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INTRODUCTION
The color of mammalian skin and hair is determined by mela-

nin pigment [1]. Melanin pigment is synthesized in melanocytes 
and translocated to keratinocytes, protecting skin from hazard-
ous environmental stimuli such as UV radiation [2,3]. Keratino-
cytes secrete α-melanocyte-stimulating hormone (α-MSH) to 
protect DNA damage caused by UV radiation [4]. α-MSH binds 
to melanocortin 1 receptor (MC1R) on melanocytes and stimu-
lates the expression of microphthalmia-associated transcription 
factor (MITF) through cAMP-dependent pathway, which leads 
to melanogenesis [5]. However, excessive production of melanin 
results in hyperpigmentation, such as freckles, melasma, and dark 
spots [6]. Therefore, modulation of melanogenesis is a critical 
strategy for managing issues associated with abnormal skin pig-
mentation [7]. Melanin is synthesized via an enzymatic cascade 

controlled by tyrosinase, tyrosinase-related protein 1 (TRP1), and 
TRP2, leading to conversion of tyrosine to melanin pigments [8]. 

MITF is a central factor in melanogenesis that upregulates ex-
pression of tyrosinase, TRP1, and TRP2 [5]. MITF is regulated by 
transcription factors including MITF itself, cAMP-responsive ele-
ment binding protein (CREB), paired box gene 3 (PAX3), sex de-
termining region Y-box 10 (SOX10), lymphoid enhancer-binding 
factor 1/T-cell factor (LEF1/TCF), one cut domain 2 (ONECUT-2), 
and the mitogen-activated protein kinase (MAPK) pathway [5,9-
12]. Recently, Wnt/β-catenin signal pathway was reported to play 
a significant role in melanin synthesis [13,14]. Wnt ligand binds 
to cell surface Frizzled receptors, stabilizing β-catenin levels in 
the cell and ultimately resulting in interaction of β-catenin with 
LEF1/TCF and activation of the MITF promoter [15].

The various skin whitening agents, such as kojic acid, arbutin, 
and hydroquinone, have been developed to prevent or treat skin 
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mushroom tyrosinase. Ethyl linoleate inhibited the expression of microphthalmia-as-
sociated transcription factor (MITF), tyrosinase, and tyrosinase related protein 1 (TRP1) 
in governing melanin pigment synthesis. We observed that ethyl linoleate inhibited 
phosphorylation of Akt and glycogen synthase kinase 3β (GSK3β) and reduced the 
level of β-catenin, suggesting that ethyl linoleate inhibits melanogenesis through 
Akt/GSK3β/β-catenin signal pathway. Therefore, we propose that ethyl linoleate may 
be useful as a safe whitening agent in cosmetic and a potential therapeutic agent for 
reducing skin hyperpigmentation in clinics.
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pigmentation. However, some of these agents have revealed harm-
ful side effects, including skin irritation, carcinogenicity, genotox-
icity, and oxidative damage to membrane lipids and proteins [16-
20]. For these reasons, some countries have placed restrictions on 
the use of these agents as cosmetic ingredients. Therefore, there 
has been an ongoing search for new treatment alternatives.

As stratum corneum, an outermost layer of the epidermis, is 
the rate-limiting barrier in absorption of an agent, how quickly 
chemical passes through this outer layer determines epidermis 
absorption [21]. Lipid-soluble chemicals penetrate the layer and 
into circulation faster and can be useful as a topical agent to pre-
vent hyperpigmentary disorders such as melasma [22-24]. Free 
fatty acids have been revealed to have regulatory effects on mela-
nogenesis. For example, unsaturated fatty acid such as oleic acid 
(C18:1), linoleic acid (C18:2), and α-linolenic acid (C18:3) suppress 
melanin synthesis and tyrosinase activity, whereas saturated fatty 
acids such as palmitic acid (C16:0) and stearic acid (C18:0) induce 
melanin synthesis [25-27].

Ethyl linoleate (linoleic acid ethyl ester), an unsaturated fatty 
acid resulting from formal condensation of the carboxyl group of 
linoleic acid with the hydroxyl group of ethanol, is used in many 
cosmetics for its antibacterial and anti-inflammatory properties 
[28,29] and is reported to accelerate healing of wounds and clini-
cally proven to be an effective anti-acne agent [30]. It was reported 
that the ethyl linoleate isolated from Oxalis triangularis inhibited 
melanogenesis by inhibiting tyrosinase promoter activity [31]. 
Though there are a few reports stating the anti-melanogenesis ac-
tivity of ethyl linoleate, the underlying mechanism for tyrosinase 
modulation by ethyl linoleate is poorly understood. In this study, 
we examined the depigmentation effects of ethyl linoleate on 
α-MSH-induced melanogenesis and investigated the underlying 
molecular mechanisms of anti-melanogenesis. Understanding the 
molecular mechanisms of ethyl linoleate involved in depigmenta-
tion can lead to development of new skin brightening formula-
tions that utilize Akt/GSK3β/β-catenin signal pathway.

Methods

Chemicals

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine 
serum (FBS), and 100× penicillin/streptomycin solution were 
obtained from Invitrogen Inc. (Grand Island, NY, USA). Di-
methyl sulfoxide (DMSO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) were bought from Amresco 
Inc. (Solon, OH, USA). Ethyl linoleate, α-melanocyte-stimulating 
hormone (α-MSH), L-3,4-dihydroxyphenylalanine (L-DOPA), 
sodium hydroxide, mushroom tyrosinase, arbutin, kojic acid, 
and resveratrol were obtained from Sigma Chemical Co. (St. 
Louis, MO, USA). MITF, tyrosinase, and TRP1 antibodies were 
obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA) 

and β-catenin antibody was purchased from BD (Franklin Lakes, 
NJ, USA). Akt, p-Akt, GSK3β, p-GSK3β, and β-actin antibodies 
were purchased from Cell signaling Technology (Beverly, MA, 
USA). Goat anti-mouse and -rabbit IgG secondary antibodies 
were obtained from Vector Laboratories (Burlingame, CA, USA).

Cell culture

The B16F10 murine melanoma cells were kindly obtained from 
Dr. Nam Ho Lee, Jeju National University, Korea. The human 
dermal fibroblast cells were kindly obtained from Dr. Moonjae 
Cho, Jeju National University, Korea. Both cell lines were cultured 
by using the DMEM containing 1% penicillin/streptomycin and 
10% heat-inactivated FBS in a humidified atmosphere with 5% 
CO2 incubator at 37°C.

Cell viability

MTT assay was used to detect cell viability. The cells were 
seeded at a density of 4×103 cells/well for B16F10 and fibroblast 
cells on 96 well culture plates and cultured overnight. Cells were 
treated with various concentration of the ethyl linoleate for 48 h. 
Then, 20 µl of MTT reagent (5 mg/ml) was added to each well at 
37°C for 4 h. After removing the medium, the formazan crystals 
dissolved with DMSO (150 µl) and the absorbance was measured 
immediately at 570 nm using a microplate reader (Tecan, Grodig, 
Austria). 

Melanin content

Melanin content was measured with a previously described 
method with slight modification [32]. After discarding the medi-
um, the cells were harvested and centrifuged. The obtained pellet 
was dissolved by 1 N sodium hydroxide (NaOH) containing 10% 
DMSO at 80°C for 30 min. The relative melanin production was 
determined by measuring the absorbance at 475 nm using the 
microplate reader.

In situ intracellular tyrosinase activity

In situ intracellular tyrosinase activity was conducted as previ-
ously reported method with minor modification [33]. Cells were 
fixed with 4% paraformaldehyde for 40 min, washed with PBS, 
and permeabilized with 0.1% Triton X-100 for 2 min. After wash-
ing the cells with PBS, cells were stained with 2 mM L-DOPA for 
2 h at 37°C. Staining was imaged and analyzed using a camera 
attached to a microscope (Olympus, Essex, UK).

Intracellular tyrosinase activity

Intracellular tyrosinase activity was determined using a modi-
fied previously method [34]. Cells were collected and lysed in lysis 
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buffer (100 mM Tris–HCl, pH 8, 250 mM NaCl, 0.5% Nonidet 
P-40, 1× protease inhibitor cocktail), sonicated several times, and 
then incubated on ice for 30 min. The lysates were centrifuged for 
25 min at 14,000 rpm and 4°C, and the protein concentration of 
supernatants were determined by measuring with a BCA Protein 
Assay kit (Pierce, Rockford, IL, USA). The diluted lysates were 
mixed with 2 mM L-DOPA at 37°C, the absorbance was deter-
mined at 490 every 10 min for 1 h by a microplate reader.

Mushroom tyrosinase activity

Mushroom tyrosinase activity was used to investigate direct 
effects of ethyl linoleate on tyrosinase activity by using commer-
cial tyrosinase isolated from mushrooms. The different diluted 
samples were mixed with 200 U/ml mushroom tyrosinase and 2 

mM L-DOPA. After incubation at 37°C for 10 min, the tyrosinase 
activity was determined by using the microplate reader at 490 nm 
absorbance.

Western blot

Western blot was assessed according to the previously de-
scribed [35]. Equal amounts of protein (10-40 µg) from the cul-
tures were separated by 10-12% SDS-PAGE and transferred onto 
PVDF membrane (Millipore, Billerica, MA, USA). Membranes 
were probed with anti-MITF (1:1,000), tyrosinase (1: 7,000), 
TRP1 (1: 7,000), Akt (1: 2,000), p-Akt (1: 1,000), GSK3β (1: 2,000), 
p-GSK3β (1: 1,000), β-catenin (1: 2,000), and β-actin (1: 10,000). 
The membranes were incubated with the secondary antibody at 
a 1:5,000 dilutions, and protein bands were detected by using the 

B

C
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Fig. 1. Effects of cell cytotoxicity and melanin production of ethyl 
linoleate. The cells were treated for 48 h with indicated concentration 
of ethyl linoleate. Cell viabilities were determined by MTT assay on 
B16F10 murine melanoma (A) and human dermal fibroblast cells (B). (C) 
The B16F10 cells were exposed to α-melanocyte-stimulating hormone 
(α-MSH, 500 nM) in the presence of ethyl linoleate (EL) for 48 h. Melanin 
content in B16F10 cells was visualized and determined at the indicated 
concentrations of EL or positive whitening agents (AR, arbutin 2 mM; 
KA, kojic acid 400 μM; RSV, resveratrol 20 μM). The data are expressed 
as the means±SD. *p<0.01, compared with the α-MSH control; #p<0.01, 
compared with the vehicle control.
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BS ECL plus kit (Biosesang, Gyeonggi-do, Korea). Relative the 
band intensity was analyzed using ImageJ analysis software (Na-
tional Institutes of Health, Bethesda, MD, USA).

Statistical analysis

All data were manipulated in three independent experiments 
and presented as means±SD. Statistical differences were subjected 
to ANOVA test and paired t-test using the Statistical Packages for 
the Social Sciences (SPSS, Chicago, IL, USA).

Results

Effects of ethyl linoleate on the cell viability and 
melanin content

Cytotoxicity of a drug is critical if the drug is used either as a 
cosmetic or as a medicine agent [36,37]. To examine the cell safety 
of ethyl linoleate, we treated B16F10 murine melanoma and hu-
man dermal fibroblast cells with various concentration of ethyl 
linoleate. As shown in Fig. 1A and B, ethyl linoleate revealed no 
significant cytotoxic effect on both cell types at a concentration 
of 400 µM. Therefore, we used 400 µM ethyl linoleate for further 
experiments. To evaluate effects of ethyl linoleate on melano-
genesis in B16F10 cells, cells were stimulated by propigmenting 
agents α-MSH in the presence or absence of ethyl linoleate for 48 
h. The excessive melanin production with α-MSH treatment was 
significantly inhibited by ethyl linoleate co-treatment (Fig. 1C). 
When cells were cultured in medium containing ethyl linoleate, 
the stimulation of melanin production by α-MSH was reduced 
to 30.40% by 400 µM ethyl linoleate. According to these results, 
ethyl linoleate is a noncytotoxic anti-melanogenesis chemical. 
Therefore, it was studied to evaluate its molecular mechanisms 
underlying anti-melanogenesis effect by using B16F10 cells.

Effects of ethyl linoleate on tyrosinase activity

As tyrosinase is the rate-limiting enzyme critical for melanin 
biosynthesis, inhibitors of tyrosinase activity have been sought as 
therapeutic means to treat hyperpigmentary disorders and cos-
metic agent [38]. To elucidate ethyl linoleate-mediated inhibition 
of tyrosinase activity, cells were incubated with L-DOPA, that 
detected in situ intracellular tyrosinase activity. Treatment with 
ethyl linoleate for 48 h reduced in situ intracellular tyrosinase 
activity without affecting cell viability compared to that in the 
α-MSH control (Fig. 2A). In addition, Fig. 2B revealed that ethyl 
linoleate treatment induced inhibition of intracellular tyrosinase 
activity compared to that in the α-MSH control. Whereas, under 
cell-free conditions, ethyl linoleate revealed no notable inhibitory 
effect on the activity of mushroom tyrosinase activity (Fig. 2C), 
suggesting that the effect on B16F10 cells was not mediated by 

direct interaction of ethyl linoleate with the tyrosinase enzyme. 
Data indicated that ethyl linoleate probably inhibited the function 
of tyrosinase by decreasing tyrosinase expression. 

Effects of ethyl linoleate on melanogenic enzyme 
protein expression

As ethyl linoleate treatment induced inhibition of intracel-
lular tyrosinase activity, not mushroom tyrosinase activity, we 
determined levels of melanogenic enzyme proteins, such as ty-
rosinase and tyrosinase-related protein 1 (TRP1). Fig. 3A shows 
that protein expressions of tyrosinase and TRP1 were repressed 
with increasing concentration of ethyl linoleate. Quantification 
of the detected signals revealed that protein levels of tyrosinase 
and TRP1 following treatment with 400 µM ethyl linoleate were 
reduced to 50.02% and 63.17% of the α-MSH control, respectively 
(Figs. 3B and C). While resveratrol, a tyrosinase inhibitor, only 
reduced expression of tyrosinase, not TRP1, suggesting that ethyl 
linoleate treatment reduced synthesis of melanin more than res-
veratrol treatment due to the reduction in the expression of both 
tyrosinase and TRP1.

Ethyl linoleate inhibits MITF expression by regulating 
Akt and GSK3β/β-catenin signal pathway

To evaluate the mechanism of the inhibitory action of ethyl 
linoleate on melanogenesis, we treated cells with various con-
centration of ethyl linoleate with α-MSH and examined the 
involvement of Akt/GSK3β/β-catenin signaling pathway. The 
microphthalmia-associated transcription factor (MITF) is widely 
regarded as the key transcriptional regulator of melanogenic 
enzyme proteins. As shown in Fig. 4A, the expression of MITF 
was reduced in a dose-dependent manner by 71.49%, 65.73%, 
and 60.80% in the presence of 100, 200, and 400 µM ethyl lino-
leate, respectively, compared to α-MSH alone treatment. Ethyl 
linoleate decreased the ratio of phosphorylated-form/total-form 
of Akt and GSK3β by 56.96% and 58.54% in the presence of 400 
µM ethyl linoleate, respectively, compared to α-MSH alone (Fig. 
4B, C). Furthermore, ethyl linoleate inhibited level of expression 
of β-catenin in a concentration-dependent manner by 96.23%, 
71.67%, and 50.31% in the presence of 100, 200, and 400 µM ethyl 
linoleate, respectively, compared to α-MSH alone treatment (Fig. 
4D). According to these results, hyperpigmentation inhibition by 
ethyl linoleate is associated with inhibition of phosphorylation 
of Akt and GSK3β that led to suppression of MITF expression 
through degradation of β-catenin, reduced tyrosinase and TRP1 
expression, and inhibited melanin production.

To further confirm involvement of Akt/GSK3β/β-catenin 
signaling pathway in ethyl linoleate-induced inhibition of mela-
nogenesis, we conducted a time course experiment to establish 
the kinetic of melanogenesis-related proteins expression follow-
ing 400 µM ethyl linoleate treatment in α-MSH stimulation. 



Ethyl linoleate inhibits melanogenesis

Korean J Physiol Pharmacol 2018;22(1):53-61www.kjpp.net

57

As shown in supplementary Fig. 1, α-MSH treatment markedly 
increased levels of tyrosinase and TRP1 in a time-dependent 
manner. MITF expression was increased after α-MSH treatment, 
which peaked at 4 h, followed by a continuous decline to 24 h, and 
a recovery to basal levels after 48 h of treatment. The ethyl linole-
ate co-treatment with α-MSH began to decrease the protein level 
of MITF at 4 h, which continued decline to 12 h. In addition, we 
observed that the phosphorylated Akt by ethyl linoleate rapidly 

declined more than those by α-MSH only. The ethyl linoleate co-
treatment with α-MSH caused decrease in the phosphorylation 
of GSK3β levels; however, there was no significant reduction in 
the phosphorylation of GSK3β following the α-MSH alone treat-
ment. It was also apparent that ethyl linoleate co-treatment with 
α-MSH resulted in the loss of β-catenin expression from 4 h to 48 
h. 

Fig. 2. Effects of ethyl linoleate on tyrosinase activity in B16F10 cells. The B16F10 cells were exposed to α-melanocyte-stimulating hormone 
(α-MSH, 500 nM) in the presence of ethyl linoleate (EL) for 48 h. (A) In situ intracellular tyrosinase activity determined by L-DOPA staining. Resveratrol 
(RSV, 20 μM) was used as a positive control. Images were captured under identical conditions using bright field microscopy. Bar=20 μm. (B) Intracel-
lular tyrosinase activity was determined using lysates obtained from B16F10 cells treated with EL or RSV. (C) The direct effect of ethyl linoleate on 
tyrosinase activity was measured with mushroom tyrosinase. Kojic acid (KA, 400 μM) was used as a positive control. The data are expressed as the 
means±SD. *p<0.01, compared with the α-MSH control; #p<0.01, compared with the vehicle control.

B C
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Discussion
Many investigations have focused on the specific mechanisms 

involved in melanogenesis to develop new therapeutic agents for 
skin pigmentation abnormalities. Pigmentation may be regulated 
by different steps: expression of melanogenic enzyme proteins, 
regulation of melanogenic enzyme activity during or before 
melanin synthesis, melanosome transfer to recipient keratino-
cytes, and melanosome degradation and turnover. Among these 
steps, the expression of melanogenic enzyme proteins is the most 
important step for regulation of pigmentation [39]. Tyrosinase, 
tyrosinase-related protein 1 (TRP1), and TRP2 are key enzymes 
for melanin biosynthesis, and these enzymes are influenced by 
microphthalmia-associated transcription factor (MITF) [5].

Previous studies have been reported that unsaturated fatty ac-
ids, such as oleic acid, linoleic acid, and α-linolenic acid, suppress 
melanin biosynthesis through the inhibition of tyrosinase activi-
ties. It has revealed that linoleic acid enhances the ubiquitination 
of mature tyrosinase and the ubiquitinated tyrosinase could be 
integrated in the ER-associated degradation after rapid process-
ing of tyrosinase from the ER to the Golgi [26,27]. However, the 

underlying mechanism for tyrosinase modulation by ethyl lino-
leate is poorly understood thus far. In the present study, we ob-
served that ethyl linoleate decreased the expression of tyrosinase 
and TRP1 through the reduction of MITF expression as shown in 
Fig. 4. Furthermore, we found that hyperpigmentation inhibition 
by ethyl linoleate is associated with inhibition of phosphorylation 
of Akt and GSK3β that led to suppression of MITF expression 
through degradation of β-catenin in a concentration dependent 
manner. 

It is known that MITF is regulated by the balance between a 
variety of signal transduction pathway, including the cyclic ade-
nosine monophosphate/protein kinase A (cAMP/PKA), extracel-
lular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase 
(JNK), and Akt pathway [12,40-43]. While we could not detect 
changes in phosphorylation of CREB, ERK, JNK, and p38 (data 
not shown), phosphorylation of Akt was decreased compared to 
α-MSH control (Fig. 4B). It has been reported that activated Akt 
can phosphorylate glycogen synthase kinase 3β (GSK3β) [44]. 
When GSK3β is phosphorylated, GSK3β-dependent phosphory-
lation of β-catenin is blocked and β-catenin is translocated into 
the nucleus, that recruits the complex of β-catenin and LEF1/

B

C
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Fig. 3. Effects of ethyl linoleate on expression of melanogenic 
enzyme proteins in B16F10 cells. The B16F10 cells were exposed to 
α-melanocyte-stimulating hormone (α-MSH, 500 nM) in the presence 
of ethyl linoleate (EL) for 48 h. (A) The levels of tyrosinase, TRP1, and 
β-actin from ethyl linoleate treated B16F10 cells were detected using 
western blot. Band intensity of tyrosinase (B) and TRP1 (C) compared 
to the α-MSH control was determined by ImageJ software. Resveratrol 
(RSV, 20 μM) was used as a positive control. The data are expressed as 
the means±SD. *p<0.05, compared with the α-MSH control; #p<0.05, 
compared with the vehicle control.
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Fig. 4. Effects of ethyl linoleate on expression of MITF through Akt/GSK3β/β-catenin signal in B16F10 cells. The B16F10 cells were exposed to 
α-melanocyte-stimulating hormone (α-MSH, 500 nM) in the presence of ethyl linoleate (EL) or resveratrol (RSV, 20 μM) for 4 h. The expression levels 
of protein including Akt, p-Akt, GSK3β, p-GSK3β, β-catenin, and β-actin were detected by using western blot. Band intensity compared to the α-MSH 
control was determined by ImageJ software. (A) MITF, (B) Akt and p-Akt, (C) GSK3β and p-GSK3β, and (D) β-catenin. The data are expressed as the 
means±SD. *p<0.05, compared with the α-MSH control; #p<0.05, compared with the vehicle control.

BA

C D
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TCF to binding sites of the MITF promoter [14,45]. Our data 
showed that ethyl linoleate treatment decreased the expression of 
p-Akt, p-GSK3β, and β-catenin (Figs. 4B-D). Therefore, the anti-
melanogenesis effect by ethyl linoleate contributed to suppression 
of MITF expression through Akt/GSK3β/β-catenin signaling 
pathway.

In conclusion, ethyl linoleate decreased melanin production 
and tyrosinase activity through the reduction of tyrosinase and 
TRP1 expression. Our data revealed that ethyl linoleate treatment 
decreased expression of MITF through Akt/GSK3β/β-catenin 
pathway. This study provides a molecular basis for understanding 
inhibitory effects of ethyl linoleate on melanogenesis. Ethyl lino-
leate may be used as a non-cytotoxic and skin-whitening agent as 
a cosmetic and medicine.
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