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Abstract

The function of proteins is often mediated by short linear segments of their amino acid sequence, called Short Linear Motifs
or SLiMs, the identification of which can provide important information about a protein function. However, the short length
of the motifs and their variable degree of conservation makes their identification hard since it is difficult to correctly
estimate the statistical significance of their occurrence. Consequently, only a small fraction of them have been discovered so
far. We describe here an approach for the discovery of SLiMs based on their occurrence in evolutionarily unrelated proteins
belonging to the same biological, signalling or metabolic pathway and give specific examples of its effectiveness in both
rediscovering known motifs and in discovering novel ones. An automatic implementation of the procedure, available for
download, allows significant motifs to be identified, automatically annotated with functional, evolutionary and structural
information and organized in a database that can be inspected and queried. An instance of the database populated with
pre-computed data on seven organisms is accessible through a publicly available server and we believe it constitutes by
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of the manuscript.
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itself a useful resource for the life sciences (http://www.biocomputing.it/modipath).
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Introduction

Short Linear Motifs (SLiMs) are sub-sequences of few adjacent
amino acids (typically between three and ten residues in length)
contributing to the molecular function of proteins. SLiMs have
been estimated to mediate 15%-40% of protein-protein interac-
tions [1,2] and recognized to be critical for many biological
processes (e.g. sub-cellular targeting, post-translational modifica-
tion, signal transduction, etc.) [3]. Protein domain-SLiM interac-
tions have also been linked to several diseases, such as Alzheimer
[4] and Huntington [5] diseases, Muscular Dystrophy [6], and
malaria [7,8]. Examples of SLiMs are the C-Mannosylation site
WxxW [9], the PxxP SH3 domain binding motif [10,11], the
KDEL Golgi-to-Endoplasmic Reticulum retrieving signal [12], the
polyproline rich peptides interacting with WW domains [13] and
phosphorylation sites [14]. Given their short length, their variable
degree of conservation (positions may be degenerate in terms of
permitted amino acids), their weak binding affinity [1], the
difficulty of correctly estimate the statistical significance of their
occurrence in protein sequences, and the fact that most of them
reside in disordered regions [15], SLiMs are difficult to discover
both experimentally and computationally (e.g. [16]). For this
reason, only few hundreds of motifs are known as of today while it
is believed that the majority of SLiMs have still to be discovered

(e.g. [16]).
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Most of the known SLiMs are deposited in manually annotated
repositories including PROSITE [17], ELM [18] and MnM [19].
The manual annotation of motifs is an important process that,
besides being instrumental as a guide to experimentalists, allows the
construction of benchmarking datasets necessary for the assessment
of the performance of motif prediction tools. It is however difficult if
not impossible to scale the manual process at the level required for
handling high throughput data. The cogent need for de novo
discovery of SLiMs has prompted the development of automatic
motif discovery approaches that can be broadly divided into two
types: those that use sequence alignments to identify motifs in
evolutionarily related proteins (e.g. MEME [20]) and those that use
over-representation of motifs in evolutionarily unrelated proteins
sharing a common functional characteristic. For example, DILI-
MOT [21], which is based on the TEIRESIAS [22] combinatorial
pattern discovery algorithm, searches over-represented motifs in
non-homologous proteins with a common interaction partner. The
MOoVIN server [23] is based on the same principle and identifies the
presence of common motifs in proteins interacting with the same
partner. SLiMDisc [24] uses TEIRESIAS to find shared motifs in
all (homologous and non-homologous) proteins with a common
attribute (biological function, sub-cellular location, or a common
Interaction partner); identified common substrings are subsequently
weighted according to the evolutionarily relationships of the
proteins containing the motif.
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SLiMFinder [25] is a combined software package that
implements two algorithms, SLiMBuild and SLiMChance. The
former is designed to identify motifs that are shared by unrelated
proteins whereas the latter calculates a score that accounts for the
probability that a given motif occurs in a dataset of unrelated
proteins by chance. In practice, the motifs identified by SLiMBuild
are returned with a significance value provided by SLiMChance.
SliMFinder allows the search to be restricted to specific regions of
the set of input proteins such as disordered or non-disordered
subsequences, positions annotated by UniProt features and low
complexity regions.

The rationale behind most available SLiM discovery systems is
the assumption that motifs mediate transient interactions, and
therefore play a key role in signalling pathways, the proteins of
which often contain (e.g.) SH2, SH3, PTB, 14-3-3 domain
interacting motifs. Less well established is whether SLiMs are
equally important in mediating interactions in metabolic path-
ways, which is in principle very likely. In a metabolic pathway a
principal chemical is modified by a series of reactions carried out
by the proteins of the pathway which therefore interact with either
the principal chemical or one of its derivatives. Furthermore,
specific reactions in a metabolic pathway are temporally and
spatially compartmentalized [26].

It is therefore reasonable to expect that the corresponding
proteins and enzymes, or a subset of them, may share a binding
motif and/or one or more common cellular localization motifs and
that the inspection of the sequence of proteins involved in a
common pathway might be very useful for the discovery of novel
functional motifs. This is the strategy followed by the procedure
described here and we show that it is indeed possible to discover
novel motifs shared by proteins involved in the same biological
(signalling or metabolic) pathway.

In our procedure, named MoDiPath, proteins are grouped
according to the KEGG Pathway Database [27]. The database
contains both metabolic pathways (e.g. fatty acid biosynthesis,
purine metabolism), based on indirect protein-protein interactions,
and non-metabolic pathways (e.g. secretory, signaling pathways),
based on direct protein-protein interactions.

MoDiPath identifies over-represented SLiMs in KEGG path-
ways in different organisms, and uses functional and structural
annotation to assess their plausibility. By applying this protocol to
seven organisms, we could both re-discover previously known
motifs and detect several novel ones. The discovered motifs,
annotated with functional, structural and evolutionary conserva-
tion information and linked to several other SLiM resources, are
stored in a publicly available database accessible through a Web
interface (http://www.biocomputing.it/modipath).

The automatic procedure can be downloaded from http://
www.biocomputing.it/modipath/MoDiPath.11-04-2011.zip and
installed locally.

Results

The MoDiPath procedure

The MoDiPath procedure is designed to search for motifs that
are over-represented in a set of unrelated proteins belonging to the
same biological pathway.

We applied the procedure to all KEGG pathways from seven
organisms (H.sapiens, R.norvegicus, M.musculus, D.melanogaster, C.ele-
gans, S.cerevisiae, [F.colj) and made these pre-computed data
available via a web server.

The pipeline consists of the following steps (see Figure 1 and
Materials and Methods):
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1) Sets of proteins belonging to a given pathway in a given
organism are collected (Table S1.1 and S1.2);

2)  The proteins are filtered to restrict the analysis to proteins
that share not more than 40% and 25% sequence identity
and that are therefore less likely to be evolutionarily related
(Table S1.1 and S1.2). The 25% threshold was selected since
it is commonly used for safe removal of homologous proteins
(e.g. [28,29]). We also allow the user to increase the
threshold up to 40%, the lower level of redundancy used, for
example, by CD-HIT [30];

3)  the SLiMFinder algorithm is used for the identification of
over-represented SLiMs shared by all (or a subset of) non-
redundant proteins belonging to the pathway;

4)  the specificity of the identified motifs is assessed by
comparing the number of motif occurrences in the set of
proteins belonging to the pathway with that obtained from
searching the motifs in the whole set of KEGG protein
sequences and in the UniProt knowledge database [31];

5)  motifs are ranked based on their hyper-geometric p-value
(see later) and pathway-specific ones are identified,;

6)  motifs are compared with known SLiMs in other databases
and annotated with functional, structural and evolutionary
conservation information;

7)  the annotated motifs are stored in the MoDiPath database.

Re-discovered and newly discovered motifs

The MoDiPath procedure was able to uncover and re-discover
a significant number of motifs (Table 1).

We found 104 statistically significant motifs specific to human
pathways (21 in metabolic and 83 in non-metabolic pathways).
Out of these 104 motifs, 82 have some degree of similarity to
already known motifs present in other databases. We define two
motifs to be similar if their CompariMotif score [32] is above 0.7
(see Materials and Methods). CompariMotif takes into account
exact matches, variants of degenerate motifs and complex
overlapping motifs.

Sixty-three of these motifs are identical to known motifs stored
in one of the following databases: ELM ([18], MnM [19],
PhosphoMotif Finder [33], a dataset of motifs extracted from
the literature, and a set of SLiMs predicted by Neduva and Russell
[1]. Interestingly, twenty-two SLiMs are novel and share no
similarity with any known motif. Table 1 shows the number of
detected SLiMs already present in existing databases or very
similar to one of their entries as well as the number of newly
discovered SLiMs in each analysed organism. Novel motifs are
reported in Table S2.1 (novel motifs detected in the 25% non-
redundant dataset of sequences) and Table S2.2 (novel motifs
detected in the 40% non-redundant dataset of sequences) and re-
discovered motifs are reported in Table S3.1 (known motifs
detected in the 25% non-redundant dataset of sequences) and
Table S3.2 (known motifs detected in the 40% non-redundant
dataset of sequences).

Table 2 reports the total number of KEGG pathways analysed
per species and the number of pathways for which at least one
SLiM has been detected.

Motifs were also compared to each other (all-against-all) in
order to group similar motifs identified by CompariMotif
(CompariMotif score =0.7). The data reported in Table 1 were
filtered by taking into account only one representative motif (motif
representative) for each similarity group and the results are shown in
Table 3, from which it can be appreciated that there are 64
statistically significant motifs specific for human pathways (18 in
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Figure 1. Flowchart of the MoDiPath procedure. NormIC is the CompariMotif [32] similarity score. The CompariMotif tool was used to find
similarities between motifs automatically discovered by MoDiPath and motifs already annotated in other databases.

doi:10.1371/journal.pone.0022270.g001

metabolic and 46 in non-metabolic pathways). More detailed
information obtained from the all-against-all motif comparison is
reported in Tables S2.1 and S2.2 (for novel motifs) and Tables
S3.1 and S3.2 (for known motifs).

Data reported in Tables 1, 2, and 3 refer to the 40% non-
redundant sequence dataset. The corresponding data for the 25%
non-redundant dataset can be found in the Supporting Informa-
tion Sl file.

Evolutionary conservation of SLiMs

Evolutionary conservation is often used for assessing the
biological significance of predicted SLiMs. It is reasonable to expect
that if the residues composing a motif have a functional role, the
motif is evolutionary conserved. On the other hand, SLiMs are
usually short, tend to localise in disordered regions that are difficult
to align, and might not be shared even by closely related sequences
as a result of single mutations. These observations imply that it is
difficult to trace their evolutionary history. Here, we use a scoring
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scheme that has been specifically designed for SLiMs [34] taking
into account the potential problems mentioned above. We also used
the CompariMotif algorithm to highlight motifs that are shared by
two or more of the species under study (Table S4.1 and Table S4.2).
We found that, with some exceptions, motifs shared by different
organisms are related to similar or identical pathways. Fifty-five (45
known and 10 novel) out of the 104 human specific motifs are
shared by proteins belonging to the same pathway in at least
another species in the 40% sequence dataset (Table S4.2).

Assessment of some re-discovered and newly discovered
motifs

We manually analysed a number of examples extracted from the
list of re-discovered SLiMs (Table S3.1 or Table S3.2) detected by the
MoDiPath procedure to verify the effectiveness of our procedure.

Several of the automatically identified motifs listed in Table
S4.1 or S4.2 (SLiMs shared by two or more than two species under
study) are variations of the SKL$ theme, where S represents a
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Table 1. Number of motifs predicted in KEGG pathways.

Discovery of Novel Short Linear Motifs

Species Total® Significant SLiMs™® Novel SLiMs'®
Total MP NMP Total MP NMP Tot MP NMP

H.sapiens 2097 836 1261 104 21 83 22 6 16
M.musculus 2094 882 1212 127 38 89 28 12 16
R.norvegicus 1863 809 1054 72 19 53 15 5 10
D.melanogaster 1391 632 759 35 5 30 4 0 4
C.elegans 1050 610 440 32 12 20 6 6 0
E.coli 933 733 200 1 10 1 2 1 1
S.cerevisiae 889 584 305 20 15 5 3 2 1

@: Total number of motifs predicted by SliMFinder in KEGG pathways;
[(

(@)

doi:10.1371/journal.pone.0022270.t001

serine, K a lysine, L a leucine, and § indicates that true positive
occurrences of the motif are found at the carboxy-terminal of
proteins.

The SKL$ motif significantly overlaps with the ELM
TRG_PTSI motif (regular expression: ([SAPTC][KRH]
[LMFI]$)), which is annotated as a C-terminal signal interacting
with the Pex5p protein to target proteins into the peroxisomal
matrix, and is identical to a MnM motif annotated as Pex5 binding
and associated to trafficking to Peroxisomes. Furthermore, Gould
et al [35] identified the motif as a peroxisomal targeting signal in
four unrelated peroxisomal proteins and both Miura et al [36] and
Fujiki [37] found, more generally, that it functions as a topogenic
signal in the translocation of proteins into peroxisomes. The signal
needs to include the whole tripeptide sequence with a free alpha-
COOH group at its carboxy terminus.

This motif is significantly over-represented in the Peroxisome
KEGG pathway (KEGG ID: hsa04146) and specific (hyper-
geometric p-value<<l.72e-11). Six proteins out of the sixty-nine
belonging to this pathway share the motif. All of them are localized
in the peroxisome, five of them participate to a fatty acid metabolic
process and three of them have catalytic activity. Figure S1 shows
the PROSITE [17] and Pfam [38] domain composition of these
proteins together with the position of the SKL$ motif in the
sequence. Notably, the motif occurs in only 8 other sequences out
of the 14,239 proteins of the non-redundant UniProt human
dataset (filtered at the 40% sequence identity level). Of these, four
are membrane or secreted proteins and therefore are likely to be
false positives. The remaining four proteins are a peroxisomal
acyl-coenzyme A oxidase 3 (UniProt O15254-1), a Lon protease
homolog (Q86WAS), a peroxisomal leader peptide-processing
protease (Q2T9J0), and a zinc-binding alcohol dehydrogenase
domain-containing protein (Q8N4Q0). O15254-1 1s a different
1soform of O15254-2, a human protein, reported to belong to the
hsa04146 KEGG pathway, that does not contain the motif and
differs from O15254-1 for the lack of the last 75 C-term amino
acids; it 1s not clear why O15254-2 was chosen for inclusion in the
KEGG hsa04146 pathway; we argue that O15254-1 should be
added to the KEGG hsa04146 pathway and the assignment of
015254-2 reassessed. Q86WAS is annotated in UniProt for
having the SKL$ targeting motif and its cellular compartment is
known to be the Peroxisome, but is not associated with any KEGG
pathway. Q2T9J0 and Q8N4QO0 are peroxisomal proteins but
they are neither annotated for having the motif nor associated with
any KEGG pathway. We propose that Q2T9J0 and Q8N4Q0 use
the SKL$ motif as targeting signal to the peroxisome and suggest
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B): number of significantly over-represented motifs in pathways with respect to the two reference datasets (hyper-geometric p-value<3e-9, see Materials and Methods);
: number of significant motifs that are novel (hyper-geometric p-value<3e-9, NormIC<0.7). MP: Metabolic pathways; NMP: Non-Metabolic Pathways.

that their inclusion, and that of Q86WAS, in the KEGG
peroxisome pathway should be considered.

Another interesting motif that we automatically detected is
WS.WS (Trp-Ser-any-Trp-Ser), which is specific for the Hema-
topoietic cell lineage pathway (KEGG ID: hsa04640) (hyper-
geometric p-value<<3.10e-11). The motif was found in the analysis
of both the 40% and 25% non-redundant sequence datasets and is
present in 9 proteins out of the 79 belonging to the pathway,
whereas it occurs in only 59 other sequences of the 40% non-
redundant UniProt human dataset. Figure S2 shows the
PROSITE [17] and Pfam [38] domain composition of the nine
KEGG proteins together with the position of the WS.WS motif in
the sequence: the motif is found at the C-terminal of the
PROSITE FN3 domain in six cases and outside of the domain
in three cases. This suggests that, at least in some of these proteins,
the occurrence of the motif is not due to evolutionary conservation
but rather to functional contraints. The WS.WS motif appears to
be necessary for the binding activity of the erythropoietin receptor
(EpoR), a member of the cytokine and growth factor receptor
family. These proteins share conserved features in their extracel-
lular and cytoplasmic domains presumably necessary for proper
folding and thereby efficient intracellular transport and cell-surface
receptor binding. Yoshimura et al [39] demonstrated that
mutations in the motif of EpoR abolish processing, ligand binding,
and activation of the receptor, while Schimmenti et al [40] showed
that WS.WS is necessary for EpoR binding to Epo. For two
(Uniprot: P15509 and Q99062) out of the nine proteins hosting
the motif, the crystal structure has been determined (PDB:3CXE
[41] and 2D9Q [42]). In both cases, the motif instance is nicely
found in an exposed loop of the protein structure (Figure 2).

The proteins belonging to the hematopoietic cell lineage
pathway (KEGG ID: hsa04640) and sharing the motif all take
part in two other pathways: Cytokin-cytokine receptor interaction
(KEGG: hsa04060) and Jak-STAT signaling pathway (KEGG:
hsa04630).

Our analysis also revealed that, out of the 59 other sequences of
the non-redundant UniProt human dataset having the motif, 32
are likely to be false positives. The eighteen remaining proteins,
that we estimated to be false negatives, have a similar molecular
function (receptor activity) and a similar subcellular localization
(membrane or secreted) of the true positives. Moreover, 16 of them
are annotated in Uniprot as having the functional motif, 13 are
involved in both hsa04060 and hsa04630 KEGG pathways, one
(Q14627) belongs to hsa04630, three (075462, Q8IUI8, Q8NI17)
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Table 2. Number of KEGG pathways (total and with motifs).

Discovery of Novel Short Linear Motifs

KEGG pathways®

Pathways with SLiMs®’

Pathways with novel SLiMs'®

Species Total MP NMP Total MP NMP Total MP NMP
H.sapiens 201 87 114 42 13 29 19 5 14
M.musculus 198 87 111 50 17 33 18 7 11
R.norvegicus 197 84 113 38 13 25 14 5 9
D.melanogaster 118 84 34 9 4 5 3 0 3
C.elegans 17 82 35 15 9 6 4 4 0
E.coli 105 90 15 8 7 1 2 1 1
S.cerevisiae 92 70 22 11 9 2 2 1 1

doi:10.1371/journal.pone.0022270.t002

are included in KEGG but without pathway annotation, one
(P40189) is not present in KEGG.

From the examples reported above and others reported in
Tables S3.1 and S3.2, it is apparent that our automatic analysis
can effectively discover biologically significant motifs and therefore
that some of the novel ones (Tables S2.1 and 52.2), i.e. motifs not
annotated in any other resource, might be interesting and worth
investigating.

No matter how stringent are the statistical parameters used to
identify significant hits, assessing the biological value of a short
motif can only be achieved via experimental validation or by a
carefully reviewing of the literature.

As an example of the usefulness of inspecting our proposed
novel motifs and of the procedure that one can follow to gain
confidence in the results, we illustrate here the case of the
[FL].L.C..Y..A motif. This is conserved both in human (hsa04666)
and mouse (mmu04666) Fc gamma R-mediated phagocytosis
KEGG pathways. In the following we discuss the analysis of the
human proteins sharing the motif, but the results are the same for
the mouse proteins (data not shown).

The motif is present in 5/63 human proteins belonging to
hsa04666: P42338, Q9Y217, Q13393, 092608, O14939. P42338
is the catalytic subunit beta isoform of the phosphatidylinositol-
4,5-bisphosphate 3-kinase, which phosphorylates several phospho-
mnositides [phosphatidylinositol (PtdIns), phosphatidylinositol 4-
phosphate  (PtdIns4P), phosphatidylinositol ~ 4,5-bisphospate
(PtdIns(4,5)P2)] with a preference for PtdIns(4,5)P2. Phosphoino-
sitides represent a small fraction of cellular phospholipids and are
very important regulatory molecules utilized both as cellular
membrane structural lipids and as precursors of multiple signalling
molecules. Q9Y217 is a 1-phosphatidylinositol-3-phosphate 5
kinase. Q13393 and O14939 are phospholipases, which UniProt
reports to be stimulated by PtdIns(4,5)P2 and PtdIns(3,4,5)P3 and
by PtdIns(4,5)P2, respectively. Q92608 1is a Dedicator of
cytokinesis protein 2 (DOCK2). Interestingly, Nishikimi and
colleagues [43] found that DOCK2 rapidly translocates to the
plasma membrane in a PtdIns(3,4,5)-P3 dependent manner. In
summary, all these proteins are involved in the interaction with
phosphoinositides. By searching the motif in the whole set of
human UniProt sequence, we found 9 additional occurrences in 9
different proteins. Three of them are isoforms of Q13393 and two
are isoforms of O14939. Of the remaining four, one (000329) is a
PtdIns(4,5)P2 3-kinase catalytic subunit delta isoform, which is
reported to be involved in the PtdIns phosphate biosynthesis, and
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@ Total number of KEGG pathways in each of the seven organisms under study;

®). Number of KEGG pathways for which at least one significant motif was found (hyper-geometric p-value<3e-9, see Materials and Methods);

©: Number of KEGG pathways for which at least one statistically significant novel motif was found (i.e. a motif with no similarity to any known motif) (hyper-geometric
p-value<3e-9, NormIC<0.7). MP: Metabolic pathways; NMP: Non—Metaboﬁthways.

one (Q8TDW?7) is the Protocadherin FAT-3. The molecular
function of FAT-3 is not well known, however some authors
[44,45] reported that the fat-3 gene acts in the same genetic
pathway as synaptojanin, the main substrate of which in the brain
is PtdIns(4,5)P2 and suggest that FAT-3 functions in the endocytic
part of the synaptic vescicles recycling process. More specifically,
Marza et al [45] found that the levels of PtdIns(4,5)P2 at release
sites are increased in Caenorhabditis elegans fat-3 mutants lacking
long-chain polyunsaturated fatty acids (LC-PUFAs), which would
suggest that fat-3 influences the levels of PtdIns(4,5)P2 at release
sites. For the remaining two proteins (075976 and Q8NEZ3) we
did not find any clue to deduce potential interactions with
phosphoinositides and we cannot exclude that they are false
positives. We also analysed the 58/63 hsa04666 proteins that do
not have the [FL].L.C..Y..A motif. In this case, we automatically
selected proteins that have at least one keyword related to
phosphoinositides (e.g. PtdIns) in their UniProt annotation: we
found ten of such proteins and inspected their sequences. In six of
them, we found motifs that are similar, although not identical, to
[FL].L.C..Y..A. For example, the P48736 sequence contains the
subsequence FVYSCAGYCVA which could be described by the
[FL].[LY].C..Y..A regular expression, a less specific version of the
original expression. In the four remaining sequences, we did not
find sub-sequences sufficiently similar to the identified motif.

In conclusion, our analysis suggests that the [FL].L.C.Y..A
motif (and perhaps other related ones) is involved or participates in
the recognition of phosphoinositides.

The MoDiPath Database and the Web Interface

The whole set of motifs identified by our procedure in the seven
analysed organisms is stored in a MySQL database and made
available to the scientific community through a Web Interface
(http://www.biocomputing.it/modipath). Data are available for
motifs identified in both the 40% and 25% datasets. The Web
Interface has two main sections: “Search”, for searching the
MoDiPath database, and ‘Scan’, for either searching motif
matches in a protein sequence submitted by the user or for
scanning the database with a user-defined regular expression. The
MoDiPath database can be searched by KEGG pathway
identifier, protein identifier (either UniProt or KEGG) and/or
organism. The search by KEGG ID returns a table reporting the
motif(s) associated with the input pathway. For each motif, the
output provides the motif regular expression, indicates if the
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Table 3. Number of motif representatives predicted in KEGG pathways.

Species Total® Significant SLiMs® Novel SLiMs'®
Total MP NMP Total MP NMP Tot MP NMP

H.sapiens 813 329 484 64 18 46 21 6 15
M.musculus 803 384 419 58 20 38 22 10 12
R.norvegicus 727 322 405 55 16 39 15 5 10
D.melanogaster 616 378 238 14 5 9 4 0 4
C.elegans 513 307 206 20 1 9 5 5 0
E.coli 465 378 87 7 6 1 2 1 1
S.cerevisiae 502 336 166 16 13 3 2 1 1

(b)

and Methods);
(

doi:10.1371/journal.pone.0022270.t003

regular expression overlaps with at least one motif in another
database (ELM, MnM, etc), reports the hyper-geometric p-value
of the motif with respect to the SwissProt dataset (see Materials
and Methods) and the fraction of proteins belonging to the
pathway that contain the motif.

The system also provides further information on a specific
motif, including

a) the SlimFinder motif statistics;

b) the sequence alignment and the list of proteins that both
belong to the pathway AND contain the motif;

c) the motif cross-reference to other databases of motifs;

d) the list of GO terms shared by the proteins matching the
motif}

e) PROSITE [17] and Pfam [38] domains shared by the protein
sequences matching the motif;

f)  the exact sequence of the motif;

g) the starting and ending position of the match in the protein
sequence;

h) the evolutionary conservation score;
i)  the PDB ID (if available).

j)  access to the STRING database [46] that provides an
interaction map specific for the proteins of the pathway
sharing the motif.

Figure 3 shows a screenshot with the information provided by
MoDiPath for the WS.WS motif, which is specific for the

Figure 2. The crystal structure of the human granulocyte
colony-stimulating factor (GCSF) receptor. The structure of the
GCSF receptor (PDB:2D9Q [42]) is reported in orange. Residues
corresponding to the WS.WS motif (residues 295-299) are shown in
blue.

doi:10.1371/journal.pone.0022270.g002
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@ Total number of motif representatives predicted by SliMFinder in KEGG pathways;
: number of significantly over-represented motif representatives in pathways with respect to the two reference datasets (hyper-geometric p-value<3e-9, see Materials

9: number of significant motif representatives that are novel (hyper-geometric p-value<3e-9, NormIC<0.7). MP: Metabolic pathways; NMP: Non-Metabolic Pathways.

hsa04640 KEGG pathway. For each protein sharing the motif, a
page containing functional and structural details is provided. In
particular, if the protein is of known structure, the position of the
matching sub-sequence is displayed in the context of its three-
dimensional structure.

If the initial search is performed with a protein ID, the list of
pathways including the query protein and, for each pathway, the
list of motifs matching the protein, if any, can be retrieved.

A search by organism returns the list of KEGG pathways for
which at least one statistically significant motif has been found in
the query organism. Each pathway is linked to the complete list of
its motifs.

Finally, for each motif it is possible to download, explore and
edit the whole pathway map corresponding to a selected motif
using KGML-ED [47], a Web Java start program downloadable
through the MoDiPath Web Interface. In each pathway map,
proteins containing the motif are conveniently highlighted.

The implementation of the complete system can also be
downloaded and installed locally to analyse other organisms of
interest or to use definition of pathways provided by other
resources such as PANTHER [48], REACTOME [49], or
EcoCyc and MetaCyc databases [50].

Discussion

The discovery of linear motifs is a difficult task that usually
requires the identification of a set of non-homologous proteins
sharing a common functional feature (e.g., an interaction partner
or a cellular compartment). Many algorithms for motif discovery
are nowadays available and appropriate statistics have been
developed for estimating the effectiveness of a motif for function
prediction. However, several challenging aspects still remain, for
example one needs to identify appropriate sets of non-homologous
proteins sharing a functional feature and associate the appropriate
biological function to newly discovered motifs. The two issues are
of course strictly related: for example, if one were able to identify a
set of proteins that are targeted to the same cellular compartment,
a motif significantly over represented in their sequences would be
likely to be a targeting signal to that compartment.

This is the idea that inspired several works in the field, such the
one of Neduva et al, aimed at discovering motifs that mediate
protein-protein interaction networks [51].

Restricting the analysis to non-homologous proteins is relevant
to avoid detecting general sequence homology features instead of
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Figure 3. The information provided by MoDiPath for the hsa04640 KEGG pathway. (a) First column: the SLiM regular expression; Second
column: a '+ is reported if the motif overlaps to a similar motif in other databases (the list of which is shown by moving the mouse over the ‘+'); Third
column: the hyper-geometric p-value of the number of motif hits in the hsa04640 pathway compared to the number of motif hits in the SwissProt
database; Fourth column: The fraction of proteins in the hsa04640 pathway that contain the WS.WS motif (b) Multiple sequence alignment of the
hsa04640 pathway proteins containing the WS.WS motif. (c) Information about each of the hsa04640 proteins containing the WS.WS motif. Clicking
on the ‘Show’ button provides more detailed information, including the protein structure visualization with the motif hit(s) highlighted. (d) List of
motif overlap(s) to similar motifs in other databases; the last column reports the CompariMotif [32] similarity score (NormIC). (e) GO terms shared by
the hsa04640 pathway proteins that have the motif; the last column reports the fraction of the proteins hosting the motif that share a GO term.

doi:10.1371/journal.pone.0022270.9003

genuine functional motifs. Even though functional motifs can also
be found in evolutionary related proteins, the most interesting ones
are represented by cases of convergent evolution. However, the
latter are rare and difficult to discover, especially at the level of the
protein sequence. One possible approach to idenitfy motifs arising
independently during evolution, consists, on one hand, in using
non-homologous sequences and, on the other, in filtering out
motifs occurring in similar (e.g. Pfam) domains. The MoDiPath
database only collects motifs identified in non-redundant sets of
proteins and annotates motif matching proteins for the presence of
Pfam and PROSITE domains. This facility does not ensure that
every discovered motif will be a case of convergent evolution, but
can help users identify those that are likely to be relicts of common
descent with no specific functional properties.

Here, we focused on functional features typical of metabolic and
signaling pathways. Pathway functional features can be of different
types: they could be related to the interaction with the same
metabolite or its derivatives, or pertain to specific cellular
compartments, or arise, for example, from the interaction with
recurring signaling modular domains (SH2, SH3, WW, PDZ, etc).

We used this strategy to explore all proteins of seven organisms
assigned to KEGG pathways and identified a number of
potentially biologically significant motifs that represent a valid
starting point for further computational and experimental
functional investigation.

The methodology is reliable, as demonstrated by the fact that
we can automatically re-discover known motifs, for example the
targeting peroxisome signal SLK$ or the WS.WS motif necessary
for processing, ligand binding and activation of receptors specific
for the hematopoietic cell lineage pathway but also taking part in
two related pathways: the cytokin-cytokine receptor interaction
pathway and the Jak-STAT signaling pathway.

The procedure is also effective in detecting novel motifs. As an
example we described here the analysis of one of them
(([FL].L.C..Y..A) for which no functional annotation is available,
and found that it is likely to be involved in the recognition of
phosphoinositides.

We hope that MoDiPath, its associated database as well as the
list of motifs that we provide here will contribute to speed up the
discovery of novel motifs and will constitute a useful resource for
the life scientists.

Materials and Methods

Motif discovery procedure

We used the KEGG (Kyoto Encyclopedia of Genes and
Genomes) Pathway database as the source of pathway informa-
tion. In this resource, proteins from 1173 different species (release
of March 2010) [27] are clustered in pathways. Each pathway
represents functional aspects of a biological system, and involves a
specific protein list, graphically represented as a network of
connected proteins. The number of pathways depends on the
species (Table 2).

@ PLoS ONE | www.plosone.org

Pre-computed data presently associated with MoDiPath are
available for seven species (H.sapiens, R.norvegicus, M.musculus,
D.melanogaster, C.elegans, S.cerevisiae, E.coly).

For each KEGG pathway, we collected all protein sequences
and, in order to only retain unrelated proteins, used CD-HIT (last
release 4.0 beta) [30] to remove redundancy at the 40% as well as
at the 25% identity level. Each pathway protein list was analysed
by SlimFinder, one of the best performing tools for linear motif
detection [25]. In SliMFinder the term SLiM 1s used to mean short
(generally less than 10 residues), linear (i.e. made up of adjacent
residues in the primary sequence) true functional motif. SLiMs,
which are encoded by regular expressions, are composed by
defined amino acid positions often separated by wildcards (which
represent positions that can be occupied by any amino acid).
Defined position can be fixed (only one amino acid type is
permitted) or degenerate (more than one amino acid type is
permitted). The number of defined positions and of wildcards can
be either fixed or variable.

SliMFinder is a software package that implements two different
algorithms, SiMBuild and SiMChance, and offers a number of
input masking options, which can be used to restrict the analysis to
specific parts of the proteins, such as disordered or low complexity
regions. SliMBuild builds motifs by first combining pairs of
residues into longer patterns and subsequently incorporating
amino acid degeneracy and/or variable length wildcards, until the
SLiM matches the desired number of unrelated sequences.
SliMChance deals with the probability that a motif occurs in a
sequence dataset by chance and determines a score indicating how
unlikely a given motif is compared to other motifs in a dataset.

The input of SLiMFinder is a user-defined set of sequences, plus
a number of options such as the BLAST e-value threshold to be
used to identify which input proteins are related to which other
input proteins, the minimum number of unrelated proteins that
should contain the motifs, the maximum number of defined
positions in a motif, the maximum number of wildcard positions,
disorder masking, etc.

SLiMFinder was run locally with default parameters except for
the disorder masking option, which was deactivated. We retained
the subset of top significant motifs with a very high probability of
significance (SLiMChance probcut =0.99).

The statistical assessment of a motif specificity for a given
pathway was obtained by comparing the number of the motif
occurrences in the proteins belonging to the pathway with the
number of occurrences in two reference datasets: 1) all UniProt
proteins (from the same organism) and 2) all the proteins included
in KEGG. Since proteins belonging to a KEGG pathway are
contained in both reference datasets, the hyper-geometric p-value
was used to assess the motif specificity, i.e. to assess whether it is
observed more frequently in the KEGG pathway than expected by
chance given its frequency in each of the two reference datasets.

In order to choose an un-biased hyper-geometric p-value
threshold, we had to take into account the KEGG pathway
peculiar composition, which is clearly not random. To this aim, we
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Figure 4. Motif occurrence Hyper-geometric distribution. Hyper-geometric p-value distribution for the number of motif occurrences in true
(black) and reshuffled (red) KEGG pathways with respect to the number of motif occurrences in the UniProt dataset for H.sapiens. The p-value =3e-9

approximately corresponds to a false discovery rate of 10%.
doi:10.1371/journal.pone.0022270.9g004

built random pathways by reshuffling the proteins of each pathway
with proteins belonging to other pathways, leaving the number of
proteins per pathway unmodified. Next, we plotted the hyper-
geometric p-value distribution of motif occurrences in the random
datasets with respect to their occurrences in the Uniprot dataset
and compared it to the corresponding distribution for the true
datasets (Figure 4). We estimated that the hyper-geometric p-value
that better discriminates between true and false positives (random)
is 3e-9, which corresponds to a false discovery rate (FDR) lower
than 10%. The procedure was repeated ten times for H.sapiens
producing essentially the same result. The result was the same
when all human proteins of SwissProt were used for reshuffling
(data not shown).

Motif-motif comparison

The CompariMotif software [32] was used to compare
predicted motifs to similar motifs annotated in other databases
(ELM [18]), MnM [19], PhosphoMotif Finder [33]), a set of
SLiMs extracted from the literature, and predicted SLiMs from
Neduva & Russell [1]). The software takes as input two lists of
motifs and returns a set of motif pairs associated with a similarity
score (Normal IC), which ranges between 0.0 (weak similarity) and
1.0 (strong similarity).

CompariMotif uses a sliding window to compare every possible
alignment between two motifs (represented as regular expressions).
Two aligned positions are considered a mismatch if they have no
amino acid in common amino (in which case the motif pair is
rejected). Each compared position is scored according to its
information content: IC; = —logn(f,), where IC; is the information
content for position ¢, f, is the summed frequency for the amino
acids at position ¢ and N=20. IC; is a modification of the

@ PLoS ONE | www.plosone.org

Shannon’s Information Content algorithm [52] where wildcards
have score 0, fixed positions have score 1, and ambiguous positions
have scores between 0 and 1. The IC,,, of a match is the sum of the
component IC; values. A sliding window will produce several
matches and the best match is taken as the one with the best
overall IC,,,. In order to make the score independent from the
length and degeneracy of the matching motifs, a final normalized
IC (Norm IC) score is calculated by dividing the IC,,, by the lower
IC value for the two motifs. Pairs of motifs with Norm IC =0 are
clearly dissimilar and pairs of motifs with Norm IC =1 are highly
similar, however, a cut-off must be set for pairs of motifs with
intermediate Norm IC values in order to discriminate between
true and false matches. The choice of such cut-off is arbitrary and
depends on the empirical observation of compared motifs (RJ
Edwards, personal communication).

Based on the analysis of Norm IC scores for MoDiPath pairs of
compared motifs, we considered two SLiMs to be similar if their
Normal IC >0.7.

Supporting Information

Supporting Information S1 Supplementary motif and
pathway statistics. The file contains the same data of Table 1,
2, and 3 (main text) calculated for the 25% non-redundant
sequence dataset. Moreover, it reports statistics on motifs
occurring in disorered and loop regions. It is organized in three
sections as follows: 1) Motif and pathway statistics calculated for
the 25% non-redundant sequence dataset. 2) Statistics of motifs
occurring in disordered regions of proteins (calculated for both the
40% and 25% datasets). 3) Statistics on motifs occurring in loop
regions (calculated for both the 40% and 25% datasets). A motif is
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assigned to a loop (disordered) region if at least 50% of the residues
belonging to the motif true positive matches are in loop
(disordered) regions, respectively.

(DOC)

Table S1 Total number of proteins belonging to the
pathways under study and number of motifs per
pathway. Table S1.1: Data obtained from the analysis of the
25% non-redundant sequence dataset. Table S1.2: Data obtained
from the analysis of the 40% non-redundant sequence dataset.

(XLS)

Table 82 List of novel motifs. Table S2.1: List of novel motifs
obtained by restricting the analysis to the 25% non-redundant
sequence dataset. Table S2.2 — List of novel motifs obtained by
restricting the analysis to the 40% non-redundant sequence dataset.

(XLS)

Table S3 List of known motifs. Table S3.1: List of known
motifs obtained by restricting the analysis to the 25% non-redundant
sequence dataset. Table S3.2: List of known motifs obtained by
restricting the analysis to the 40% non-redundant sequence dataset.

(XLS)

Table S4 List of motifs shared by two or more of the
species under study. Table S4.1: List of motifs shared by two
or more of the species under study in the 25% sequence non-
redundant dataset. Table S4.2: List of motifs shared by two or
more of the species under study in the 40% non-redundant
sequence dataset.

(XLS)
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