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D
iabetes is a vascular disease. As blood vessels
become damaged, loss of flow leads to ischemia
of critical organs. This results in coronary artery
disease (CAD), stroke, and peripheral artery dis-

ease (PAD) due to large vessel damage, as well as reti-
nopathy and nephropathy due to small vessel injury. These
vascular complications are the greatest contributors to
diabetes-associated morbidity and mortality as well as
healthcare costs related to diabetes, which are approaching
$200 billion. The incidence of cardiac and vascular disease is
expected to rise steadily as a result of the current epidemic
of diabetes (1). Thus, there is an urgent need for novel
therapies targeting large vessel damage.

Therapeutic angiogenesis offers great potential as a
strategy to treat large vessel disease. Although the angio-
genic factor vascular endothelial growth factor (VEGF) has
been tested extensively, results from over two dozen clini-
cal trials in cardiac and limb ischemia have been largely
unsuccessful (2). However, improved delivery modalities
may enhance VEGF efficacy, although additional angiogenic
and growth factors may be required for functional vessel
development, since VEGF alone generally induces forma-
tion of incomplete, leaky vessels. Approaches to use of
mesencymal stem cells (MSCs) that have the capacity to
promote angiogenesis are in their infancy, but small clini-
cal studies suggest promise in CAD and PAD (3–5). Bone
marrow–derived cells themselves are not incorporated
into collaterals. However, these cells have been shown to
produce VEGF, basic fibroblast growth factor, and other
factors that augment development of collateral circulation
and improve hindlimb ischemia (6). Bone marrow–derived
MSCs can differentiate into osteoblasts, chondrocytes, and
adipocytes, as well as cells with a myocyte phenotype in-
cluding cardiomyocytes and vascular smooth muscle cells
(5). These cells also produce growth, angiogenic and ma-
trix factors, and suppress the action of multiple types of
immune cells (7). When MSCs in combination with endo-
thelial progenitor cells were injected into patients with limb
ischemia, limb perfusion and ankle brachial index improved
as did pain-free walking distance. These benefits were ob-
served for up to 10 months (3). Genetic engineering may
further improve utility of these cells by extending their lon-
gevity, controlling secreted factors, and regulating their im-
mune function.

In this issue of Diabetes, Lu et al. (8) combined the mul-
tipotency of MSCs with the angiogenic capacity of the
hypoxia-stimulated transcriptional coactivator, peroxisome
proliferator–activated receptor-g coactivator-1a (PGC-1a).
PGC-1a is a key regulator of oxidative metabolism and mi-
tochondrial function, and coactivates the estrogen-related a
receptor to induce VEGF. Mice transgenic for PGC-1a have
been shown to have better blood flow responses to hindlimb
ischemia compared with wild-type mice, whereas PGC-1a
knockout mice had worse responses (9). Transfection of rat
MSCs with PGC-1a green florescent protein to achieve a
1.7-fold increased expression, as performed by Lu et al., led
to two- to threefold increases in VEGF, fibroblast growth
factor, platelet-derived growth factor, and hypoxia-inducible
factor-1a. This resulted in prevention of hypoxia-induced
apoptosis of MSCs and improved perfusion up to 2 weeks
following hindlimb ischemia in rats treated with PGC-1a
transfected MSCs compared with control-transfected MSCs.
Further, there was no necrosis in the PGC-1a group com-
pared with controls. These exciting observations raise many
questions. For instance, what was the fate of the injected
MSCs transfected with adenoviral–PGC-1a green florescent
protein? The results by Lu et al. showed that after trans-
plantation, more PGC-1a–transfected MSCs were present
than control-transfected cells. Did this translate into sus-
tained improvements in hindlimb perfusion beyond the 2
weeks of the study? These experiments showed that capil-
lary density was improved in mice with PGC-1a–transfected
cells. What was the source of endothelial cells and what was
the leakiness of the new vessels? Despite these unanswered
questions, demonstration of a PGC-1a–induced enhance-
ment of MSC activity applied to a physiologic model strongly
supports further investigation of this novel approach.

Recently, circulating levels of total and high-molecular
weight adiponectin were shown to be inversely associated
with incident PAD in 340 women enrolled in a nested case
study within the Women’s Health Study. These results
persisted after adjustment for traditional cardiovascular
risk factors, use of postmenopausal hormone therapy, high-
sensitivity C-reactive protein, leptin, HbA1c, and fasting insulin
(10). Adiponectin has insulin-sensitizing and anti-inflammatory
properties mediated by activation of AMP-activated pro-
tein kinase (AMPK), SIRT1, and Ca2+/calmodulin-dependent
protein kinase kinase-b (11). PGC-1a is activated by AMPK-
mediated phosphorylation and by SIRT1-mediated deacety-
lation of the transcription factor (12). Loss of the adiponectin
R1 receptor from skeletal muscle led to impaired adiponectin-
induced PGC-1a activation, insulin resistance, and reduced
muscle mitochondrial function (13). Both AMPK and SIRT1
are expressed in the vasculature and promote angiogenesis,
but a mechanism involving PGC-1a that explains adiponectin-
induced adipogenesis and vasodilation has not been consid-
ered (14,15). It is possible that low adiponectin predicted
PAD in the Women’s Health Study because of decreased
PGC-1a responses to hypoxia and/or effects on vascular
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remodeling. These studies further suggest that mechanisms
such as adiponectin that activate PGC-1a should be con-
sidered as potential strategies for treatment of ischemia.

A major concern with therapeutic angiogenesis is the
possibility of tumor growth because maintenance and ex-
pansion of tumor vasculature supplies nutrition to the can-
cer, thereby allowing its expansion (16). Indeed, adiponectin
has been implicated in both growth and inhibition of cancer,
and its effects are probably dependent on the characteristics
and growth patterns of the tumor itself as well as the tumor’s
microenvironment (17). Adiponectin is reported to poten-
tially enhance early breast cancer growth through angio-
genesis, but in mice lacking adiponectin, tumor growth was
more rapid at later stages of disease (18). SIRT1 can act as
both a tumor promoter and tumor suppressor (19). Mech-
anisms of tumor promotion include inhibition of apoptosis
and cellular senescence, negative regulation of the tumor
suppressor p53, and enhancement of angiogenesis (20).
However, little is known about PGC-1a effects in cancer.
Despite the promotion of angiogenesis, PGC-1a also in-
creases mitochondrial biogenesis, which can impair car-
cinogenesis through multiple mechanisms (21). Clearly,
further studies are necessary to investigate angiogenic
mechanisms in treatment of ischemia and their impact on
cancer development, but use of engineered MSCs is highly
promising.
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