST-
6xHis-YBR261C is obtained from the yeast gene overex-
pression array explained in [51]. A compatible MAT«
strain (Y7092, MATa canlA::STE2pr-Sp_his5lyp1 Ahis3A1
leu2A0 ura340 met1540) is then transformed with this
construct and was crossed with a set of yeast gene deletion
strains for 384 translation genes (see above) as in [49].
Sensitivity of yeast strains with or without TAE1 overex-
pression, against neomycin and streptomycin was per-
formed using colony size measurements as discussed in
[20]. Phenotypic complementations were divided into
two categories of complete and partial suppressions. Par-
tial complementation against both drugs is assigned par-
tial. Complete complementation against one drug,
regardless of the other, is assigned complete.
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