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Attentional selectivity tends to follow events considered as interesting stimuli. Indeed,

the motion of visual stimuli present in the environment attract our attention and allow

us to react and interact with our surroundings. Extracting relevant motion information

from the environment presents a challenge with regards to the high information content

of the visual input. In this work we propose a novel integration between an eccentric

down-sampling of the visual field, taking inspiration from the varying size of receptive

fields (RFs) in the mammalian retina, and the Spiking Elementary Motion Detector (sEMD)

model. We characterize the system functionality with simulated data and real world

data collected with bio-inspired event driven cameras, successfully implementing motion

detection along the four cardinal directions and diagonally.

Keywords: attentional selectivity, motion detection, eccentric down-sampling, spiking elementary motion

detection, bio-inspired visual system, humanoid robotics, event driven

1. INTRODUCTION

Most modern robotic systems still lack the ability to effectively and autonomously interact with
their environment using visual information. Key requirements to achieve this ability are efficient
sensory data acquisition and intelligent data processing. Useful information about the environment
(e.g., how far away an object of interest is, how big it is, whether it is moving) can be extracted from
sensory data. More complex interactions, for example locating and retrieving a particular resource,
require an attentive system that allows robots to isolate their target(s) within their environment as
well as process complex top-down information.

There are a number of ways for autonomous robots and natural organisms alike to gather
information about their surroundings. Teleceptive sensors, for example those using ultrasound
or infra-red light, are common in engineered systems, and are also exploited by some natural
organisms for navigation and object tracking (Nelson and MacIver, 2006; Jones and Holderied,
2007). However, a closer relationship between attention and activation in the visual cortex has been
observed by Maunsell and Cook (2002), showing the importance of vision when interacting and
being attentive within an environment whilst performing a task. Motion detection, in particular,
represents one of the important attentional cues for facilitating agent-environment interactions
(Cavanagh, 1992), and is used by natural organisms to avoid obstacles, respond quickly and
coherently to an external stimulus within a scene, or to focus attention to a certain feature of
a scene (Abrams and Christ, 2003). Due to its wide range of applications, motion detection
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has been an area of research for decades and has produced a
number of different detection models, ranging from gradient-
based algorithms (Lucas and Kanade, 1981; Benosman et al.,
2012), over local-plane fitting (Brosch et al., 2015; Milde
et al., 2015) and time-to-travel methods (Kramer, 1996) to
correlation-based approaches (Horiuchi et al., 1991). Gradient-
based methods utilize the relationship between the velocity
and the ratio between the temporal and the spatial derivative.
Hence, to determine the speed and direction of the motion, the
derivation of the spatial and temporal intensity for each pixel is
needed. All correlation-based models share the linear and spatio-
temporal filtering of measured intensities, which are functions of
time and location. The best-known correlation motion detectors
are the biologically derived Hassenstein–Reichardt and the
Barlow–Levick models (Hassenstein and Reichardt, 1956; Barlow
and Levick, 1965). TheHassenstein–Reichardtmodel was derived
from behavioral experiments with beetles, while the Barlow–
Levick model was inspired by motion detection in the rabbit’s
retina. In both cases one elementary motion detection unit is
selective tomotion in one cardinal direction (preferred direction)
and suppresses output to motion in the opposite direction (anti-
preferred direction) (Barlow and Levick, 1965). The models
themselves (from 1956 and 1964, respectively), are still assumed
to describe motion detection in organisms such as fruit flies
(Borst et al., 2010; Maisak et al., 2013; Mauss et al., 2014; Borst
and Helmstaedter, 2015; Strother et al., 2017). A limitation
of correlation-based detectors is that, depending on the time-
constant of the filters used, the detector is only receptive to a
limited range of velocities. This range can be shifted by varying
the parameters but always remains limited.

Environment analysis using traditional frame-by-frame visual
processing generally requires a robot to extract and evaluate
huge amounts of information from the scene, much of which
may be redundant, which hinders the real-time response of
the robot. The computational resources required for visual
processing can be significantly reduced by using bio-inspired
event-based cameras (Lichtsteiner et al., 2008; Posch et al., 2011),
where the change in temporal contrast triggers asynchronous
events. Event-based cameras perceive only the parts of a scene
which are moving relative to themselves. Thus, they are idle
until they detect a change in light intensity above a relative
threshold. When this happens, the pixel reacts by producing
an event characterized by its time of occurrence. Address
Event Representation (AER) protocol allows the asynchronous
readout of active pixels while providing information on the event
polarity and the pixel location. As such, the camera’s output
are ON-events for increments in temporal contrast and OFF-
events for decrements. Optical flow, the vector representation
of the relative velocity in a scene, has a wide range of
uses, from navigation (Nelson and Aloimonos, 1989; Milde
et al., 2015), to predicting the motion of objects (Gelbukh
et al., 2014). We propose that these models can also be used
to direct attention toward moving objects within a scene.
Recent studies have developed event-based motion detection for
optical flow estimation both relying on conventional processing
architectures (Benosman et al., 2012, 2014; Gallego et al., 2018,
2019; Mitrokhin et al., 2018) and unconventional neuromorphic

processing architectures (Giulioni et al., 2016; Haessig et al.,
2018; Milde et al., 2018). Even though the former mechanisms,
which leverage standard processing capabilities, show real-time
optic flow estimation with very high accuracy, they are not
suited for spiking neural networks and neuromorphic processors.
This is due to the way information is represented, using real
values in these algorithms. Additionally, the power consumption
and computational complexity in Gallego et al. (2018, 2019)
is too high for constrained robotic tasks. The neuromorphic
approaches on the other hand can naturally interact with spiking
networks implemented on low-power neuromorphic processing
architectures as information is encoded using events.

In the last decade a number of spike-based correlation motion
detectors have been introduced (Giulioni et al., 2016; Milde et al.,
2018). Of particular interest to this work is the spiking elementary
motion detector (sEMD) proposed by Milde et al. (2018). The
sEMD encodes the time-to-travel across the visual field as a
number of spikes (where time-to-travel is inversely proportional
to velocity). The sEMD’s functionality has been evaluated in
Brian 2 simulations and on SpiNNaker using real-world data
recorded with the Dynamic Vision Sensor (DVS) (Milde et al.,
2018; Schoepe et al., 2019). Furthermore, the model has been
implemented on a neuromorphic analog CMOS chip and tested
successfully. The implementation on chip presents a low latency
and low energy estimate of locally occurring motion. It further
offers the advantage of a wider range of encoded speeds as
compared to the Hassenstein-Reichardt model, and it can be
tuned to different working ranges in sympathy with the desired
output. Event-driven cameras, compared with classic frame-
based cameras, dramatically reduce the computational cost in
processing data, however they produce a considerable amount
of output events due to ego-motion. Previous implementations
of the sEMD have applied a uniform down-sampling across the
camera’s visual field. However, recent studies have found that
motion detection performance depends strongly on the location
of the stimulus on the retina, due to the non-uniform distribution
of photoreceptors throughout the mammalian retina (Traschütz
et al., 2012). Rod and cone density in the mammalian retina is
high at the fovea, and decreases toward the periphery. The non-
uniform distribution of photoreceptors in the retina has a strong
role in speed discrimination, and it should be taken into account
as an important factor in motion estimation. Taking inspiration
from the mammalian visual system (Freeman and Simoncelli,
2011; Wurbs et al., 2013), where Receptive Fields (RFs) linearly
decrease in size going from the retinal periphery toward the
fovea (Harvey and Dumoulin, 2011), we propose an eccentric,
space-variant, down-sampling as an efficient strategy to further
decrease computational load without hindering performances.
A good approximation of the mammalian space-variant down-
sampling is the log-polar mapping, describing each point in the
2D space as logarithm of the distance from the center and angle.
Given its formalized geometrical distribution, the log-polar
mapping provides algorithmic simplification and computational
advantages, for example for tasks such as moving a robot’s
cameras toward a desired vergence configuration (Panerai et al.,
1995), or binocular tracking Bernardino and Santos-Victor
(1999). Recently, the log-polar approach has been studied also
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for event-driven cameras, with the proposal of the Distribution
Aware Retinal Transform (DART) (Ramesh et al., 2019).
Although the log-polar representation would better suit the
implementation of the eccentric down-sampling, the results in
polar dimension would not be comparable with the classic
down-sampling of the sEMD with Cartesian coordinates. For
benchmarking purposes, in this paper we use an approximate
implementation of the mammalian space-variant resolution,
based on Cartesian coordinates.

In this work, we propose a novel approach to spiking
elementary motion detection, exploiting the non-uniform retina
model as a down-sampling of the visual field. By combining
the sEMD with eccentric down-sampling, this work aims to
improve the computational efficiency of the motion computation
and take a step toward a bio-inspired attention model where
information at the center of the field of view is of higher
resolution and more heavily weighted than information at the
periphery, allowing robots to exploit visual information to
effectively interact with their environments in real time. The
proposed architecture is suitable for simulation on neuromorphic
platforms such as SpiNNaker (Furber et al., 2014), and offers
the possibility to be easily implemented for recorded and live
input data. To the authors’ knowledge, artificial motion detectors

with eccentric filtering of the visual field are a novel approach to
motion detection. Link to the authors’ repository containing the
model and the data: https://github.com/event-driven-robotics/
sEMD-iCub.

2. METHODOLOGY

The proposed work integrates bio-inspired eccentric down-
sampling with the sEMD (Milde et al., 2018). Our aim is
to further decrease the computational resources required, by
filtering the number of incoming events into the visual field, while
maintaining a fine resolution in the center of the visual field.

2.1. Eccentric Down-Sampling
Several physiological studies have explored the mammalian
retina topography such as the blind spot, fovea and eccentricities
(Wässle and Riemann, 1978), showing that receptive fields
are uniformly overlapped in the mammalian retina (Devries
and Baylor, 1997). The proposed eccentric down-sampling
approximates the two-dimensional circular retina onto a square,
maintaining a quadrilateral camera resolution (Figure 1B),
where each RF spatio-temporally integrates the information
within its area of sensitivity. The RF size of the squared

FIGURE 1 | The grid in (A) represents the uniform down-sampling of the visual field in equal matrices of n by n. (C) Represents the eccentric down-sampling

decreasing the size of the matrices going to the center of the visual field (fovea). This implementation does not include the blind spot present in the mammalian visual

system. The three gray squares with varied hues represent three RF sizes at different eccentricities: 0, 39, 70 pixels distant from the center. The square with the same

hue in both grids (A,C) represents a matrix with equal size in the two down-samplings. Panels (B,D) represent the encoding in horizontal and vertical trajectories of the

uniform down-sampling (B) and the eccentric down-sampling (D). On both top rows of (B,D), an example of the RFs belonging to the first, middle and last horizontal

trajectories, and on the bottom row the vertical trajectories is given. All RFs are represented with different gray-scale for the reason of visualization.
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approximation decreases linearly toward the foveal region, where
each RF is defined by one pixel. All RFs of the same size create
a square ring around the foveal region, with each successive
ring framing the previous one. The eccentric down-sampling
reproduces the RF overlap between RFs of consecutive rings
ensuring the robustness in response all over the retina. However,
the proposed model does not include the central blind spot
present in mammalian retina.

Equations (1) and (2) describe the relationship between the
receptive field size (Rs) and its distance from the foveal region,
where (Rci ) is the center of the top left RF of each squared ring and
i = [1, .., n] is the number of squared rings over the retinal layer.
The term x in Equation (1) represents the x axis of the camera
where the origin is placed in the top left corner, max[Rs] is the
maximum kernel size of the outermost peripheral ring, and dfovea
is the total distance from the periphery to the edge of the fovea.

Rs(x) = −
max[Rs]

dfovea
x+max[Rs] (1)

Rc
i = Rci−1 +

Rci−1

2
(2)

Mt = Mt−1e
−

dt
τ +

1

Rnf
(3)

Each RF is a matrix of input pixels from the sensor. Every RF
is modeled as a leaky integrate and fire (LIF) neuron integrating
the information in space and time (Equation 3), where M is
the membrane potential of the RF, t represents the temporal
information of the incoming event into the RF, dt the difference
in time with the previous event in the RF, and τ is the time
constant of the exponential decay (τ = 1, 000ms). Themembrane
potential of every RF integrates incoming spikes until it reaches
the threshold (threshold = 1), which is the same for all RFs.
The contribution of each event to the increase in membrane
potential of a neuron is normalized with the dimension of the
RF. As the activity of the ATIS is sparse, the normalization factor
(Rnf ) is expressed as a percentage of the area of the RF. Every
incoming event triggers the updating of the membrane potential
by calculating the temporal decay of the membrane since the
last event. In addition, the membrane potential is increased by
the normalization factor. This way, the response from all RFs is
normalized by their occupied space over the visual field. Finally,
if the threshold is reached, the neuron emits an output spike.
Hence, the response from each RF coherently encodes the input
information in relationship with the distance from the fovea.

2.2. The Spiking Elementary Motion
Detector (sEMD)
The spiking Elementary Motion Detector (sEMD) depicted in
Figure 2 has been designed for the purpose of encoding optic
flow using event-based visual sensors (Milde et al., 2018). The
use of event-based sensors is suited to perceiving motion. The
edge of an object moving from the receptive field of one pixel
to the adjacent one generates a spike in the two pixels with
a given time difference, depending on the velocity of the edge
and its distance from the pixels. The relative motion or optic

flow is inversely proportional to this time-to-travel. An sEMD
is composed of two pixels and a time difference encoder (TDE).
The TDE encodes the time difference between two pulses into
the number of output spikes produced in response to the second
input pulse. The number of output spikes encodes the motion
flow of objects moving in front of the two pixels.

The synapses connecting the inputs to the TDE are of two
types - facilitator and trigger (see Figure 2 fac and trig). The
facilitator synapse gates the activity of the TDE neuron. The
trigger synapse elicits a response from the TDE neuron only
if its input event occurs after the event from the facilitator
synapse (compare Figures 2B,D). The output current of the
trigger synapse increases the TDE neuron’s membrane potential
as shown in Figure 2C). The strength of the current depends on
the exponentially decaying gain variable of the facilitator synapse.
Therefore, the TDE not only detects the direction of motion
but also encodes the velocity of the stimulus in the number of
output spikes and time to first spike. The faster the stimulus
propagates, the more spikes are produced by the TDE. In order
to mitigate the noise present at the output of a silicon retina, a
pre-processing filtering stage is used. It consist of neural spatio-
temporal filters (SPTCs) used to detect correlated events. Two
uniform neighborhoods, of n by n pixels, are connected to a
LIF neuron each. The neurons fire once only if within a specific
time, defined by their time constant, 66% of the pixels in the
neighborhood produce events. The proposed implementation
exploits the eccentric down-sampling (Chapter 2.1) replacing the
uniform filtering stage previously used with the sEMD model
by Milde et al. (2018).

2.3. Experiments
The objective of this work is to quantitatively and qualitatively
characterize the output of the TDE population receiving input
from the eccentricity filtering layer and to compare it with
the TDE population receiving input from a uniform resolution
filtering layer. This characterization aims to demonstrate the
advantages of our proposed model, namely a decrease in
computational load whilst maintaining the ability to estimate
the velocity of moving entities within the visual field. To this
purpose we characterized and compared the model using moving
bars with 1D and 2D motion. In the following, we will refer
to the two different implementations as “sEMD with uniform
down-sampling” and “sEMD with eccentric down-sampling.”
The characterization of the proposed motion detection system
(Figure 3) is achieved using simulated data. Furthermore,
additional experiments are undertaken using real input1 collected
with ATIS cameras (Posch et al., 2011) mounted on the iCub
robot (see Supplementary Materials for real-world data). The
simulated data used in this work reproduces the activity of an
event driven sensor in response to a barmoving horizontally [Left
to Right (LR), Right to Left (RL)], vertically [Top to Bottom (TB),

1We explored the real-world applicability of the underlying motion detection

mechanism prior to this work in which we demonstrated the functionality of the

underlying given variable contrast and event-rates in natural environments (Milde

et al., 2015, 2018; Schoepe et al., 2019).
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FIGURE 2 | Basic principle of the sEMD (Milde et al., 2018). (A) The model consists of an event-based retina sending events into the Time Difference Encoder (TDE).

Two adjacent RFs are connected to the facilitation synapse and the trigger synapse, respectively. (B) TDE computation for a small time difference 1 t between

facilitation event and trigger event. An event at the facilitation synapse generates an exponentially decaying factor called gain. A trigger pulse at the trigger synapse

shortly after causes an exponentially decaying Excitatory Post Synaptic Current (EPSC). The EPSC amplitude depends on the gain factor. The EPSC integrates onto

the membrane potential (mem). Every time the membrane potential reaches the spiking threshold (τSpike) an output digital pulse is produced. (C) Similar to (B) part but

with high 1 t. (D) Similar to (C) but the trigger pulse arrives before facilitation pulse. No output spikes are produced for negative time differences. (E) TDE output spike

response over time difference 1 t between facilitation event and trigger event.

Bottom to Top (BT)] and transversely, i.e., along the diagonal of
the Cartesian plane.

Firstly, we recorded the activity of the sEMD with uniform
down-sampling and eccentric down-sampling model, while the
speed of the input bar ranges from 0.01 to 1 px/ms, in accordance
to the experiments of Giulioni et al. (2016). This ideal input
allows a comparison of the two model’s spike raster plots and
mean population activities.

We first analyzed the selectivity of all sEMDs tuned to
the same movement direction, measuring the mean firing
rate (MFR) of the whole population. Given the symmetrical
connectivity of the sEMD neurons along the eccentric visual
field, the responses from the population of LR, RL, TB, and
BT sEMD neurons are expected to be comparable, responding
with a large MFR to a stimulus moving along their preferred
direction and being unresponsive to a stimulus moving along
their anti-preferred direction.

Further investigations focus on a single population and its
response to its preferred stimulus direction (from left to right,
or top to bottom), assuming transferable responses for the
other directions.

A deeper understanding of the temporal response
from the neurons was achieved by collecting the
spike raster plots for nine speeds of the chosen
range: (0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1
px/ms), respectively.

For each speed, we analyzed the response of each sEMD
in the population, mapping its MRF onto the Cartesian space
and visualizing spatial rather than temporal information.
We analyzed how the Mean Firing Rate (MFR) of each
sEMD changes with speed and distance from the center
of the field of view. Additional experiments have been
performed changing the length of the stimulus, by recruiting
more sEMDs, should increase the MFR of the whole
population tuned to the corresponding stimulus direction.
Eventually, we analyzed the response of the model to a
bar moving transversally exploring the response from the
population to 2D motion. In such a case, the stimulus does
not elicit the maximum response of any sEMD, rather,
it elicits intermediate activity in more than one sEMD
population, that need to be combined to decode the correct
input direction.
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FIGURE 3 | Basic scheme of the pipeline. From left to right the ATIS output is processed by the eccentric down-sampling model and sent to the sEMD model, hosted

on SpiNNaker neuromorphic hardware. The sEMD model represents the layer of neurons producing spikes and encoding the motion detection. The eccentric

down-sampling and the sEMD model representation show the spatio-temporal filter neurons (green, blue, violet, and orange square), the facilitator and the trigger, both

synaptically connected to the sEMD neuron. Facilitators (F) and triggers (T) are shown for LR sEMD neuron, RL sEMD neuron, TB sEMD neuron, and BT sEMD neuron.

2.4. Experimental Setup
In all experiments the model was simulated on a SpiNNaker 5
board hosting 48 ARM-chips, each with 18 cores. The SpiNNaker
architecture supports highly parallelized asynchronous
simulation of large spiking neural networks in almost real-time.
The aspect of real-time computation is of utmost importance
for the interaction of the robot with the environment. For the
implementation of the SNN we chose 160×160 pixels as a retinal
layer resolution, to limit the number of neurons to be simulated
on SpiNNaker and to further minimize the impact of the residual
distortion in the fringes of the camera after calibration. The
output of the retinal layer serves as input to the uniformly and
eccentrically down-sampled filtering layer, respectively. For the
uniform down-sampling sEMD, we chose a non-overlapping
neighborhood matrix size of 4×4 ATIS pixels to represent one
RF. This filtering layer is simulated on SpiNNaker and consists
of 1600 LIF neurons. It receives input from a SpikeSourceArray,
containing the respective ATIS pixel spike times. The synaptic
weight of the connections is 0.3. In contrast, the fovea (1 RF =
1 pixel) of the eccentric down-sampling covers 10% of the total
retinal layer, and the biggest receptive field has a dimension of
10×10 pixels with a normalization factor of 60% (Equation 3).
The population is made up of 8836 LIF neurons. The eccentric
down-sampling occurs locally before the spike times of the
respective receptive fields are transferred to SpiNNaker in a
SpikeSourceArray. The final layer of the network consists of
four sEMD populations sensitive to local motion in one cardinal
directions, respectively, using sEMD neuron model included in
the extra models of the pyNN library. The sEMD populations
were connected to the filtering layers along the trajectories as
shown in Figure 3. The combination of the output of the four
populations allows the encoding of transversal stimuli. Each
population shares the size of the down-sampling population. For
both down-sampling approaches all sEMD neuron and synapse

parameters are the same. The connectivity of the respective
sEMD populations are displayed in Figure 3. The synaptic
weights are 0.3 and the synaptic time-constants τex and τin are
both 20 ms. The neuron parameters amount to: a membrane
capacitance of 0.25 nF, and time-constants τm and τrf of 10 ms
and 1 ms, respectively. The reset, resting and threshold voltage of
the neurons are defined as −85, −60, and −50 mv, respectively.
To avoid a response of the sEMD-populations perpendicular to
the preferred direction, in case of a bar moving their facilitator
and trigger synapses receive input at the same time, the input to
the facilitator synapse was delayed by 1 ms.

3. RESULTS

Our investigation starts with the characterization of the eccentric
down-sampling sEMD’s response to a simulated bar moving
in the four cardinal directions with a speed of 0.3 px/ms:
left to right, right to left, top to bottom and bottom to top.
Figure 4 shows the response to stimuli moving in the preferred
and anti-preferred directions at fixed velocity 0.3 px/ms (the
middle of the regarded velocity range). In particular, Figure 4A
shows the mean instantaneous firing rates of the preferred and
anti-preferred direction populations. The preferred directions
are colored in red and the anti-preferred directions in blue.
As expected, the preferred direction population’s response is
significantly higher than the response of the anti-preferred
direction population. Furthermore, as expected the response
from all the populations to the respective preferred direction
is similar in terms of instantaneous firing rate and mean firing
rate, and comparable among each other, thus validating the
assumption that the response to stimuli in the preferred direction
is similar for all of the populations. Assuming a bar moving
across the retina at a constant speed, the high variances in
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FIGURE 4 | Response of the sEMDs with eccentric down-sampling to a simulated bar moving with a speed of 0.3 px/ms: (A) Instantaneous MFR and variance of the

four sEMD-populations, each tuned to one of the four cardinal directions, to the preferred and anti-preferred stimulus. Similarly to the sEMD with uniform

down-sampling, the response to the anti-preferred stimulus is negligible with respect to the response to the preferred direction stimulus. (B) Raster plot of the left to

right (LR) population in response to a vertical bar moving from left to right. In the first 100 ms, the difference in the size of the RF can be seen, as the active neurons

spike with different spike rates and the number of active neurons increases with time, when the bar moves closer to the fovea. (C) Raster plot of the top to bottom

(TB) population in response to an horizontal bar moving from top to bottom. The sigmoidal shape arises from the geometry of the eccentric down-sampling and the

neurons’ indexing.

preferred and anti-preferred directions can be explained by the
difference in receptive field sizes in our proposed model (see
Figure 1). Depending on the stimulus speed, the size of the
RF determines a period of time in which the stimulus moves
over the RF. Thus, for the same stimulus speed, a peripheral
RF takes more time to respond than one in the foveal region,
leading to a different RF rings having a different sensitivity to
stimulus speed. Only the RFs along the same squared ring have
the same sensitivity to the same speed. If a bar is moving across
the visual field at a certain speed, only neighbor RFs, that produce
spikes able to trigger the TDE neurons, will detect the stimulus.
Consequently, due to the varying RF sizes and varying speed
sensitivities, the size of the RF relative to its neighbor affects the
response of the TDE. This causes the visual field to respond non-
uniformly. Figures 4B,C show examples of characteristic raster
plots of the preferred direction populations, in response to a
bar stimulusmoving horizontally and vertically, respectively. The
color-coding indicates the direction sensitivity of the population:
left to right (red) and top to bottom (green). The first response
to the horizontal and vertical bar movement (Figures 4B,C), is
delayed by 40 ms. This is due to the stimulus taking 30 ms (speed
of 0.3 px/ms) to travel over the first peripheral RF (10 × 10
px), before reaching the RF connected to the trigger. In the first
50 ms of reaction to the stimulus, the resulting spike density is

rather sparse, caused by a lower response from the peripheral
RFs (sensitive to higher speeds). Conversely, from 150 to 400 ms,
the time where the stimulus is expected to cross the fovea, the
spike density is higher because the RFs at the fovea are of a size
more suited to the stimuli velocity. The impact of the proposed
model is more clearly visible in response to the vertically moving
stimulus (Figure 4C). The mapping from the eccentric receptive
fields to the neuron IDs transforms the time sequence of a vertical
bar response to a sigmoid. By contrast, the output of the sEMD
with uniform down-sampling resembles the shape of stairs, with
each row activated after one another, spiking with the same rate.
The non-uniform size of the RFs in our proposed model is again
the cause for the different spike densities produced in response
to the stimulus moving at constant velocity. In this experiment
the sEMDs successfully encode the direction of the bar stimulus
moving across the visual field in all the four cardinal directions,
showing a negligible response to the anti-preferred direction.
This therefore shows that the eccentric down-sampling preserves
the ability of the sEMD populations to encode optic flow of
moving stimuli.

A comparison of the MFR for all populations of the uniform
down-sampling model and the eccentric down-sampling model
in response to a simulated stimulus moving from left to right
at different velocities is shown in Figure 5. The color-coding
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FIGURE 5 | Comparison of the sEMD model with the uniform down-sampling (A,B) and the eccentric down-sampling (C,D) in response (MFR) to a left to right

moving bar (simulated data). The preferred direction is displayed in red (LR), with the anti-preferred direction in blue (RL). The response for the top to bottom (TB) and

bottom to top (BT) populations are displayed in green and magenta, respectively. Panels (B,D) are a magnification for the anti-preferred direction (right to left) and the

incorrect directions (top to bottom and bottom to top) of the panels (A,C). The Figure compares the behavior from the populations of the two approaches to the same

stimulus and over the same range of speeds.

remains the same as in Figures 4B,C, additionally the response of
the populations selective to stimuli from right to left and bottom
to top is depicted in blue and magenta, respectively. Figure 5A
shows the behavior of the uniform down-sampling model, and
Figure 5C depicts the behavior of the eccentric down-sampling
model. Both methods show a trend of increasing MFR until
target velocity reaches 0.6 px/ms. While the response from the
sEMD with uniform down-sampling keeps increasing after 0.6
px/ms, the firing rate of the population with eccentric down-
sampling gradually reduces as the target velocity approaches 1.0
px/ms. The same trend can also be seen for targets moving
in the anti-preferred direction. Figure 5 shows that, while the
sEMD response of the anti-preferred (right to left) and the
incorrect directions (top to bottom and bottom to top) of the
uniform down-sampling model (Figure 5B) linearly increases
until 1.0 px/ms, the output firing rate of the proposed eccentric
down-sampling model (Figure 5D) increases for target speeds
up to 0.5 px/ms and decreases thereafter. Despite the number of
sEMDs required for the proposed model (8,836 per population)
being significantly higher than for the uniform down-sampling
(1,600 per population) under the same setup conditions, the
eccentric sEMDs’ down-sampling shows an overall significant
decrease in the mean output firing rate of the whole population
in response to the same stimulus. Differently from frame-based
systems, where the number of operations—and hence power
consumption—depend on the number of filters, in event-driven
spiking architectures, filters are active (and consume power)
only when they receive input spikes and produce output spikes.
Figure 5 shows that the proposed eccentric down-sampling
model is able to differentiate between stimulus in preferred
and anti-preferred directions more efficiently than a model with
uniform down-sampling, without sacrificing performance. The
proposed model still maintains an order of magnitude difference
between MFR for stimulus in the preferred direction vs. anti-
preferred direction. Although the eccentric down-sampledmodel
does not allow for an inference of stimulus velocity to be made
based on the MFR of the entire population, the same information

can be extracted based on the eccentricity of the RFs with the
greatest MFR.

The response from sEMDs selected at different eccentricities
(at 0, 39, and 70 pixels distant from the center) is examined
in Figure 6 in relation to the same speed range. In the original
model (Milde et al., 2018) the MFR of all three neurons would
increase proportionally to the target speed. Figure 6 shows that
the speed encoding for our proposed model depends on the RF
size, because the integration time for each RF size corresponds
to a specific range of velocities. This leads to a specific range of
time-differences between two connected RFs. Each sEMD has a
speed limit, which depends on its tuning, above which it will be
unable to detect motion. Figure 2E shows the TDE output spikes
over time difference. If a trigger event occurs before the output
of the facilitation event has had time to reach the minimum
threshold required, the sEMD will not fire. Due to the varying
sensitivity of different RF sizes and enhanced by the 1ms synaptic
delay of the facilitator synapse, while the response from the foveal
region (0 px distance) drops to zero for speeds higher than 0.7
px/ms, the response from the neuron with a middle eccentricity
(39 px distance) begins to decrease dramatically at 0.9 px/ms.
The response from the peripheral neuron keeps increasing until
the end of the examined speed range (1.0 px/ms). A possible
explanation for the relatively low MFR of the peripheral neuron
is the increased number of events needed to trigger the RF and its
specific sensitivity to higher speeds. Figure 6 shows how the RF
size affects the behavior of the correspondent neuron, obtaining a
wider operative range from the whole population. In comparison,
uniform down-sampling where all the RF sizes are the same
provides a comparatively limited operative range.

The spike raster plots (Figures 4B,C) provide the temporal
response from the population but they do not provide any spatial
information. The visualization in Figure 7 maps the response
of the sEMDs to the corresponding x and y locations for
three different speeds: slow (0.03 px/ms, Figure 7A), medium
(0.3 px/ms, Figure 7B) and fast (1.0 px/ms, Figure 7C). The
data displayed in Figure 7B corresponds to the spike raster
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FIGURE 6 | Response (MFR) to a left to right moving bar (simulated) from RFs (eccentric down-sampling) of the central horizontal line of the visual field at different

eccentricities (distances from the center of the field of view). In blue, orange and green at 0, 39, and 70 pixels distant from the center, respectively (see Figure 1).

FIGURE 7 | Response from the population of sEMDs with the eccentric down-sampling mapped into the cartesian space with a camera resolution of 160 × 160

pixels. The color-code heatmap represents the MFR of each RF. The stimulus was a bar moving (simulated data) from left to right with constant speed: 0.03 (A), 0.3

(B), 1.0 (C) px/ms, respectively.

plot in Figure 4B. Figure 7 shows that the MFR of the whole
population increases in relation to the speed: 0.26, 33.44, 38.76
Hz, respectively. The spatial visualization highlights the function
of the eccentric down-sampling. As proposed by Traschütz et al.
(2012), the slow speeds are detected primarily in the foveal
region, where RFs have the smallest dimension and are closest
to one another (Figure 7A). As the stimulus speed increases, the
peripheral region starts responding from the first squared ring
around the foveal region (Figure 7B) to the rings with the largest
RF size for the fast speed (Figure 7C).

The response for each RF square ring is different for
horizontal and vertical components (most obvious example
being in Figure 7C. This is because the sEMDs in this case are
only connected horizontally (as we are working with left-right
motion). Therefore, at the left and right peripheries, there is
a descending and ascending scale of RF sizes approaching and
moving away from the foveal region, respectively. A concentrated

region of diverse, overlapping connected RFs improves the
likelihood of the sEMDs picking up the stimulus motion. This
does not exist in the regions above and below the fovea,
in which each RF will only be connected to horizontally
adjacent RFs of the same size, hence the relatively low MFR
in these regions.

The response on the right side of the visual field is attenuated
in Figures 7B,C because the sEMDs from the last RF ring are not
connected with any subsequent facilitator (although this does not
cause a problem in detecting stimuli entering the scene).

As shown in Figure 7, the RF-ring of maximal response
appears to move toward the periphery with increasing velocities.
Figure 8 shows the mean and variance of the MFRs at
different eccentricities for velocities 0.03, 0.3, and 1.0 px/ms,
Figures 8A–C, respectively. It is clearly distinguishable, that the
maximal response in MFR shifts toward the periphery with
increasing velocities.
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FIGURE 8 | Mean and variance in MFR of RFs at different distances from the center of the visual field. The stimulus is a moving bar (simulated data) going from left to

right at speeds of: 0.03 (A), 0.3 (B), 1.0 px/ms (C).

The higher variances observed at greater eccentricities
(distance from the center) in Figures 8B,C, can be explained
by the different RFs response from the horizontal and vertical
component of the squared rings (which can be seen in Figure 7).
The low MFR at 29 pixels (Figure 8A) from the center (fovea
region from 0 to 28 px) can be explained by the connections
between RFs of the first peripheral squared ring (about 3 × 3
px) and the fovea, where each RF has a dimension of 1 px.
This sudden increase in size leads to a delay in response from
the TDE receiving input to the trigger synapse from the larger
receptive field.

To compare the trend of the RFs’ peak response increasing in
eccentricity with increasing stimulus speed, the center of mass of
the RFs response is plotted in relation to the speed range, from
0.01 to 1.0 px/ms (see Figure 9). Figure 9 shows that for low
speeds (0.01–0.06 px/ms) the center of mass of the RFs’ response
shifts from 0 to 27 pixels (distance from the center). The center
of mass then plateaus from 0.06 to 0.6 px/ms, where only the
RFs of the edges of the foveal region respond to the stimulus.
For higher speeds (from 0.6 to 1.0 px/ms), the eccentricity of the
center of mass of RF responses starts to increase again, due to a
lack of activity in the fovea. The center of mass of RF responses
eventually shifts to the periphery, reaching a distance of 49 px
from center.

A comparison of the MFR of the sEMD with uniform down-
sampling and eccentric down-sampling has been explored with
simulated data. Figure 10 shows the difference in response,
normalized for the total number of neurons, from all populations
of sEMD neurons with uniform down-sampling and eccentric
down-sampling. Even though the uniform down-samplingmodel
has fewer neurons than the eccentric down-sampling model
(1,600 compared to 8,836 neurons, respectively) the MFR from
the eccentric down-sampling is considerably less at each explored
speed, increasing computational and power efficiency.

Figure 11 shows the MFR from the population of LR sEMD
neurons in response to a stimulus moving from left to right, at
a medium speed of 0.3 px/ms, with bars of varying lengths: 10,
50, 100, and 160 pixels, respectively. The plot shows a positive
correlation between the size of the bar and the response from
the neurons sensitive to the corresponding direction. Figure 11
shows that the MFR increment decays as the length of the bar
increases - most noticeable when comparing the difference in
MFR between the 50 and 100 px bar, and that between the 100

FIGURE 9 | Center of mass (solid line) of the neurons response location to a

left to right moving bar (simulated data), from 0.01 to 1.0 px/ms. The dash line

indicates the end of the foveal region.

and 160 px bar. This is because the bar is vertically centered in
the visual field, and so longer bars cover more of the peripheral
region—where each RF requires a greater number of events in
order to be activated. Finally, Figure 12 shows the behavior of the
population to a barmoving transversely, revealing the response of
the model to 2D motion. Figure 12A shows the response to a bar
moving from the top left corner to the bottom right, Figure 12B
from the top right corner to the bottom left, Figure 12C from
the bottom left to the top right corner and Figure 12D from the
bottom right corner to the top left.

All the explored cases report a similar response from two kind
of sEMD populations and a response close to zero from the other
neurons. The combination of the responding sEMD neurons
successfully detects the transverse motion, showing similar MFR
values of the neurons that actively respond.

4. DISCUSSION

The biological role of detecting temporal changes comprise two
mechanisms: the detection of fast and slow movements. The first
one to identify an entering stimulus into the scene and the latter
one to recognize its spatial structure (Murray et al., 1983). Sudden
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FIGURE 10 | Comparison, between the sEMD model with the uniform down-sampling (1,600 neurons) and the eccentric down-sampling (8,836 neurons), of MFR

from the LR sEMD neurons in response to a left to right moving bar.

FIGURE 11 | MFR response of the sEMD the LR sEMD neurons for a left to right moving bar at 0.3 px/ms with different bar lengths: 10, 50, 100, 160 pixels,

respectively.

onset of motion can attract our attention (Abrams and Christ,
2003, 2005, 2006). Hence, fast movements, speed and acceleration
similarly increase our perception of a threat—making it a
noticeable stimulus and grabbing our attention (Howard and
Holcombe, 2010). Thus, motion detection collaborates with
attentional mechanisms to react on time and interact with
the surrounding.

In this paper, we have presented a novel implementation of
motion detection based on the use of spiking elementary motion
detectors coupled with non-uniform down-sampling inspired

by the mammalian retina. The proposed model successfully
detects the correct direction of an edge moving in the field of
view at speeds ranging from 30 to 1,000 px/s, being suitable
for the coarse motion processing of robots interacting with the
environment (Giulioni et al., 2016).

With respect to the uniform down-sampling implementation
presented in the original work (Milde et al., 2018), the eccentricity
model significantly decreases the overall activation of each
motion detector at every investigated speed. The reduced spiking
activity makes this implementation more power efficient even
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FIGURE 12 | MFR response of the sEMD neurons reacting to a bar moving transversely at 0.3 px/ms. (A) Bar moving from the top left corner to the bottom right

corner, (B) bar moving from the top right corner to the bottom left corner, (C) bar moving from the bottom left corner to the top right corner and (D) bar moving from

the bottom right corner to the top left corner. The length of the bar covers the whole visual field.

in face of an increased number of elementary motion detectors.
To achieve the same result in the uniform down sampling
implementation, the size of the spatio-temporal filters should
be increased, at the cost of a coarser resolution in the whole
visual field and a reduced sensitivity to low velocities. The
eccentricity implementation overcomes this issue maintaining
the sensitivity for low and fast speed – distributed over different
regions of the field of view – while significantly reducing the
number of incoming events to be processed by the down-stream
computational layers.

In the proposed non-uniform down sampling, the elementary
motion detectors are tuned to different ranges of speed
depending on their position in the field of view. The peripheral
sEMDs are characterized by large receptive fields and are hence
tuned to higher speeds, that progressively decreases toward the
fovea. Hence, the proposed implementation encodes the speed
based on the location of the active sEMD. RFs with similar
size work in a similar range of speed producing redundant
information, and making the decoding of the population activity
robust. Moreover, thanks to the sensitivity to high speeds of
the peripheral RFs, the detection of objects moving into the
visual field is immediate. The sEMDs in periphery will trigger
a response to a fast stimulus entering the field of view with
extremely low latency. This behavior is desirable in our target
scenario, where a robot shall react quickly to fast approaching
objects suddenly entering the field of view, and attracting its
attention. Furthermore, the combination of RFs with different
size, processing events on the same field of vision, allows working
with a wider operative range of speeds. In the final application,
this motion detection module will be used as one of the feature
maps used to compute the salience of inputs in the field of view,
directing the attention of the robot to potentially relevant stimuli
that will be further processed once a saccadic eye motion will

place the salient region in the fovea. A strong and low latency
response of peripheral sEMDs to fast stimuli could override the
salience of static objects. The characterization of the response
of the sEMDs in the non-uniform down sampling shows the
same qualitative overall behavior for real-world stimuli, showing
robustness to noise and to changing the overall spiking activity
of the input. The analysis of the individual responses of the
sEMDs at different distance from the fovea shows variability
that depends on the discretisation of the receptive fields and
on the uneven distribution of the receptive field sizes. This
effect possibly depends on the Cartesian implementation of the
eccentricity, that approximates the distribution of the receptive
fields with a rectangular symmetry. A polar implementation
of the same concept will reduce the effects of discretisation
and improve the overall population response. In a polar
implementation, the direction of each sEMDwill be aligned along
the polar coordinates (radius and tangent), rather than along
the Cartesian directions, further improving the variability in the
overall response of individual modules and allowing decoding of
stimulus direction beyond the cardinal ones.
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