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Abstract: Pseudomonas aeruginosa is one of the most dominant pathogens in cystic fibrosis (CF)
airway disease and contributes to significant inflammation, airway damage, and poorer disease
outcomes. The CF airway is now known to be host to a complex community of microorganisms,
and polymicrobial interactions have been shown to play an important role in shaping P. aeruginosa
pathogenicity and resistance. P. aeruginosa can cause chronic infections that once established are
almost impossible to eradicate with antibiotics. CF patients that develop chronic P. aeruginosa infection
have poorer lung function, higher morbidity, and a reduced life expectancy. P. aeruginosa adapts to
the CF airway and quickly develops resistance to several antibiotics. A perplexing phenomenon is
the disparity between in vitro antimicrobial sensitivity testing and clinical response. Considering
the CF airway is host to a diverse community of microorganisms or ‘microbiome’ and that these
microorganisms are known to interact, the antimicrobial resistance and progression of P. aeruginosa
infection is likely influenced by these microbial relationships. This review combines the literature
to date on interactions between P. aeruginosa and other airway microorganisms and the influence of
these interactions on P. aeruginosa tolerance to antimicrobials.

Keywords: cystic fibrosis; Pseudomonas aeruginosa; polymicrobial interactions; microbiome; antibi-
otic resistance

1. Introduction

It is estimated that approximately >70,000 people are living with cystic fibrosis (CF)
worldwide [1]. Despite being a multi-organ disease affecting the pancreas, sweat glands and
intestines, airway infections and the associated inflammation are the largest contributors to
morbidity and mortality in CF [2]. Even with modern medical advances, the median life
expectancy for people with CF is approximately 40 years [3]. CF is caused by mutations
in the CF transmembrane conductance regulator gene. Lack of functional CFTR protein
results in defective secretion of Cl− with enhanced Na+ absorption and mucus secretion [4].
The airway surface fluid becomes viscous, which leads to impaired mucociliary clearance,
creating an ideal environment for colonisation of microorganisms. CF airway disease is
characterized by a continuous cycle of persistent infection and inflammation culminating
in reduced lung function and eventually respiratory failure.

The most commonly cultured bacteria from CF airway samples during periods of exac-
erbation are Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae,
Stenotrophomonas maltophilia, non-tuberculous mycobacteria, and Burkholderia species [5,6].
P. aeruginosa is an important opportunistic pathogen that causes acute infections in im-
munocompromised patients. P. aeruginosa has robust virulence systems and is capable
of forming multidrug-resistant biofilms which allow for persistent colonisation of the CF
airways; thus, P. aeruginosa is the most common cause of exacerbation and mortality in
people with CF [7,8]. Early intervention is paramount as P. aeruginosa is very difficult to
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eradicate once it has established chronic colonisation of the airways. P. aeruginosa infection
is linked to decreased life expectancy of 30 years, compared with 40 years in non-colonised
patients, and these patients experience a more rapid decline in pulmonary function with
more frequent hospitalisations [9,10]. Chronic P. aeruginosa infection is associated with
antibiotic resistance [11,12], poor response to antibiotic therapy [12], rapid decline in lung
function, and poor clinical outcomes [13–16].

With the advent of next-generation sequencing (NGS) and the discovery of a diverse
community of microorganisms in the CF airway, it is now known that P. aeruginosa does
not colonise the airways alone. Inter-species, cross-genera, and cross-Kingdom interac-
tions have been shown to influence pathogen virulence [17–19], reduce susceptibility to
antibiotics [20,21], and impact patient health [17,22,23]. The virulence of P. aeruginosa is
influenced by its co-colonisers in the CF lung microbiome [24–26]. Several studies have
now shown that P. aeruginosa responds differently to antibiotics when cultured alone and
in co-culture with other microorganisms [20,21,27,28]. Furthermore, clinical trials have
shown a lack of association between clinical response to antibiotic therapy and in vitro
susceptibility of the cultured bacteria [29,30]. Changes in virulence and antimicrobial
susceptibility in polymicrobial communities have the potential to drive poorer clinical
outcomes in CF.

In this review, we focus on the impact of polymicrobial interactions on P. aeruginosa
resistance/tolerance to antibiotics and the potential implications this has on therapeutic
approaches in CF.

2. P. aeruginosa Infection in CF

P. aeruginosa infection is known to transition from sporadic colonisation to an inter-
mittent infection before becoming established, and approximately 80% of CF patients are
chronically colonised by P. aeruginosa by the age of 20 [31,32]. Development of chronic
P. aeruginosa colonisation is a significant disease milestone in CF and has been observed
to mark the beginning of significant lung function decline [33]. Chronic P. aeruginosa
colonisation is considered a major limiting factor in patient survival, with estimates of
10 years reduced life expectancy in chronically colonised patients [9,10,31]. Early diagnosis
and eradication are extremely important in delaying chronic infection. P. aeruginosa has
several virulence factors that contribute to colonisation and airway inflammation within
the CF lung, including Type III secretion system (T3SS) [34], lipopolysaccharide (LPS) [35],
exopolysaccharide (EPS) [36], proteases [37,38], pyocyanin [39], and siderophore produc-
tion [40]. Some of these virulence factors directly damage host tissue [35] and redirect
immune cell functions [41] and can specifically target neutrophils [37,42]. Microorganisms
exhibit social behaviours and live-in communities termed biofilms, which are embedded
in EPS which protects them from the surrounding environment. The majority of P. aerug-
inosa EPS are Psl, Pel, and alginate; these play distinct roles in attachment and biofilm
formation [43]. P. aeruginosa planktonic cells attach to the surface initially through weak
and reversible adhesion, followed by formation of microcolonies [44]. The cells then em-
bed themselves in a matrix of EPS which comprises proteins, lipids, and nucleic acids to
facilitate maturation [45]. The EPS in biofilms affects the structure, including its density
and stability. Finally, there is the dispersal stage where cells from the microcolonies leave
the biofilm and colonise a new surface. P. aeruginosa can form biofilms that are associ-
ated with multidrug resistance (MDR) [46]. P. aeruginosa biofilms have been shown to
be up to 1000 times more resistant to antimicrobials than planktonic cells [47,48]. There
are numerous mechanisms involved in biofilm resistance, including adaptive stress re-
sponses, reduced penetration, and increased horizontal transfer of antibiotic resistance
genes (ARGs) [27,49,50]. Biofilm antimicrobial tolerance results from restricted penetration
of antimicrobials through the exopolysaccharide matrix and different physiological activity
which is caused by the hypoxic environment [51]. P. aeruginosa utilises its quorum sensing
(QS) molecules, such as N-acyl homoserine lactones (HSLs) and alkyl quinolone (AQ),
as part of its major cell–cell signalling. This QS system regulates expression of virulence
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factors, including the formation of biofilms [52,53] and the production of pyocyanin [54],
proteases [55], and rhamnolipids [54,56].

P. aeruginosa adapts to its environment and overcomes many challenges, such as
osmotic stress [57], competition from other organisms [58], decreased nutrient availabil-
ity [59], antibiotics [60], and oxidative stress [61], to survive in the CF airways. Genes
associated with QS, iron acquisition, phenazine biosynthesis, and multidrug efflux were
shown to have mutated to promote survival and progression to chronic infection [62].
Chronic colonisation is associated with genotypic and phenotypic changes, such as re-
duced QS [63], metabolism [64], and motility [65] and overproduction of alginate [66] and
increased antibiotic resistance [67,68]. During the chronic colonisation stage, P. aeruginosa
changes from a non-mucoid motile phenotype to a mucoid biofilm former that is capable of
evading host responses and antibiotics, at which point it becomes very difficult to eradicate.

MDR P. aeruginosa pose a number of therapeutic and diagnostic challenges in the CF
population. As stated by the World Health Organisation (WHO), new antipseudomonal
antibiotics are needed, but the introduction of new antibiotics is often closely followed by
the emergence of resistance. A better understanding of the drivers and mechanisms of
resistance is needed. There is a growing body of evidence showing that interactions within
and among species in the microbiome can alter the virulence and antibiotic resistance of P.
aeruginosa. These interactions may shape the evolution, virulence, and antimicrobial
resistance (AMR) of P. aeruginosa. Increased understanding of community dynamics
in the CF microbiome could provide new opportunities for therapeutic interventions.
Understanding more about how chronic P. aeruginosa interacts with the other airway
community members may provide insights into novel therapeutic approaches for these
patients, and it may be possible to suppress P. aeruginosa indirectly by manipulating
biologically relevant interactions.

3. The CF Airway Microbiome

There is a diverse array of bacteria, fungi, and viruses present in the airways, many
of which have not previously been associated with the CF [69,70]. NGS has improved the
detection of previously under-identified genera, such as Streptococcus, and has identified
anaerobic genera such as Prevotella and Veillonella as not only common in the CF airway
but highly abundant [71–73]. Microbiome studies corroborate culture data showing that
species such as S. aureus, H. influenzae, and Streptococcus are dominant in early childhood,
and pathogens, such as P. aeruginosa, become dominant in adulthood [74–76]. The diversity
of the CF airway microbiome decreases with age and pathogen dominance [74,77–79].

The CF airway is known to be a hypoxic microenvironment, and it is becoming in-
creasingly evident that anaerobes are important in CF disease [76,77,80,81]. Anaerobes
such as Streptococcus, Haemophilus, Veillonella, Neisseria, Prevotella, Fusobacterium, Propi-
onibacterium, Actinomyces, Gemella, and Granulicatella are commonly detected in the CF
airway using culture-independent techniques, but anaerobes are rarely detected using
standard culture-based diagnostics [80,82–84]. In early childhood, anaerobic bacteria are in
significantly lower abundance in children with CF when compared with children without
CF [85]. A higher relative abundance of anaerobes has recently been linked to milder
disease in CF, with better nutritional status, pancreatic sufficiency, and better lung func-
tion. Reductions in anaerobes were associated with the emergence of pathogenic bacteria
genera, such as Pseudomonas and Stenotrophomonas [79,81]. While there is mounting evi-
dence supporting anaerobes as beneficial in CF, little is understood about how anaerobes
may behave in the host. Anaerobes in the airway can produce short chain fatty acids
(SCFAs) by fermentation of mucins in the CF airway [86]. SCFAs have been detected in CF
sputum at a mean concentration of 1.99 mM and were positively correlated with sputum
neutrophil counts [87]. SCFAs have been shown to either increase or decrease P. aeruginosa
growth in a concentration-dependent manner and stimulate neutrophil chemotactic agents
and production of interleukin-8 (IL-8) in CF epithelial cells [87,88]. P. aeruginosa cannot
derive SCFAs from mucins but can utilise those formed by other microbiota members,
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suggesting a potential cross-feeding mechanism in the CF airway microbiome that requires
further exploration.

Linking microbial community composition to measures of disease severity such as
exacerbation and lung function is vital to establishing the significance of the microbiome
in CF lung disease. Community composition fluctuations were monitored in a 10-year
study of 111 CF patients [89]. Changes to the microbiome during exacerbation were
shown to be largely dependent on community composition and diversity at baseline,
with particular genera such as Pseudomonas and Gemella acting as important drivers of
change [78]. Alternatively, other studies have shown there to be little change in microbial
community composition in patients during exacerbation and when clinically stable [90,91].
While the link between exacerbation and microbial community composition is not clear,
poor lung function is clearly correlated with reduced microbiome diversity, as has been
reported in a number of studies [92–94].

Antibiotics and the CF Airway Microbiome

Antibiotic treatment is a cornerstone of CF care. Antibiotics are prescribed based
on the resistance profile of microorganisms cultured from sputum during exacerbation.
Unfortunately, clinical responses do not often correlate with in vitro sensitivity tests, and
so treatments are often unsuccessful [29,30].

Antibiotics and lung function have been found to be the main drivers of changes in
microbiome composition [95]. In a study of 126 sputum samples from 6 age-matched male
CF patients, spanning nearly a decade, antibiotics, rather than age or lung function, were
the primary driver of decreasing diversity [96]. Despite this, communities demonstrated
both short-term and long-term resilience after antibiotic-driven changes. Corroborating
these findings, another study revealed that any changes in the CF airway microbiota
caused by antibiotics were transient and that taxa linked to CF infection were still detected
post-antibiotic treatment [97]. Practices around antistaphylococcal prophylaxis in children
with CF differs from country to country, with prophylaxis currently recommended in
the United Kingdom [98] and advised against in the United States [99], while in Ireland
there is no consensus, with individual clinics differing in their approach. In a prospective
observational study of 32 infants with CF, microbial diversity was lower in those receiving
amoxicillin-clavulanate anti-staphylococcal prophylaxis [100]. In contrast, another study
recently published found that prophylactic antistaphylococcal flucloxacillin treatment did
not perturb the early CF airway microbiome or significantly reduce the relative abundance
of Staphylococcus [85]. These contrasting outcomes call into question the benefits of pro-
phylactic antistaphylococcal treatment in children with CF [101–103]. Some microbiome
studies have revealed that the use of antibiotics such as azithromycin significantly reduced
the relative abundance of the Pseudomonas genus [85], while other studies report that
P. aeruginosa abundance was either not affected by antibiotics [91] or actually increased
while non-pseudomonal taxa decreased during antibiotic treatment [104]. Anaerobes were
more abundant in CF patients who took fewer antibiotics during their lifetime [89], and
mean short chain fatty acid (SCFA) concentrations were significantly lower after antibiotic
treatments [87], suggesting a reduction in anaerobes after antibiotic treatment. A very
interesting study published in 2017 monitored the microbiome in 24 CF patients receiving
Aztreonam lysine for inhalation (AZLI) for chronic P. aeruginosa infection [105]. While
no significant changes were noted in alpha or beta diversity following AZLI, specific
sub-populations of organisms, Prevotella and Granulicatella, declined. Perhaps most inter-
esting was that patients with high Staphylococcus and anaerobic organisms, Prevotella and
Fusobacterium, responded less favourably to therapy. This suggests that certain species in
the microbiome may determine the success of antipseudomonal therapy. This was one of
the first published indications that polymicrobial interactions may influence antimicrobial
therapy success in CF.

Studies have reported that the impact of antibiotics on the airway microbiome is tran-
sient and that baseline composition returns after 1 week [106] to 1-month post-treatment [94].
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Many of these studies differ in the antibiotic used, dosage (if disclosed), oral versus in-
travenous delivery, severity of infection requiring treatment, and patient age groups, and
thus are likely not comparable. Large, multicentre, prospective controlled studies are
required to make an ultimate statement on the impact of antibiotics on the CF airway
microbiome. The first microbiome-based, interventional clinical trial called CFMATTERS
(clinicaltrials.gov: NCT02526004; www.cfmatters.eu, accessed 1 July 2021) began in 2017
aims to determine whether targeting nonclassical (e.g., anaerobic) species with antibiotics
will improve CF outcomes.

4. Polymicrobial Interactions with P. aeruginosa in the CF Airway Microbiome

The complex network of microorganisms in the CF airway microbiome have been
shown to interact with each other and their environment, and this has the potential to
influence clinical outcomes. P. aeruginosa colonisation changes the surrounding microbiome,
but how diverse members of the community interact in general is not well understood.
Some studies have begun to shed light on the polymicrobial interactions taking place
among these bacteria (Table 1). These studies provide evidence that inter-species, cross-
species, cross-genera, and cross-Kingdom interactions can influence not only pathogen
virulence and host responses but also resistance and tolerance to antibiotics. The impact of
these interactions in CF airway disease are yet mostly unexplored.

During co-infection, P. aeruginosa remains prevalent and dominant, due to its great
genomic plasticity, high virulence, and its ability to form biofilm. The pathogenicity of
P. aeruginosa can be directly shaped by interactions with other species [107–110]. In vitro
studies have been conducted on P. aeruginosa co-colonising and interacting with
S. aureus, Streptococci, B. cepacia complex, A. fumigatus, C. albicans, and S. maltophilia
(Table 1). Furthermore, studies have shown that these interactions can be synergistic
and/or antagonistic, shaping P. aeruginosa virulence, thus enhancing its pathogenicity and
persistence [69,111,112]. For a more comprehensive review of polymicrobial interactions
impacting virulence in CF, there are some excellent reviews already published [6,69,113].
The present review will focus on the impact of polymicrobial interactions on P. aeruginosa
resistance/tolerance to antibiotics and the potential implications this has on therapeutic
approaches in CF.

Table 1. Studies reporting microbial interactions with P. aeruginosa.

Sp Interacting with PA Microbial/Host Response Potential Implications on Disease Ref(s).

Gram-positives
↑ lytic activity by PA
↓ Gram+ in vivo models

PA more toxic in co-infections with
Gram+ [114]

↑ pyocyanin production by PA PA mechanisms of dominance [115]

S. aureus

Co-infection strains less competitive than
mono-infection strains Adaptation to coexistence in the lung [116]

PA induces bronchial epithelial cells to
produce phospholipase, sPLA2-IIA

Manipulation of host immune
response, enhanced survival of PA,
and killing of SA and other Gram+

[117]

PA EPS can affect mixed species biofilm
architecture

Proximity of SA and PA in mixed
biofilms [118]

↑ PA siderophore production
Lysis of SA

Iron competition
LasA protease

[112]
[119,120]

PA LPS inactivation mutations
↓ production of PA LPS in anoxia

Reduced recognition by immune
system, persistence

Immune evasion

[112]
[112]

↑ PA swimming motility in anoxia Reseeding of infection in lung [17]

www.cfmatters.eu
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Table 1. Cont.

Sp Interacting with PA Microbial/Host Response Potential Implications on Disease Ref(s).

S. maltophilia

Co-colonise the CF airway Opportunity to interact [121]

↓ SM growth
↑ PA biofilm Altered virulence and persistence [18]

[111]

↓ Adhesion of PA to CFBE Evasion of immune system and
persistence [18]

Streptococci spp.

↓ SMG growth—PA competition for iron
↓ S. anginosus growth and biofilm formation
↑ Strep spp. biofilm formation—hijacks

PA EPS
↓ PA viability—Strep H2O2 production

Pathogen dominance and persistence
Altered virulence and persistence

Persistence
Strep beneficial to host

[122]
[123]

[124,125]
[126]

Burkholderia cepacia
complex

↓ PA virulence factors Altered virulence [127]

PA enhances Bcc virulence Altered virulence [128]

↓ PA growth in vivo Altered persistence [129]

Reduced growth of Bcc and PA Competition beneficial to host? [130]

Co-infection ↑ inflammatory markers Increased host inflammation [19]

A. fumigatus

Co-colonise the CF airway Opportunity to interact in airway [131]

Co-colonised patients—↓ lung function, ↑
hospitalisations, exacerbations and

Abx usage
Poorer disease outcome [16]

PA SNs stimulate AF growth Increased AF abundance in
co-infections * [131]

Metacaspases from Pa SNs inhibit and
damage AF biofilms

Reduced AF abundance in
co-infections [132]

↑ elastase production by PA in presence
of AF More damaging pathology [133]

SNs from co-cultures more toxic to epithelial
cells lines More damaging pathology [133]

Mutually antagonistic Competition beneficial to host? [134]

Gliotoxin produced by AF reduces
PA biofilm Competition beneficial to host? [134]

Co-infections cause altered
inflammatory response

Evasion of the immune system
and persistence [134]

PA dirhamnolipids induce AF
ECM production

Inhibits AF growth and facilitates
PA binding [135]

PA phenazines inhibit AF growth by
direct contact

Reduced AF abundance
in co-infections [136]

Subinhibitory concentrations of PA
phenazines can promote AF growth

Increased AF abundance
in co-infections * [136]

Iron competition Reduced AF abundance
in co-infections [137,138]

Development of PA SCVs Reduced AF abundance
in co-infections [139]

Expression of QS molecules Reduced AF abundance
in co-infections [135,140–142]
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Table 1. Cont.

Sp Interacting with PA Microbial/Host Response Potential Implications on Disease Ref(s).

C. albicans

PA expressed LPS inhibits CA biofilm
formation and hyphal development

Reduced CA abundance and
virulence in co-infections [143]

PA QS molecule, 3-oxo-C12HSL Reduced CA abundance
in co-infections [144]

PA 2-heptyl-3-hydroxyl-4-quinolone Reduced CA abundance
in co-infections [145]

CA secreted Farnesol reduces PA pyocyanin
Farnesol inhibits PA haemolysin

Farnesol inhibits PA swarming motility

PA less virulent [146]

PA less virulent [147]

PA less virulent [144]

CA secreted tyrosol inhibits PA haemolysin
and protease production PA less virulent [147]

PA = P. aeruginosa, SA = S. aureus, SM = S. maltophilia, AF = A. fumigatus, CA = C. albicans, Bcc = Burkholderia cepacia complex,
SMG = Streptococcus milleri group, SNs = supernatants, EPS = exopolysaccharide, LPS = lipopolysaccharide, CFBE = cystic fibrosis bronchial
epithelial cells, ECM = extracellular matrix, Abx = antibiotics, QS = quorum sensing, SCVs = small colony variants. * contradictory findings.

4.1. P. aeruginosa and S. aureus Interactions

One of the most studied co-infections to date in this field is P. aeruginosa and S. aureus.
S. aureus is often the first bacteria detected in people with CF and is more common in
childhood [148–150]. One-third of patients with CF are estimated to be co-infected with
S. aureus and P. aeruginosa, and their interactions have been linked to a more rapid lung
function decline [151,152]. A 13-year study recently demonstrated an increased trend in
prevalence of S. aureus and P. aeruginosa coinfections, from 30.6% in 2004 to 50.7% in 2016.
In contrast with previous understanding, largely based on the US CFF reports, P. aeruginosa
infections did not overtake S. aureus infections. Instead, CF patients were co-colonised with
both bacteria at the same time [110].

Several studies have been conducted in this area, and there have been reports of
competitive and cooperative P. aeruginosa–S. aureus interactions (Table 1). P. aeruginosa has
been shown to compete with S. aureus by expressing exoproducts, such as elastase [120] and
rhamnolipids [153,154]. Other studies have shown a synergistic interaction between these
pathogens, with S. aureus stimulating the production of staphyloxanthin pigment [155],
and these synergistic interactions have been linked to decreased pulmonary function [17].
A recent study has shed some light on the potential reason for the disparity in these
studies. Sixty-four S. aureus clinical isolates from CF patients were tested for their ability
to interact with P. aeruginosa and ranged from highly sensitive to completely tolerant to P.
aeruginosa [156]. Many studies have now reported that long-term co-adaption of these two
pathogens results in a more commensal, cooperative relationship [154,157,158].

Impacts on Antibacterial Resistance

Several studies have shown that there is a bidirectional alteration in growth and
resistance of P. aeruginosa and S. aureus when in co-culture (Table 2). In planktonic growth
states, P. aeruginosa has been shown to be the dominant pathogen and to suppress S. aureus
growth [20,155]. Some studies have found P. aeruginosa to suppress S. aureus biofilm for-
mation [159], while others have found compounds produced by P. aeruginosa to increase
S. aureus biofilm formation [160,161]. S. aureus completely avoided vancomycin, ampi-
cillin, and ceftriaxone by ‘hiding’ in P. aeruginosa biofilms; however, the mixed biofilms
were found to be more susceptible to the broad-spectrum antibiotics ciprofloxacin and
aminoglycosides [162] (Figure 1). Many of these studies have focused on interactions
between reference strains, with PA01 or PA14 commonly outcompeting S. aureus isolates.
A study published in 2014 reported that early adapted strains of P. aeruginosa in a chron-
ically colonised CF patient outcompeted S. aureus, while later-adapted strains showed
commensal-like interactions [157]. Corroborated by another study in 2016, P. aeruginosa
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and S. aureus were shown to have a proto-cooperative relationship when human-adapted
strains were studied [158]. Radlinski et al. (2017) also reported strain-dependent differences
in the production of several factors by P. aeruginosa–S. aureus biofilms linked to antimi-
crobial resistance [154]. Pathogens are known to adapt to the host environment during
chronic infections; therefore, testing reference strains alongside clinical isolates is extremely
important in polymicrobial communication studies.

Figure 1. P. aeruginosa and S. aureus interactions leading to changes in antibiotic resistance. (1) AQs produced by Pa
impact Sa planktonic growth, decreasing ATP generation and active transport and so uptake of AMG. (2) Sa Nor efflux
pumps are upregulated in the presence of Pa, causing increased resistance to TET and CPFX. (3) Pa produced AQs, HQNO,
and HAQ increase Sa biofilm production and membrane fluidity and decrease resistance to membrane-targeted antibi-
otics. Studies differ in increase/decreased resistance to TOBI and increase/decrease Sa biofilm. (4) Sa-produced SpA
interacts with Pa exopolysaccharide Psl, changing Pa biofilm architecture and resistance to antibiotics. (5) Prolonged
mixed biofilms and long-term exposure to HQNO induce Sa SCVs. Pa in mixed biofilms increases siderophore production
and produces truncated LPS both linked to AMR to antibiotics targeting cell wall biosynthesis and protein synthesis but
unchanged or decreased resistance to other antibiotics. (6) Environmental conditions such as anoxia and adaptation to host
increase antibiotic resistance and commensal cooperative behaviour. Pa = P. aeruginosa, Sa = S. aureus, Abx = antibiotics,
AMG = aminoglycosides, SCV = small colony variant, TET = tetracycline, CPFX = ciprofloxacin, FQ = fluoroquinolones,
PCMX = chloroxylenol, βL = beta-lactam, TOBI = tobramycin, SpA = Staphylococcal protein A, Psl = biofilm exopolysaccha-
ride, pyl = pyochelin, pyv = pyoverdine, AQ = 2-alkyl-4-(1H)-quinolones, HQNO = 4-hydroxy-2-heptylquinoline-N-oxide,
HAQ = 4-hydroxy-2-alkylquinoline.

Efflux of antibiotics from cells via transport pumps is a well-known mechanism
of AMR, and several antibiotic pumps belonging to the Nor family (tet38, norA, and
norC) were upregulated in S. aureus during co-cultures and exposure to P. aeruginosa
supernatants, leading to an increase in antibiotic resistance of S. aureus to tetracycline and
ciprofloxacin [27].
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P. aeruginosa produces several AQ small molecules involved in QS. The AQ 4-hydroxy-
2-heptylquinoline-N-oxide (HQNO) has been shown to suppress S. aureus planktonic
growth, while transiently protecting it from killing by aminoglycosides [20] (Figure 1). The
authors hypothesize that this may be directly related to the ability of HQNO to inhibit
S. aureus electron transport. HQNO is known to inhibit electron transport through cy-
tochrome b in S. aureus, resulting in decreased ATP generation, a shift to fermentative
metabolism, and decreased active transport, which is required for uptake of AMG [159].
Another group have also recently found that HQNO induces multidrug tolerance in
S. aureus via respiratory inhibition and reducing cellular ATP [154]. In contrast, HQNO in
supernatants of P. aeruginosa was found to be responsible for increasing preformed S. aureus
biofilm sensitivity to several antimicrobial agents, including fluoroquinolones and the anti-
septic, chloroxylenol [163]. HQNO has been shown to increase S. aureus biofilm formation,
and long-term exposure was shown to induce formation of difficult to detect, slow-growing
mutants of S. aureus known as small colony variants (SCVs) [160]. SCVs are known to aid
persistence inside viable human cells and to be resistant to several antibiotics [47,164,165].
A second AQ, 4-hydroxy-2-alkylquinoline (HAQ), is an intracellular QS molecule produced
by P. aeruginosa, and its expression was increased in a human-adapted P. aeruginosa isolate
and upon interaction with S. aureus conveying resistance to tobramycin [158]. A third AQ,
Pseudomonas Quinolone Signal (PQS), has been shown to be positively correlated with
S. aureus biofilm formation [161]. P. aeruginosa mutants deficient in PQS and HQNO were
less capable of stimulating biofilm formation by S. aureus than the wild type. It is evident
that QS molecules are important in inducing resistance to several antimicrobials via their
influence on electron transport and biofilm formation.

Siderophores are high-affinity iron-chelating compounds involved in transporting iron
across microbial membranes. Most bacteria and fungi produce siderophores altruistically,
and other species can benefit from their siderophore production. Increased siderophore
production, pyochelin and pyoverdin, by P. aeruginosa in co-biofilms was observed to be
linked to increased antibiotic tolerance [47]. In a study of 100 P. aeruginosa clinical isolates,
a correlation between siderophore production and AMR emerged [166]. No mechanism for
this siderophore-directed resistance has been elucidated.

Exoproducts of P. aeruginosa such as LasA endopeptidase and rhamnolipids have been
shown to increase killing of S. aureus by vancomycin and tobramycin, respectively [154].
Rhamnolipids are glycolipid surface-active molecules with several virulence-related activi-
ties in P. aeruginosa, and their biosynthetic pathway is metabolically linked to numerous
bacterial products, such as alginate, LPS, and HAQ [167].

Descriptions of the other side of this relationship are sparse. P. aeruginosa SCVs are
also selected for in co-cultures with S. aureus [157] (Figure 1). The staphylococcal protein A
(SpA) produced by S. aureus has been shown to bind to the P. aeruginosa EPS, Psl, modifying
biofilm architecture and increasing resistance of P. aeruginosa to inhaled tobramycin [28].
Another recent study has shown bi-directional changes in resistance of both P. aeruginosa
and S. aureus in mixed biofilms [162]. P. aeruginosa evolved for 150 generations in the
presence of S. aureus and became more resistant to ß-lactam antibiotics but not ciprofloxacin
or polymyxin due to a loss of a glycosyltransferase, wbpLPA14, involved in the biosynthesis
of polysaccharide antigen and the O-specific antigen (OSA). The authors conclude that
the production of a truncated LPS devoid of OSA during adaptation to S. aureus led to
increased resistance of P. aeruginosa to ß-lactam antibiotics [112]. These findings suggest that
P. aeruginosa in mixed biofilms is more resistant to antibiotics targeting cell wall biosynthesis
and protein synthesis but that other resistance mechanisms may be less affected.
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Table 2. Altered resistance or tolerance to antibiotics in co-cultures with P. aeruginosa.

Species
Interacting

Resistance
(Increased/Decreased) Antibiotic Mechanism Ref/s.

S. aureus
(+PA)

Increased

Aminoglycoside (gentamicin),
tetracycline

• Suppressed planktonic
cell growth

[155]

Tetracycline and
fluoroquinolone (ciprofloxacin)

• tet38, norA, and norC efflux
pumps belong to Nor family of
pumps upregulated

[27]

Aminoglycosides

• Suppressed biofilm growth
• SCVs persistence and

poor detection
• Reduced uptake due to

inhibition of electron transport

[20,160]

Vancomycin, ampicillin,
and ceftriaxone • ‘Hiding’ in mixed biofilm [162]

Glycopeptide (vancomycin)

• PA HQNO
• PA siderophores pyocyanin

and pyroverdinn
• Anoxia

[47]

Aminoglycoside (tobramycin) • HAQ production by
human-host adapted PA strain

[158]

MDR tolerance
• HQNO induced respiratory

inhibition and reduction of
cellular ATP

[154]

Decreased

Aminoglycoside (tobramycin),
glycopeptide (vancomycin)

• rhamnolipids facilitate
proton-motive
force-independent uptake
of tobramycin

• LasA endopeptidase
potentiates lysis
by vancomycin

[154]

Fluoroquinolones,
membrane targeting

antimicrobials, antiseptics

• Increased sensitivity of
SA biofilms

• SA biofilm cell membranes
more fluid

[163]

P. aeruginosa
(+SA)

Unchanged Aminoglycoside
(gentamicin), tetracycline • In planktonic co-cultures [155]

Increased

Aminoglycoside
(Inhaled tobramycin)

• Modified biofilm architecture
(SpA binds Psl)

[28]

β-lactams • LPS-free PA co-culture
evolved phenotypes

[112]

Aminoglycoside (tobramycin) • SCVs selected for
• Dependent on Agr QS system

[157]

S. maltophilia
(+PA) Increased Aminoglycoside (tobramycin) • ‘Hiding’ in mixed biofilm [18]

P. aeruginosa
(+SM)

Increased B-lactams (imipenem)
Cephalosporin (ceftazidime)

• SM secretion of β-lactamases,
L1, and L2

[168]

Increased Polymyxins • SM DFS enhances
PA resistance

[111]
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Table 2. Cont.

Species
Interacting

Resistance
(Increased/Decreased) Antibiotic Mechanism Ref/s.

Prevotella
(+PA) Increased β-lactams (ceftazidime) • P. melaninogenica production of

β-lactamases
[169]

P. aeruginosa
(+AF)

Increased NA • Increased the relative
abundance of PA OMPs

[170]

Increased Cephalosporin (Cefepime) • ‘Hiding’ in mixed biofilm [21]

P. aeruginosa
(+CA)

Increased NA • CA enhances PA ECM
production

[171]

Increased β-lactams (Meropenem) • CA ECM polysaccharides
protect PA

[172]

PA = P. aeruginosa, SA = S. aureus, SM = S. maltophilia, AF = A. fumigatus, CA = C. albicans, SCV = small colony variant, HQNO = 4-
hydroxy-2-heptylquinoline-N-oxide, HAQ = 4-hydroxy-2-, QS = quorum sensing, ATP = adenosine triphosphate, LPS = lipopolysaccharide,
DFS = diffusible signal factor, OMP = outer membrane proteins, ECM = extracellular matrix, NA = not applicable.

4.2. P. aeruginosa and S. Maltophilia Interactions

S. maltophilia is an opportunistic nosocomial Gram-negative bacterium and is inher-
ently MDR. It has been linked to higher mortality rates and lung transplantations in CF
patients [173]. S. maltophilia is present in roughly 8% of CF patients in Europe [174]. The
frequency of co-colonisation with P. aeruginosa and S. maltophilia in CF patients ranges
between 10% and 60% [175–177].

Only a small number of studies have examined the interactions of S. maltophilia and
P. aeruginosa and the effect co-colonisation has on both bacteria and the host. S. maltophilia
abundance increases during co-infection with P. aeruginosa, possibly due to the protection
P. aeruginosa biofilms afford to S. maltophilia, suggesting S. maltophilia benefits from co-
infection [50]. Nas et al. (2019) showed that S. maltophilia encodes a type IV VirB/D4
secretion system (T4SS) that promotes competition between other bacterial species (69).
This T4SS system has a role in the interplay between the two organisms: it enhances
S. maltophilia growth while reducing P. aeruginosa growth [178] (Table 1).

S. maltophilia also influences biofilm formation by some P. aeruginosa strains by re-
ducing EPS production and thus compromising biofilm attachment to the epithelial cell
surface [18]. These findings suggest that S. maltophilia in a mixed co-infection may ben-
efit from increased abundance and growth while disrupting the biofilm formation of
P. aeruginosa.

Impacts on Antibacterial Resistance

In a mixed biofilm, S. maltophilia increases P. aeruginosa biomass and indirectly pro-
tects S. maltophilia from tobramycin activity [18] Table 2. Kataoka et al. (2003) showed
S. maltophilia provides passive resistance to P. aeruginosa by producing β-lactamases, allow-
ing P. aeruginosa to grow in the presence of imipenem and ceftazidime [168], suggesting
S. maltophilia can protect P. aeruginosa from eradication in the host.

When grown in mixed biofilm with S. maltophilia, P. aeruginosa over-expressed alkaline
protease (AprA) and alginate, while the QS-related rhlR and lasI genes were downregu-
lated [18]. Moreover, the downregulation or inactivation of lasR was previously shown
to increase P. aeruginosa resistance to ceftazidime [63]. It was also shown that mutation of
PA1396, a sensor kinase in P. aeruginosa, or addition of the diffusible signal factor (DSF) by
S. maltophilia to P. aeruginosa resulted in increased levels of proteins implicated in resistance
to cationic antimicrobial peptides; this effect was associated with increased tolerance to
polymyxins [111]. Collectively, these findings suggest that S. maltophilia is capable of
changing the virulence and antibiotic resistance of P. aeruginosa.
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4.3. Anaerobes Impact P. aeruginosa Antibiotic Resistance

Anaerobic bacteria are not traditionally tested for in medical laboratories and therefore
have not been commonly reported in CF. However, it is well established that the CF airways
are hypoxic and that hypoxia is greater in later and more severe CF. Employing culture-
independent approaches, anaerobes have now been shown to be key members of the CF
airway microbiome. Up to 91.1% of CF sputa have been shown to be positive for at least
one anaerobic bacterial species [179]. Anaerobes are increasingly dominant in patients
with better lung function [95], and several studies have reported the negative impact
of antibiotics on anaerobic populations in the CF airway [87,89,104,105]. The general
consensus forming is that anaerobes may be beneficial in the airway microbiome.

Anaerobes have been shown to provide ‘passive resistance’ or indirect resistance
to surrounding members of the community by producing extracellular metabolites or
enzymes capable of degrading antibiotics in the vicinity. Species in the strictly anaerobic
genus Prevotella are now commonly detected in the CF airways and represent around 70%
of the anaerobes in the CF airway microbiome [180,181]. A study analysing the antibiotic
resistance of 107 Prevotella isolates from CF and non-CF patients found that 50% of iso-
lates produced ß-lactamases. In another study by the same group, up to 76% of Prevotella
isolates cultured from adults and young children with CF produced extended-spectrum
ß-lactamases which correlated with higher MICs to ß-lactam antibiotics [169]. They per-
formed a co-culture experiment and a ß-lactamase-positive Prevotella protected P. aeruginosa
from ß-lactam activity. This highlighted the real prospect of ‘emerging’ anaerobic bacteria
being key roadblocks in the treatment of CF airway infections.

Several other anaerobic genera are now known to colonise the CF airway, including
Veillonella, Porphyromonas, Streptococci, and Fusobacterium. While interactions between
species in these genera and P. aeruginosa have been studied and reported changes in
virulence [122,126,182] few studies have explored the ability of the interactions to change
P. aeruginosa antibiotic tolerance.

In a multispecies microaerophilic biofilm model of species commonly co-colonising the
CF lung—P. aeruginosa, S. aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia
mucilaginosa, and Gemella haemolysan—there was no difference in antibiotic susceptibility
when compared with single species biofilms. Not only did adding anaerobic species
P. melaninogenica, Veillonella parvula, and Fusobacterium nucleatum to the multispecies biofilm
not influence antibiotic susceptibility, but they also found that the common CF bacteria in
multispecies biofilms had similar susceptibility to antibiotics as their single-species biofilm
correlates [183]. While this model is possibly one of the most sophisticated airway-relevant
polymicrobial biofilm models published, it is still quite simplified and AMR profiles of the
anaerobic bacteria included were not reported, specifically whether the P. melaninogenica
strain was a ß-lactamase producer was not disclosed. With the full appreciation of the
complexity involved in establishing in vitro multispecies models of the microbiome, further
developments to include a variety of strains that would be representative of the types of
resistant strains encountered in CF could yield very powerful results.

4.4. P. aeruginosa and Fungal Interactions

Although much attention is given to the bacteria that colonise the CF airway, fungi
are also important in CF lung infections. The most commonly isolated fungi from the CF
airways include Aspergillus fumigatus, Candida albicans, Scedosporium spp., Pneumocystis
jirovecii, and Exophiala dermatitidis.

4.4.1. P. aeruginosa Interacts with A. fumigatus

A. fumigatus is isolated from 11% to 60% of patients [184–186]. Generally intermittent
or persistent A. fumigatus colonisation is not treated unless allergic bronchopulmonary as-
pergillosis (ABPA) is confirmed. However, it was shown that administration of itraconazole
to non-ABPA CF population with Aspergillus colonisation resulted in reducing Aspergillus
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bioburden, stabilising lung function while reducing exacerbations, and improving quality
of life [187], suggesting a pathogenic role for A. fumigatus in CF.

The prevalence of A. fumigatus and P. aeruginosa co-colonisation in patients with CF is
15% [109]; however, P. aeruginosa colonises 54% of CF patients with persistent A. fumigatus
infection [116]. Co-colonisation with these two microorganisms results in reduced lung
function, increased number of hospitalisations, respiratory exacerbations, and increased
usage of antimicrobials relative to colonisation with either pathogen alone [16].

Complex antagonistic and synergistic interactions have been reported between
A. fumigatus and P. aeruginosa. P. aeruginosa has been reported to inhibit A. fumigatus
growth using a number of mechanisms, such as phenazine production [135,136], iron com-
petition [137,138] development of SCVs [139], metacaspases [132], and expression of QS
molecules [135,140–142]. A. fumigatus also reduces P. aeruginosa growth, and this is largely
due to the production of gliotoxin [21,134]. P. aeruginosa and A. fumigatus interactions
contribute to an altered pro-inflammatory response and increased pathogenicity, which
could have significant implications for the treatment of this mixed infection [133,134].

4.4.2. Impact on Antimicrobial Resistance

Bacterial and fungal cells embedded in mixed microbial extracellular matrix are highly
resistant to antimicrobials. Manavathu et al. (2014) performed in vitro antimicrobial
susceptibility studies in monomicrobial and polymicrobial biofilms of A. fumigatus and
P. aeruginosa [21]. Polymicrobial biofilms were significantly less susceptible to cefepime,
suggesting that A. fumigatus may be changing the resistance profile of P. aeruginosa by
enhancing its biofilm make-up.

Margarlit et al. (2020) demonstrated that the A. fumigatus secretome alters the proteome
of P. aeruginosa and, of particular interest, increases the levels of proteins involved in
efflux pumps and outer membrane proteins (OMPs) [170]. OMPs regulate the influx and
efflux of nutrients and toxic compounds from the cell. In this study, the abundance of
the OMP OprM was significantly increased; OprM forms the ejection component of the
MexAB-OprM efflux system and is responsible for β-lactam and quinolone resistance in
P. aeruginosa [188,189].

4.5. P. aeruginosa and C. albicans Interactions

C. albicans is an opportunistic pathogenic yeast and is one of the most commonly
isolated microorganisms from CF sputum, with approximately 75% prevalence [184].
Candida spp. are generally considered colonisers of the upper respiratory tract and usually
regarded as not clinically relevant. However, there are now several studies showing
evidence of interactions and interplay between P. aeruginosa and C. albicans that may
influence antibiotic resistance and host response to infection.

P. aeruginosa inhibits C. albicans growth in the host [190,191], and P. aeruginosa-expressed
LPS [143] and the QS molecules 3-oxo-C12HSL [145] and 2-heptyl-3-hydroxyl-4-
quinolone [192] have been shown to inhibit C. albicans biofilm formation and hyphal
development. In particular, 3-oxo-C12HSL can even reverse the switch from yeast to
hyphal growth in C. albicans and is important for adherence of bacterial cells to C. albi-
cans [144]. Competition between these microorganisms may be strain- and growth-state
dependent. Hogan and Kolter (2002) showed some strains of P. aeruginosa are cytotoxic
to the filamentous form of C. albicans but are unable to attach to or kill C. albicans yeast
cells [193].

The interaction between these two organisms has been shown to be bidirectional.
Farnesol, a virulence factor secreted by C. albicans, leads to decreased PQS production in
P. aeruginosa, resulting in a reduction of the PQS-regulated virulence factor pyocyanin [146].
Farnesol also influences expression of P. aeruginosa virulence-related proteins including
haemolysin [147] and inhibits swarming motility [144]. P. aeruginosa and C. albicans are
clearly capable of interacting, and this has an impact on their virulence mechanisms.



Antibiotics 2021, 10, 827 14 of 26

Impact on Antimicrobial Resistance

C. albicans enhanced P. aeruginosa ECM production, consisting of proteins, polysac-
charides, and nucleic acids, through increased expression of the alginate genes AlgU and
mucA [171]. Alam et al. (2019) showed C. albicans can enhance meropenem tolerance of
P. aeruginosa in a dual-species biofilm [172]. They concluded that fungal mannan and
glucan secreted into the ECM of a dual species biofilm of P. aeruginosa and C. albicans in-
creases P. aeruginosa tolerance to meropenem. These studies highlight that cross-Kingdom
co-infections can have a direct impact on antibiotic tolerance of pathogenic bacteria.

4.6. Other Fungi

Scedosporium apiospermum species complex are the second most prevalent filamentous
fungi cultured in CF after A. fumigatus [194]. A few studies to date have examined the
interplay between P. aeruginosa and Scedosporium. P. aeruginosa was shown to inhibit
S. aurantiacum in vitro [195]. Chen et al. (2017) used florescence microscopy to reveal poorly
formed hyphae when cultured with P. aeruginosa, with non-mucoid strains more commonly
having an inhibitory effect [195]. P. aerugionosa inhibited the growth S. aurantiacum, which
was shown to be mediated by the production of biologically active metabolites. Biofilm
formation and colonisation of fungal hyphae by P. aeruginosa were also important for
S. aurantiacum growth inhibition [196]. Homa et al. (2019) also confirmed that P. aeruginosa
is inhibitory towards Scedosporium through direct cell contact but also showed growth-
promoting effects revealing that P. aeruginosa was able to enhance the growth of Scedosporia
via VOCs [194]. These studies show that Scedosporium have been shown to alter the
virulence of P. aerugionosa; however, fungi, other than A. fumigatus and C. albicans, have not
been tested for their ability to increase bacterial tolerance to antibiotics.

5. Direct Transfer of Resistance in the CF Airway Microbiome

The co-colonisation of the CF airway by several microbial species provides vast oppor-
tunity for transfer of mobile genetic elements carrying ARGs. Crosstalk between members
of the CF airway microbial community and horizontal gene transfer shape the microbial
community for adaptation to the host environment. Whole genome shotgun sequencing has
been employed in a number of studies to date to study the metabolic capabilities, virulence
mechanisms, and resistance profiles or ‘resistome’ of the CF microbial community.

The ARG repertoire appears to be consistent among patients of similar disease status
and not related to pre-exposure to antibiotics. A study monitoring 22 CF patients with
more severe lung disease over 15 months reported that despite differing exposures to
antibiotics among their patient cohort, the same repertoire of ARGs was present among
almost all patients [97]. Other studies have also reported that the variety of ARGs detected
in the diseased airway resistome was independent of prior exposure to antibiotics [197].
While the taxa present differed between patients, the ARGs present in the community
were less variable. The resistome was shown to be different among patients with mild
and severe disease. Adults with CF that had poorer lung function and more severe
disease had increased abundance of efflux-mediated antibiotic resistance genes [198]. Ultra-
deep metagenomic shotgun sequencing of 85 individuals with chronic respiratory disease
revealed a ‘core’ airway resistome dominated by macrolide, ß-lactam, fluoroquinolone,
and tetracycline resistance genes [197]. They delved further to explore the source of the
ARGs and found that Streptococcus and Actinomyces were the main microbial reservoirs of
macrolide resistance.

Bacteriophages are vehicles for transfer of mobile genetic elements between bacteria
in the microbiome. DNA viral sequencing of CF sputum has revealed a CF phageome
distinct from the phageome of people without CF [199]. Studies investigating the CF
airway virome have revealed widespread genomic rearrangements and phage activity in
the CF airway during periods of exacerbation and intravenous antibiotic treatment [200].
Important CF pathogens including, P. aeruginosa, S. aureus, and B. cenocepacia, have been
shown to contain antimicrobial inducible prophages in their accessory genome [201,202].
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Metagenomic studies of CF airway viral communities have revealed the presence of ARGs
in bacteriophage. One such study identified a large number of resistant genes on mobile
elements in antibiotic naive samples from infants with CF [203], suggesting that resistant
genes are present in the community before antibiotic exposure. Up to 32.9% of ß-lactamase
genes detected in this study were on mobile genetic elements, highlighting the risk for ARG
transfer within the CF microbiome. Another study of 130 nasal swabs from 26 infants with
CF found that the CF airway microbiome of antibiotic naïve patients had a large number of
ARGs, including mobile elements [203].

The presence of resistance mechanisms, in particular ARGs on mobile elements, in the
microbiome may be more relevant than identifying specific bacteria and their resistance
profiles. This area requires further large multicentre studies in order to establish the role
that monitoring the resistome could play in clinical decision making.

6. Summary

Facing the very real threat of AMR and MDR infections limiting our use of antibiotics
in the future, research must focus on understanding all mechanisms by which microor-
ganisms develop resistance. P. aeruginosa is one of the microorganisms listed by the World
Health Organisation (WHO) for which new antibiotics are urgently required due to the
high levels of MDR in this pathogen. This review has collated extensive evidence that P.
aeruginosa is less susceptible to antibiotics when co-cultured with several microorganisms
of the airway microbiome, such as S. aureus, S. maltophilia, Prevotella, and A. fumigatus.
The mechanisms of polymicrobial antibiotic tolerance can be broadly divided into pas-
sive and active categories (Figure 2). Passive mechanisms include pathogens benefiting
from the production of antibiotic cleaving enzymes produced by other members of the
microbial community and ‘hiding’ in polymicrobial biofilms. Active mechanisms of resis-
tance involve more direct changes in P. aeruginosa, including increased expression of EPS,
increased biofilm formation, changes in membrane architecture (increased expression of
efflux pumps, truncated LPS, and reduced activity of membrane transporters), changes in
metabolism, and the acquisition of ARGs via horizontal transfer of mobile genetic elements.

Two studies have modelled multispecies biofilms in vitro, both containing anaerobes,
and both reported that P. aeruginosa was not more resistant to antibiotics in these models
than when cultured alone [123,183]. Tavernier et al. (2017) created a multispecies biofilm
model composed of P. aeruginosa, S. aureus, and S. anginosis and found that P. aeruginosa
was not more susceptible or tolerant to antibiotics when in a mixed species biofilm [123].
These studies model simplistic polymicrobial communities but contradict all other findings
from co-culture studies reviewed here. Further studies in this area are required, and there
is a significant requirement for developing representative in vitro multispecies models
to further explore the impacts of inter-species, cross-species, and cross-Kingdom interac-
tions on the resistance of important pathogens. The ability of microorganisms within a
polymicrobial community such as the CF airway microbiome to share ARGs and antibiotic-
cleaving enzymes and to encourage tolerance at a community level may explain why
in vitro sensitivity tests do not correlate with clinical outcomes in CF.

The evidence is undeniably complex, and with many studies reporting contradictory
findings, the overall picture is difficult to decipher. Mode of microbial growth, strain type
(adapted/non-adapted), duration of mixed biofilm growth, antibiotic mode of action, and
environmental conditions under which all are tested are all significant factors to consider
when interpreting the outcome of mixed species relationships. Collectively, the findings
from studies to date suggest that P. aeruginosa mixed infections may be more resistant to
antibiotics and more persistent in the host.
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Figure 2. Passive and active mechanisms of antibiotic tolerance/resistance developed by P. aeruginosa during polymicrobial
interactions. (A) Neutralisation of antibiotics by cleaving enzymes produced by other community members; (B) ‘hiding’
in multispecies biofilms reducing access of antibiotics; (C) changes in cell wall architecture, including truncated LPS,
increased expression of efflux pumps, or reduced activity of membrane transporters; (D) changes in metabolism resulting in
alterations to growth and quorum sensing, development of SCVs, and conversion to fermentative growth; (E) increased or
decreased production of ECM and biofilm growth; and (F) transfer of mobile ARGs via bacteriophage. Abx = antibiotics,
ECM = extracellular matrix, SCV = small colony variant, QS = quorum sensing, tLPS = truncated lipopolysaccharide, ARGs
= antibiotic resistant genes.

7. Conclusions

Studies that report increased resistance due to polymicrobial interactions suggest
combination antibiotic therapy; however, this is already practiced in CF therapy, and a
recent meta-analysis found that there was no significant difference between single versus
combination anti-pseudomonal antibiotic therapy on outcomes such as lung function
symptom scores, adverse effects, and microbial burden reduction [204]. With the limited
development of new antibiotics, one avenue in the future development of alternative
antimicrobial therapies could target polymicrobial interactions that promote resistance or
antibiotic tolerance.

The QS molecule HQNO produced by P. aeruginosa is known to cause respiratory defi-
ciency in S. aureus when in co-culture, and respiratory deficient S. aureus is hypersensitive to
the plant alkaloid tomatidine (TO). Boulanger et al. (2015) tested to see if this polymicrobial
interaction could in fact make S. aureus more susceptible to killing by tobramycin [205]. TO
increased the killing of S. aureus by 3.4 log10 CFU/mL in comparison with that observed
in a co-culture without TO. Employing several mutant strains, this increased killing was
shown to be linked to lasR rhlR, pqsA, pqsL, or lasA, and supplementing the pqsl mutant
with HQNO restored bactericidal activity. The bactericidal activity of TO was also observed
against a tobramycin-resistant methicillin-resistant S. aureus (MRSA) and P. aeruginosa
in co-culture. HQNO (0.39 to 1.24µg/g) has been detected in the sputa of CF patients
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colonized with P. aeruginosa in a bioburden-dependent fashion [20]. Long-term exposure of
S. aureus to HQNO in co-culture with P. aeruginosa induces formation of difficult-to-detect,
slow-growing, antimicrobial-resistant SCVs of S. aureus [160]. HQNO may also be useful
as a biomarker of persistent P. aeruginosa–S. aureus co-infection and the development of
SCVs which are much harder to treat [47,164,165]. These studies are excellent examples
of how polymicrobial interactions could be manipulated to enhance treatment of mixed
microbial infections.

Competition for limited iron availability in the host can be a key driver of competitive
relationships within polymicrobial communities. P. aeruginosa produces higher levels of
its siderophores, pyochelin and pyoverdin, in co-biofilms [47] and increased siderophore
production has been linked with emergence of AMR [47,166]. Siderophore–antibiotic
conjugates that essentially hijack the iron-mediated active transport systems of microor-
ganisms have been designed and enhance uptake of antibiotics. Cefiderocol (S-649266),
a cephalosporin–catechol conjugate and the first to make it to phase III trials, has shown
potent activity against P. aeruginosa and several other MDR Gram-negatives [206,207]. Some
bacteria naturally perform this ‘Trojan horse strategy’ by producing their own siderophore–
antibiotic conjugates, sideromycins, to compete with other species in the community. These
siderophore–antibiotic conjugates could be important therapies in polymicrobial infections,
where iron uptake systems of P. aeruginosa have been shown to be particularly active due
to increased competition for limited iron sources in the host environment.

The CF airway is host to a large population of anaerobic bacteria, and these bacteria
produce SCFAs such as butyrate, propionate, and acetate [86,87] which among other func-
tions are part of a complex cross-feeding network in microbial communities. SCFAs have
been shown to either increase or decrease P. aeruginosa growth in a concentration-dependent
manner and stimulate neutrophil chemotactic agents and production of interleukin-8 (IL-8)
in CF epithelial cells [87,88]. SCFAs are well-known to have anti-inflammatory properties
in the gut and to promote gut epithelial health; however, studies of their therapeutic po-
tential in gut disease have resulted in disparate outcomes [208]. SCFAs have been shown
to induce excessive production of IL-8 in CF epithelium cell lines [88], and while using
SCFAs therapeutically in CF is unlikely, disrupting cross-feeding mechanisms may reduce
P. aeruginosa fitness. P. aeruginosa cannot derive SCFAs from mucins but uses those formed
by other microbiota members, and disrupting or manipulating cross-feeding mechanisms
between community members as a therapeutic approach warrants further study.

A perplexing phenomenon in CF and other chronic respiratory diseases is the disparity
between in vitro antimicrobial sensitivity of cultured bacteria and clinical response to
antibiotic therapy [29,30]. Many traits of polymicrobial community behaviour discussed in
this review could contribute to this discrepancy. In particular, the production of antibiotic
cleaving enzymes by community members unculturable by standard diagnostic practices
go completely undetected and are not considered when planning therapy. The main
reservoir of macrolide resistance in the CF airway microbiome has been shown to be
in Streptococcus and Actinomyces species [197], two anaerobic bacteria rarely detected by
culture and traditionally not considered as significant in CF disease. Relying solely on
culture-based diagnostics and only looking at the resistance profiles of the common CF
pathogens in isolation is not representative of the host environment. Monitoring the CF
airway resistome and focusing on the ARGs present in the microbiome as a whole may
provide more clinically relevant information that clinicians can use when planning therapy.
For instance, detecting ß-lactamase genes in any member of the microbiome may be a good
indicator for prescribing ß-lactamase inhibitors alongside ß-lactams. Few studies have been
published on the ‘resistome’ in CF, and further studies are required to assess the impact of
community resistome data on prescribing and improved health outcomes.

Passive resistance and resistance/tolerance acquired due to polymicrobial interactions
are understudied. As the world is on the cusp of an antibiotic resistance crisis, it is vital
that we gain a keen understanding of all mechanisms by which microorganisms can avoid,
tolerate, and resist antimicrobial agents.
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