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The traits that affect evolvability are subject to indirect selection, as these traits affect the course
of evolution over many generations rather than the direct replicative fitness of an individual. How-
ever, the evolution of evolvability-determining traits is often difficult to study because putative
evolvability alleles often have confounding direct fitness effects of unknown origin and size. Here,
we study theoretically and experimentally the evolution of mutation rates in proofreading poly-
merases with orthogonal control of direct and indirect selection. Mutagenic DNA polymerases enjoy
a long-time fitness advantage by enhancing the rate of acquiring beneficial mutations. However,
this is offset by a short-time fitness penalty, which we trace to a counterintuitive trade-off between
mutation rates and activity in proofreading polymerases. Since these fitness effects act on different
timescales, no one number characterizes the fitness of a mutator allele. We find unusual dynamic
features in the resulting evolutionary dynamics, such as kinetic exclusion, selection by dynamic envi-
ronments, and Rock-Paper-Scissors dynamics in the absence of ecology. Our work has implications
for the evolution of mutation rates and more broadly, evolution in the context of an anti-correlation
between mutation rates and short term fitness.

Darwinian evolution is often seen as a tinkering algo-
rithm that incrementally increases the fitness of an organ-
ism. As algorithms go, it is remarkably simple: relying
on only a few key ingredients — heritable variation and
natural selection — to adapt organisms to their environ-
ment [1].

However, in contrast to human tinkering, a unique as-
pect of biological evolution is that the parameters of the
algorithm are themselves subject to evolution [2, 3]. The
nature and amount of heritable variation available to nat-
ural selection is itself under the control of biological fac-
tors — ‘modifier’ genes that control the rate at which new
variants arise. Examples include genes that affect muta-
tion rates [4–7] and spectra [8, 9], recombination rates
[10], horizontal gene transfer, and ‘buffers’ that reduce
the impact of deleterious mutations [11–13]. Variation
at these loci can influence the rate at which future bene-
ficial alleles arise, thereby altering the dynamics of future
evolution.

A particular simple and universally relevant source of
variation is the mutation rate, which is set primarily by
the biophysics of DNA replication and repair [14]. Ge-
netic changes in the machinery of replication can lead
to ‘mutator alleles’: variants with an enhanced mutation
rate. Mutator alleles have been found in both labora-
tory and natural populations. For instance, six of the
twelve long-term evolution experiment (LTEE) lineages
have fixed a mutator phenotype [7, 15]. In the wild, sam-
pling of bacterial and fungal clades has revealed a large
dispersity of mutation rates [16–18]. Even within the re-
stricted timescales of somatic evolution, mutator alleles
can have outsize effects, as many cancers are thought to
be driven by recurrent genetic instability [19, 20].

Mutator alleles have been the subject of recent the-
oretical and experimental interest, as a model system
to understand when evolution tunes its own parameters.
However, determining when and how mutator alleles are
favoured by natural selection is challenging. For exam-
ple, if mutation rates are found to increase in a stress-
ful environment [7, 21, 22], careful work must establish
whether this was an inevitable biophysical consequence
of the stress, accidental fixation of the mutator alleles, or
actually due to the enhanced mutation rate via the ac-
quisition of beneficial mutations. Unfortunately, the evo-
lution of mutation rates is thought to depend on factors
that are often difficult to measure in experiments, such as
the balance between available deleterious and beneficial
mutations [23–32]. As a consequence, it has been difficult
to design systematic, well-controlled experiments.

Here, we take advantage of a novel experimental sys-
tem to study the evolution of mutator alleles. We study
the selection of mutagenic alleles of a DNA polymerase
in an orthogonal replication system in yeast: the killer
DNA virus [33–35]. Here, a DNA polymerase copies only
a short cytosolic plasmid contained within the yeast cell.
By choosing genes with known fitness landscapes, we
control the number and strength of beneficial mutations
available under direct selection, and study their conse-
quences on the indirect selection of mutator alleles in the
polymerase.

We find that mutator evolution is determined not only
by the long-term benefit of mutations that it induces,
but also by a short-term cost. This short-term cost —
which we trace to a counterintuitive biophysical trade-
off between DNA polymerase speed or processivity and
mutation rate [36] — grows with the long-term benefit
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and thus imposes a kinetic barrier to mutator fixation.
Even when strongly beneficial mutations are available,
mutators can be driven extinct by this short-term cost.
Combining population genetics theory with an engi-

neered, two-gene selection scheme, we map out a phase
diagram that predicts when mutators fix. Our results
indicate that no one number specifies the ‘fitness’ of a
mutator allele when its impact on short-term and long-
term fitness are in conflict since they act on different
timescales. Accordingly, we find that its population ge-
netics can show ‘rock-paper-scissor’ dynamics. Further,
we identify conditions under which ramping up selection
strength (e.g., drug levels) over time can select for a
mutator, even if no fixed selection strength can do so.
We indicate how our results, though established in a
concrete experimental system, generalize to evolvability-
determining modifier alleles[32, 37, 38] at large, and high-
lights the fundamentally dynamic nature of fitness when
direct and indirect selection are in conflict.

RESULTS

A. A minimal experimental system for the
evolution of mutator alleles

Prior work on the evolution of mutator alleles has used
a small number of mutator alleles that act on the entire
genomes of bacteria or yeast [39–41]. Consequently, the
number and strength of available beneficial and delete-
rious mutations — and how they vary in different en-
vironments — is unknown and difficult to manipulate
experimentally.
We sought a model system in which we could exert

rational control over these parameters. We turned to
the DNA killer virus found in the yeast species K. lactis
[33, 42, 43]. This system consists of two cytosolic ‘killer’
plasmids pGKL1 (p1) and pGKL2 (p2), each copied by
a dedicated, orthogonal DNA polymerase. Recently, this
system was adapted into a directed evolution platform,
Orthorep [34, 35], by placing a gene of interest on p1 and
linking that gene’s function to host fitness.
Here, we turn this directed evolution platform on its

head by using it as an indirect selection platform on the
underlying DNA polymerases. We encode a gene with
known fitness landscapes (e.g. well-studied antibiotic re-
sistance genes) on p1, select directly on that gene and
study the resulting indirect evolution of the DNA poly-
merase.
Co-opting the OrthoRep directed evolution platform

to study the indirect evolution of DNA polymerases pro-
vides for several advantages. We can manipulate the
strength and availability of beneficial mutations since the
p1 plasmid contains a chosen set of genes. The WT DNA
polymerase, tp-dnap1, achieves very low mutation rates
rates[34] by exploiting kinetic proofreading[44, 45], a
broad error-correcting mechanism found across the Cen-
tral Dogma [46]. As a consequence, mutants of this poly-

merase can differ in proofreading activity or other aspects
of fidelity, resulting in a wide range of mutator alleles,
with mutation rates ranging from 10−7 substitutions per
basepair per generation (sbp) to 10−4 sbp [35, 47]. Note
that at the mutation rates and timescales studied here,
deleterious load is likely to be negligible over the kilobase
length-scale of the p1 plasmid.

We first studied the indirect selection of proofreading
polymerases during directed evolution of the metabolic
gene dihydrofolate reductase (DHFR) from P. falci-
parum. PfDHFR activity is sensitive to the anti-
marial drug pyrimethamine (pyr), against which it
can acquire resistance mutations that have been well-
characterized[48, 49]. To carry out this study, we deleted
the dihydrofolate reductase (DHFR) gene from the yeast
genome and encoded its homolog PfDHFR on p1. The
concentration of pyr in our growth media acts as a tune-
able selection pressure that acts on a known landscape
of beneficial mutations.

We calibrated the system by measuring the strength of
a pyr-resistant mutation as a function of pyr concentra-
tion. The selection coefficient ranges from s = 0.1 with-
out pyrimethamine to s = 0.8 at 200µM pyr, Fig. 1b.
Using our experimentally measured data, we simulated
a competition between strains with two different muta-
tion rates at different levels of pyrimethamine, at a total
population size N = 107. Consistent with prior theory
[27, 31], the simulation predicts that, at high concentra-
tions of pyr, the mutator allele acquires the beneficial
mutation and outcompetes the non-mutator, Fig. 1c.

We then performed the same competition in experi-
ment, choosing a pair of polymerases with mutation rates
of 10−7 and 10−5 sbp (termed 318 and 611, respectively;
see Fig. 1a). Strains expressing each polymerase were dif-
ferentially labelled with fluorescent markers mKate and
mVenus, mixed 1:1 and passaged daily into fresh media
at varying concentrations of pyr. The population compo-
sition was monitored by flow cytometry at each dilution.

In contrast to simulation, we observed that the muta-
tor strain 611 was never able to fix in the population. In
fact, at higher pyr concentrations, the mutator was out-
competed faster, Fig. 1c. We confirmed that beneficial
mutations are available to the mutator by competing the
pyr-mutant in the mutator 611 background against the
non-mutator 318. In this case, the pyr-mutant rapidly
fixed in the population at high concentrations of pyr,
confirming that selection can act on the beneficial muta-
tion.

We then repeated the experiment with a different pair
of polymerases: RR5 and 633. The non-mutator RR5
and mutator 633 had mutation rates of approx. 10−6 sbp
and 10−4 sbp, respectively, similar to the last pair. How-
ever, unlike before, we found the mutator does eventually
acquire the beneficial mutation and sweep the population
at high pyr, Fig. 1c. However, even here the mutator first
decreases in frequency before later sweeping the popula-
tion. The contrast between the two pairs of polymerases,
and between the experimental and simulation results, in-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.618309doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.14.618309
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

FIG. 1. A minimal experimental system for mutator evolution reveals mutators can be driven extinct by a short-
time cost that increases with the size of beneficial mutations. a In the killer DNA virus that underlies the Orthorep
system, a dedicated DNA polymerase (‘dnap’) copies a cytosolic plasmid (‘p1’) independent of the host yeast replication
machinery. Indicated are chosen mutator and non-mutator dnaps used in this paper. b We encoded the metabolic enzyme
dihydrofolate reductase from P. falciparum (PfDHFR) onto p1, whose function is inhibited by the drug pyrimethamine. Drug
resistant mutations in PfDHFR confer a fitness benefit whose strength varies with pyrimethamine concentration (right). c (Left)
A simulated competition between a mutator and a non-mutator strain, varying the strength of the beneficial mutation. (Centre
+ Right) Experimental competition between dnaps 318 and 611 (centre), and 633 and RR5 (right), varying pyrimethamine
levels. Two replicates are shown for each pyr level. d Definition of the short-term cost (stc) and long-term benefit (ltb). e
Quantification of stc and ltb as a function of pyrimethamine concentration, for each of the pairs of polymerases competed
together in c.

dicated that the mutation rate and the strength of the
beneficial mutation are not sufficient to determine the
eventual evolutionary outcome.

B. Short-term costs impose a kinetic barrier to
mutator evolution

Why does the mutator 611 lose to 318 even when ben-
eficial mutations are available? We noted that, in all
competitions, the mutator population declined at early
times. We quantified this ‘short-term cost’ as the early
time selective advantage sc of the non-mutator, Fig. 1d.

In addition, we characterised separately the selective ben-
efit sb of a beneficial PfDHFR mutation induced by the
mutagenic polymerases. Both quantities were found to
increase with pyrimethamine, though the short-term cost
sc was markedly stronger for the pair of polymerases in
which the mutator eventually lost, Fig. 1e.

We traced the molecular origin of the short-term cost
to the processivity of the DNA polymerase. p1 is a multi-
copy plasmid, with expression of p1-encoded genes in-
creasing with copy number. We hypothesised that our
mutagenic polymerases were unable to maintain p1 at a
high copy number, and consequently express p1-encoded
genes at lower levels with a corresponding effect on fit-
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FIG. 2. Short-term costs, arising from dnap activity, impose a kinetic barrier to mutator fixation. a The
activity of the dnap sets the copy number of p1, which determines the expression level of p1-encoded genes. b Fluorescence of
p1-encoded mKate2 for the four dnaps, measured by flow cytometry. Grey dashed line indicates background fluorescence. Data
shows that 318 is a more active dnap than 611, while 633 is comparable with RR5. c We calculate the fixation probability of a
mutator allele as a function of its short-term cost, sc, as well as the long-term benefit gained from beneficial mutations, sb. d
A schematic phase diagram, highlighting the kinetic exclusion regime in which mutators lose even though beneficial mutations
are sufficiently strong to overcome the short-term-cost. e Replicate Wright-Fisher simulations in different regimes of the phase
diagram in (d); at Φ ≈ 1, mutator fixation is stochastic, indicating a cross-over rather than a sharp transition. f The mutator
fixation probability is a universal function of Φ, as shown by a data collapse of many parameter values (grey points) onto a
master curve (black).

ness, Fig. 2a. Consistent with this, flow-cytometry mea-
surements of a fluorescent protein encoded on p1 showed
a sharp reduction in fluorescence when p1 is replicated
by the mutagenic polymerases, Fig. 2b.
Differences in expression of PfDHFR also explain

why both sc and sb grow with pyrimethamine. As
pyrimethamine reduces the catalytic rate of the PfDHFR,
its effects can be counteracted by a higher expression of
the enzyme. Poor expression leads to a higher suscepti-
bility to the drug, and thereby a larger advantage granted
by drug-resistance mutations.
Does the short term cost explain the results of our com-

petition experiments? Naively, no. The overall selective
advantage of a mutator after it has picked up a benefi-
cial mutation is s = sb − sc. As s > 0 for both pairs of
polymerases at sufficiently high pyr, we would expect the
mutator to have fixed in both cases.
However, this argument neglects the kinetics of the

process. As the mutator is being outcompeted by the
non-mutator, it only has a finite time ∼ 1/sc in which
to produce a mutant that survives drift and fixes in the
population. We refer to this a ‘kinetic barrier’ to muta-
tor fixation, and find that mutators overcome the kinetic
barrier when,

Φ ≡ µN

sc

1− e−2(sb−sc)

1− e−2N(sb−sc)
> 1. (1)

This result is plotted as a phase boundary in the sc–sb
plane in Fig. 2d, and rationalizes the outcomes of our
PfDHFR experiments. In one pair of the polymerases
(318 vs 611), the high short-term cost paid by the muta-
tor drives the competition into the kinetically excluded
regime. Consequently, the mutator is unable to produce
a winning mutant before it is driven extinct. In con-
trast, in the other pair of polymerases (RR5 vs 633), the
mutator overcomes this kinetic barrier at high levels of
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FIG. 3. Orthogonal experimental control of short-term costs and long-term benefits reveals different regimes
of selection for mutators. a Schematic of the his3-ura3∗ construct on the p1 plasmid, which allows for orthogonal control
of short-term costs and long-term benfits by varying 3-AT and uracil levels in the media, respectively. b Doubling time of
DNA polymerase monocultures in varying levels of 3-AT, showing that the mutagenic, but less active polymerases are more
susceptible to the drug. c Measured short-term costs and long-term benefits at varying levels of uracil and 3-AT. Solid lines
show the effect of varying only uracil or 3-AT. d Results from competition between 318 and 611, in depleted uracil media (3.6
g/L) at varying levels of 3-AT.

pyrimethamine and is thereby able to fix in the popula-
tion. (For simplicity, we assumed a zero mutation rate
for the non-mutator in this analysis; we relax this as-
sumption later.)
In Fig. 2e we present replicate Wright-Fisher simula-

tions in different regimes of the sc–sb plane, calculating
the probability that the mutator eventually fixes at dif-
ferent values of sb and sc. Replotting the simulated data
as a function of Φ we observe a good data-collapse onto
a master curve, confirming the validity of Eq. 1.

C. Orthogonal control of short term costs and
long-term benefits

Thus far, our theory and experimental results make
two key predictions. First, that the molecular origin
of the short-term cost is the activity of the DNA poly-
merase. Second, that varying the short-term cost can
shift the outcome from the mutator being driven extinct
(due to the kinetic barrier), to one in which the muta-
tor is able to acquire beneficial mutations and fix in the
population.
These predictions are hard to test in many systems[7,

40] since short and long term effects are hard to disen-
tangle in experiments. In our system, we sought to gain
orthogonal control over short-term costs and long-term
benefits via a two-gene strategy: one primarily responsi-
ble for the short-term cost and the other for the long-term
benefit. We integrated the metabolic genes his3 and ura3
on-to p1, with an early stop codon in the open reading
frame of ura3 (amino acid 29: caa → taa). The back-

ground strain was auxotrophic for histidine and uracil
due to disabled his3 and ura3 genes in the genome, and
requires expression of these genes from p1 to grow in me-
dia without histidine and uracil, respectively (Fig. 3a).

We reasoned that, in media lacking histidine and
supplemented with 3-amino-1,3,4-triazole (3-AT, an in-
hibitor of his3 function, [50]), the growth-rate of the
strain would be a function of his3 expression level, and
thereby p1 copy number and polymerase activity. Con-
versely, removing uracil from the media provides a selec-
tive advantage for reversion of the stop codon in ura3.
These were borne out in experiment, Fig. 3b. The strain
therefore provides orthogonal control over short term
costs and long-term benefits by varying the concentra-
tion of 3-AT and uracil, respectively.

We confirmed this relationship by measuring the de-
pendence of sb and sc on 3-AT and uracil, varying the
former between 0 and 50 mM and the latter between 10%
and 100% of its usual concentration in our synthetic com-
plete media (i.e. 24mg/L). As expected, and in contrast
to our pyrimethamine results, we could now orthogonally
tune sb and sc by varying uracil or 3-AT concentrations,
respectively, Fig. 3c.

With this system in hand, we returned to the poly-
merases 318 and 611. With PfDHFR as the primary
gene, 611 was unable to obtain a beneficial mutation in
competition against 318, which we attributed to kinetic
exclusion arising from the short-term cost paid by 611.
Varying only the concentration of 3-AT, we now observed
a transition from a regime in which 611 loses to one in
which it picks up a beneficial mutation and fixes in the
population, Fig. 3d. We conclude that the observed short
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FIG. 4. An inverted speed-accuracy trade-off governs the evolution of mutation rates in proofreading DNA
polymerases. (a) Activity and mutation rate of the killer virus DNA polymerase variants characterized in [35] (b) We
competed a range of mutant polymerases against the wildtype. Shown is the final fraction of the mutant in the population for
each competition, ordered by (i) the mutation rate of the mutant, (ii) the activity of the mutant, and (iii) our criterion, Eq. 1
which correctly rank-orders the competition results.

term cost is due to differences in the processivity of the
polymerase, and that varying the short-term cost is suf-
ficient to alter the eventual fate of the mutator.
Occasionally, at an intermediate value of 3-AT, the mu-

tator’s frequency goes down, up, and finally down again.
Such dynamics is likely due to the non-mutator picking
up a beneficial mutation at late times and outcompet-
ing the mutator-mutant. Consistent with this, similar
dynamics could be observed in simulations with a non-
zero mutation rate for the non-mutator. This highlights
the complex, non-monotonic population genetics possible
with second-order selection.

D. An inverted speed-accuracy trade-off constrains
the evolution of proofreading polymerases

Our results so far result from a conflict between short-
term and long-term fitness effects in mutator evolution.
However, this conflict may or may not be relevant to a
broad class of mutator alleles. In the particular case of
DNA polymerases, 611 and 633 might not be represen-
tative mutagenic alleles in that other mutagenic variants
might not pay an activity cost. We therefore turned to
studying a larger number of DNA polymerase variants,
to see if the conflict between short and long-term fitness
plays a role more broadly in polymerase evolution.
In Fig. 4 we plot data on 213 polymerase variants

from the largest mutational screen of a DNA polymerase
accomplished to date, carried out during the develop-
ment of the OrthoRep platform [35]. Shown is the mu-
tation rate µ against the copy number of the p1 plas-
mid supported by the polymerase — a measure of poly-
merase activity. Over a broad range, the data shows
an inverse correlation between mutation rate and activ-
ity: highly mutagenic polymerases are less active, and
would be expected to incur a short-term cost against
a less-mutagenic, highly-active polymerase such as the
wildtype. This result contradicts many prior theoretical
expectations [51–55] since proofreading activity[44, 45] is
expected to reduce mutation rates at the cost of speed or
activity of the polymerase; see [36] for recent work on a

potential biophysical explanation for this counterintutive
tradeoff.

Setting aside mechanistic origin, here, we focus on the
implications for evolution of mutators. The counterintu-
itive results in Fig. 4 suggest that the evolution of muta-
genic polymerases is strongly constrained by short-term
costs. If a mutagenic polymerase were to arise in a pop-
ulation, it may be driven extinct despite its higher rate
of acquiring beneficial mutations.

To test these ideas, we performed pairwise competition
of several polymerase mutants against the wildtype. Six
variants were chosen with a range of mutation rates and
activities, confirmed by fluctuation assay and p1-encoded
fluorescence, respectively. Polymerases were introduced
into a strain harboring the his3-ura3∗ p1 construct and
competed against a strain expressing the wildtype poly-
merase in low-uracil media, thereby selecting for rever-
sion of the stop codon in ura3∗.

Fig. 4 shows the frequency of the polymerase mutants
in the population after ∼ 40 generations, at which point
each mutant is either less than 1% of the population or
greater than 99% of the population. We rank order the
polymerases by either mutation rate or activity (as as-
sayed by p1 copy number, measured by flow cytometry),
to see if either trait can explain the competition results.

Neither trait is predictive on its own. While several
of the mutagenic polymerases fix against the wildtype,
the most mutagenic polymerase is consistently driven
extinct. Mutation rate is therefore a poor predictor of
mutator fixation. Conversely, activity is also a poor pre-
dictor: polymerases 611 and 633-p drive the expression
of a p1-encoded gene to similar levels, yet have strongly
divergent outcomes in competition against the wildtype
polymerase.

In contrast, ordering by the expression Eq. 1 — which
takes into account both the polymerase activity and the
mutation rate — appropriately separates polymerases
that eventually outcompete the wildtype from those that
do not – see SI for details. We conclude that the evolu-
tionary fate of mutagenic polymerases depends not only
on the long-term benefit of acquiring beneficial muta-
tions, but also on the short-term cost paid in terms of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.618309doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.14.618309
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

polymerase activity.

E. ‘Rock-paper-scissors’ dynamics in pairwise
competition

Our results so far invoke a tension between short-term
costs and long-term benefits in the evolution of mutators.
The former acts against the mutator at short times, while
the latter favours it at longer times. However, from the
perspective of population genetics, can these two factors
be combined into a single number that denotes the overall
effective ‘fitness’ of a mutator allele?
If such a parameter existed, we could rank-order DNA

polymerases by that number into a strict hierarchy
(Fig. 5a, left) that predicts outcomes of pairwise compe-
tition. In contrast, if instead we can find three mutator
alleles whose outcomes in pairwise competition follows
a ‘rock-paper-scissors’ dynamic (Fig. 5a, right), no such
rank-ordering can exist.
In Fig. 5b we present simulations of pairwise competi-

tions between three strains that vary in mutation rate
as well as short-term cost (Fig. 5b, left) picked from
the scatter plot in Fig. 4a. As we observe in real DNA
polymerases, the short-term cost grows with the muta-
tion rate. For each strain, a beneficial mutation of fixed
strength is accessible. When mutator B is competed
against the non-mutator A, B is driven extinct by the
short-term cost before it can acquire a beneficial muta-
tion. Similarly, though C has a higher mutation rate
than B, both strains are eventually able to acquire the
beneficial mutation. As C pays a higher short-term cost
than B, C loses to B.
As B has lost to A, and C has lost to B, we would

expect C to lose to A. However, we observe that C’s
mutation rate is so high that it rapidly acquire a winning
beneficial mutation and wins against A. Thus, A, B,
and C are an example of a ‘rock-papers-scissors’ trio,
and the outcome of their pairwise competition cannot be
captured by a single ‘fitness’ value. We conclude that no
one number summarizes the fitness of a mutator allele.

F. Mutators are favored by ramping up selection
pressure over time

We find that a mutator strain (say strain A) can be
selected over a non-mutator (strain B) if the selection
pressure on beneficial mutations is ramped up over time,
even if strain B is selected over A at any fixed value of
selection pressure.
As shown in Fig. 5c, we consider an environments with

either fixed low selection or fixed high selection or en-
vironments that transition between a low-selection and
a high-selection environment. In Wright-Fisher simula-
tions, we find that the mutator loses to the non-mutator if
both the fixed low-selection environment and fixed high-
selection environment but wins if the environment tran-

sitions from low to high selection on a specific timescale
τ ; see Fig. 5d.

This unusual situation arises from the fact that short-
term cost and long-term benefit have effects that are sep-
arated in time. The short-term cost is paid immediately
by the mutator, while the long-term benefit is reaped
only when (and if) the mutator acquires a beneficial mu-
tation.

As seen in our PfDHFR experiments (Fig. 1), environ-
ments in which the long-term benefit of a mutator allele
are appreciable are also those in which the short-term
costs are high. Consequently, in low selection environ-
ments, short-term costs are weak in the low-selection en-
vironment, but so are the long-term benefits. In high
selection environments, both costs and benefits are high
but mutators are driven to extinction by the short term
costs before they can accrue a winning beneficial muta-
tion.

By switching environments at the right timescale τ ,
mutators have the opportunity to establish a standing
genetic variation of mutants in the low selection envi-
ronment; these mutants can then be strongly selected in
the changed high selection environment. Within a sim-
plified analytical framework, we compute the probability
that a mutator fixes as a function of time τ spent in the
low-selection environment as

Pfix(τ) ≈ 1− exp

(
− 2µN

1− e−2Ns
g

(
escτ ,

s

sc

))
(2)

where g(A, r) = r
A+r(1+A) ln

(
A2(1+r)+A−r

2A

)
, sc is the

short-term cost in the permissive, low-selection environ-
ment, and s is the fitness of a mutator-mutant in the
harsh, high-selection environment.

Eq. 2 is plotted on top of simulation results in Fig. 5d,
showing a good agreement and demonstrating that the
‘optimal’ τ is∼ 1/sc. We conclude that the temporal sep-
aration between short-term costs and long-term benefits
allows the population genetics of the mutator to ‘res-
onate’ with environmental timescales, highlighting the
unusual dynamics of second-order selection.

DISCUSSION

Our results show that that the evolution of mutation
rates in polymerases is determined by a conflict between
two traits - mutation rate and replication activity (e.g.,
speed or processivity). However, unlike other common
cases of pleiotropy where one allele affects multiple traits,
the two traits here manifest at different timescales. One
trait — the mutation rate — is subject only to second-
order selection that acts on the lineage, not the individ-
ual. The other trait – replication activity — is subject
to first order selection, as it determines the replication
speed of the individual’s genetic material.
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FIG. 5. Conflicting short and long term fitnesses lead to unusual evolutionary dynamics of mutator alleles.
a When genotypes have a well-defined notion of fitness, they can be strictly rank-ordered by pairwise competition outcomes.
In contrast, a cyclic ‘rock-paper-scissors’ outcome is inconsistent with any one number characterizing fitness. b Simulated
pairwise competitions between three strains (Left): a non-mutator (A : µ = 0, sc = 0), a medium-mutator (B : µ = 10−5,
sc = −0.08), and a mutator (C : µ = 10−3, sc = −0.2). B and C can acquire a beneficial mutation of strength sb = 0.3. (Right)
Pairwise competitions results, with fraction of simulations with indicated outcome written as a percentage. Panels show four
representative trajectories from each competition. c Schematic showing a permissive, low-selection environment in gray, and
three different harsh, high-selection environments in orange, black, and green. All environments are in the regime where Φ < 1
(as defined in Eq. 1), in which the mutator loses in a static environment. d Schematic of dynamics in static and dynamic
environments. In a static permissive environment, the mutator loses as no beneficial mutations are available. In a static harsh
environment, mutators are outcompeted due to short-term cost before they can generate beneficial mutations. In a dynamic
environment, however, mutators can accrue mutations in the permissive environment that then sweep when they environment
becomes harsh. e Probability that the mutator fixes in a dynamic environment, as a function of time τ spent in the permissive
environment. Points show simulated results for three different harsh environment with increasing sb (as indicated by colour in
c). Solid lines are Eq. 2.

If the two traits had been in concert, the above dis-
tinction would not have a qualitative impact. While our
case study involved proofreading polymerases, the kind
of pleiotropy seen here — negative direct costs associ-
ated with positive first order costs — should be expected
to be seen just as often as the converse. For example,
codon usage can change the availability of beneficial mu-
tations and mutational robustness, a second order effect;
but codon usage also typically has first order direct ef-
fects in terms of protein translational efficiency. These
effects could be linked in conflicting directions.

Similarly, deleterious load, while mechanistically dis-
tinct from the direct cost in replication activity studied
in this work, could effectively play a similar role as seen
here[27, 31, 56]. In particular, if the positive and neg-
ative tails of distribution of fitness effects tend to scale
together, higher mutation rates will be linked to higher
deleterious load and more strongly beneficial mutations,
much like in the work here. Consequently, the counter-
intuitive evolutionary consequences such as rock-paper-

scissors and environmental timescale-dependent selection
of mutators might be seen in a range of contexts beyond
proofreading polymerases.

Our work suggests the intriguing possibility that mu-
tation rates could ‘ratchet’ or lock in place at unusually
low mutation rates. The trade-off in Fig. 4a suggests drift
towards higher mutation rate would be selected against
due to loss of activity which appears to be significant
for the WT polymerase here. As a consequence, drift
dynamics would be ratchet-like, with many more non-
deleterious mutations available towards lower µ than to-
wards higher µ. In fact, this possibility could offer an
alternative explanation for why the mutation rate of the
killer DNA virus exploited here is so low, adding a layer
to the drift-barrier hypothesis[3, 28]. The WT mutation
rate is µ ∼ 10−9 substitutions per base while the WT
p1 plasmid is of length L ∼ 104 bases. The resulting
deleterious load µL ∼ 10−5 ≪ 1 is weak; our quantita-
tive results in this study (e.g., Fig.4) suggest that the
need for sufficient replication activity exerts a substan-
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tially stronger selective pressure than deleterious load in
maintaining such unusually low mutation rates.
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Direct and indirect selection in a proofreading polymerase
Supplementary Information

Strains, growth conditions, and plasmids
Yeast were grown either in YPD (1% yeast extract, 2% peptone, 2% dextrose) or in synthetic complete (SC) media (1.7 g/L
yeast nitrogen base, 5 g/L ammonium sulfate, 36 mg/L myo-inositol, and 2g/L of a homemade amino acid mix) with the
appropriate drop-outs. Solid media included 2% agar.

The base OrthoRep strains GA-y103 and GA-y319, as well as plasmids containing the tpdnap1 variants 318, 520, and 633,
the PfDHFR gene, and p1 integration cassettes were a kind gift from Chang Liu. Other tpdnap1 variants were constructed by
site-directed mutagenesis. To monitor population composition in competition experiments, we cloned a fluorescent protein
onto the same plasmid as the polymerase – either mKate or mVenus.

Genomic deletions were performed by CRISPR/Cas9. Guide RNA sequences were cloned into the Cas9 plasmid by blunt
end ligation, while 100bp double-stranded repair templates containing 50bp of homology upstream and downstream of the
desired ORF were made by PCR. Each knockout was done with 500ng to 1ug of pCas plasmid and 1 to 5ug of repair template;
knockouts were verified by diagnostic PCR.

Unless otherwise noted, all cloning was done with a home-made Gibson assembly mix.

To integrate genes onto p1, the desired ORFs were first cloned into integration cassette plasmids. Linear integration cassettes,
containing flanking regions of homology to p1, were amplified by PCR and transformed directly into yeast. Transformants
were restreaked to single colonies, and successful integration confirmed by PCR.

Flow cytometry and quantification
Flow cytometry was done on Attune Nxt or Agilent Penteon instruments, flowing > 105 cells for each measurement. To
identify mKate-positive and mVenus-positive cells in competition experiments, thresholds were manually set and verified for
all experiments. > 80% of all cells were positive for either mKate or mVenus; a small fraction of flowed events were positive
for both or neither – these were discarded from the analysis.

To quantify the copy number of p1, we transformed polymerase variants into a strain with a p1-encoded mKate. Cells
were passaged 1:100 twice to stabilise p1 copy number, then back-diluted and grown to log phase for measurements. A
non-fluorescent yeast strain (of the same genetic background) was flowed alongside as a negative control.

Fluctuation assays
The mutation rate of all polymerases used were measured by Luria-Delbrück fluctuation assays, using the reversion of a stop
codon in either p1-encoded leu2 or ura3 as a selectable marker. Assays were set up with ∼ 20 replicate cultures each, and
mutation rates were inferred by maximum likelihood fitting of the Luria-Delbrück distribution.

Competition time series
Pairwise competitions were conducted in deep-well (96-well) plates, with populations propagated by passaging into fresh
media and composition monitored by flow cytometery at every passage. Competitions were initiated by growing monocultures
of the mutator and non-mutator strains (i.e. 611 vs 318 for both PfDHFR and HisUra, 633 vs RR5 for PfDHFR alone) to
saturation, and mixing 1:1 as assessed by OD600. The mix of cells was then diluted (10uL into 400uL for PfDHFR strains,
1 uL into 1mL for HisUra strains) into wells of a deep-well plate, into media containing the appropriate selective media (i.e.
dropout media supplemented with varying amounts of pyrimethamine for PfDHFR, or with 3-AT and uracil for HisUra strains).
Each selective condition was run with at least two independent replicates in different wells of the plate.

Competitions were then grown without shaking for approximately 2 days, at which point they were passaged identically
into the same selective media. A portion (∼ 100 uL) of saturated culture was removed for analysis by flow cytometry at every
passage. Competitions were terminated when one strain exceeded the other by over a hundred-fold.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.618309doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.14.618309
http://creativecommons.org/licenses/by-nc-nd/4.0/


SI

Figure 1: a Colour swap competition experiment with 318 and 611 in the PfDHFR strain. b Fluorescence of p1-encoded mKate2 for the
four dnaps, measured by flow cytometry. Grey dashed line indicates mean background fluorescence, green is the distribution of background
fluorescence. c Growth curves of indicated dnap at varying 3-AT levels.

To ensure that the choice of fluorescent protein does not affect our conclusions, we repeated our 318-611 PfDHFR
competitions with ‘colour-swapped’ strains, Fig. 1. We observe qualitatively similar dynamics.

Measuring short-term-costs and long-term-benefits
We measured short-term-costs and long-term benefits by pairwise competition, using the mKate- and mVenus-marked strains
described above. Briefly, the chosen strains (see below) were normalised by OD600, combined 1:1, and analysed by flow
cytometry to obtain the initial ratio of strains. The mix of cells was then diluted either 1:40 into 400uL of the appropriate
dropout media supplemented with pyrimethamine (PfDHFR strains), or 1:1000 into 1mL SC-HWU supplemented with 3-AT
and uracil (His-Ura strains) – in wells of a 96-well plate. Each growth condition was performed in at least two replicates.
Cells were then grown at 30C for approximately two days, following which each competion was analysed by flow cytometry
to obtain the final ratio of strains.

To measure short-term costs, we competed together a mutator with a non-mutator (i.e. 611 vs 318 for both PfDHFR and
HisUra, 633 vs RR5 for PfDHFR alone). Denoting by 𝑟 𝑓 (𝑟0) the ratio of mutator to non-mutator at the final (initial) time, the
selection coefficient is

𝑠𝑐 = − 1
𝑇

ln
𝑟 𝑓

𝑟0
.

where the number of generations, 𝑇 , was estimated from the dilution factor used to set up the competitions: i.e., 5 for PfDHFR
strains and 10 for His-Ura strains.

To measure the long-term-benefit 𝑠𝑏, we first obtained mutants in the mutator background by either passaging repeatedly
in liquid culture containing pyrimethamine (for PfDHFR) or by selecting on an SC-Ura plate (for the His-Ura strain). These
were then competed against the non-mutator as described above. The corresponding selection coefficient, 𝑠 = 𝑠𝑏 − 𝑠𝑐, was
computed as:
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Variant Mutations Mutation Rate (per bp per cell) Lower CI Upper CI
520p G410H N423D 2.698e-06 2.206-06 3.226e-06
520 R331I N423D 3.635e-07 3.690-08 9.104e-07
RR5 L477V G410H L640Y I777K W814N 9.904e-07 2.267e-07 2.113e-06
633e D428A D356A L477V L640Y I777K W814N 6.737e-07 3.435e-07 1.080e-06
611 I777K L900S 8.542e-06 6.503e-06 1.078e-05
633 L477V L640Y I777K W814N 1.257e-04 8.245e-05 1.754e-04

Table 1: Mutation rates of polymerase variants measured in this study.

𝑠 =
1
𝑇

ln
𝑟 𝑓

𝑟0
,

where 𝑟 𝑓 and 𝑟0 are as before, except now for the mutator-mutant. 𝑠𝑏 was then obtained by adding 𝑠𝑐 to this.

Competing mutant polymerases against the wildtype
We competed six mutant polymerases against the wildtype. Competitions were done as above, with the following modifications.
Cells were grown in SC-HWU supplemented with 10% uracil and either 0 mM, 2 mM, or 10 mM 3-AT. The competitions
were passaged 1:100 in 400uL of media, and the population was analysed by flow cytometry after the first, second, and seventh
passage – after which the experiment was terminated. The only exception was RR5 at 10 mM 3-AT, which had to be re-done
due to human error and was passaged only up to the fourth passage.

To rank order competition results, we measured mutation rates with fluctuation assays as described above. To approximate
the short-term cost, we measured the expression level of a p1-encoded fluorescent protein (mKate) replicated by each of
the mutant polymerases; as higher expression level corresponds to a lower short-term cost, we approximated the latter as
∝ 1/expression level.

To rank order by our theory (Eq. 1 in the main text), we further assumed that the fitness of the beneficial mutant (𝑠𝑏 − 𝑠𝑐)
was the same for all variants (as competitions were done in severe uracil depleted conditions, a ura+ strain would have a strong
fitness advantage). Using the simplified criterion (Eq. 4 of this SI), we therefore computed 𝜇𝑁/𝑠𝑐 using the expression level
to approximate 𝑠𝑐 as above – giving us the final rank ordering shown in Fig. 4b of the main text.

Growth curves
In Fig. 3 of the main text, we report the doubling times of different polymerases at varying levels of 3-AT. These were obtained
from growth curves in a 96-well plate. Briefly, saturated cultures of HisUra strains with different polymerases were diluted
1:200 in SC-HW supplemented with varying amounts of 3-AT. These were used to seed a clear 96-well plate, with each
condition run in triplicate. Twelve wells were filled only with empty media to serve as blanks. Plates were grown at 30C with
shaking in a BMG Spectrostar Nano, taking OD600 readings every 20 minutes. Data was background subtracted and fit in the
exponential growth phase; doubling times were computed from the fitted growth rate.

Kinetic trapping and mutator fixation
In the main text, we introduce ‘kinetic trapping’, in which mutators are driven extinct even though beneficial mutations are
available. To see this, we compute here the probability that a mutator strain gains a winning mutation and fixes in the population
before being driven extinct.

For simplicity, suppose that the non-mutator has a mutation rate of 0, and that the mutator and non-mutator are at equal
proportion at the initial time 𝑡 = 0. For the mutator, mutations occur with rate 𝜇𝑁 𝑓mut(𝑡), where 𝑓mut is the mutator frequency,
and each mutation has a probability

𝜙(𝑠, 𝑁) = 1 − exp(2𝑠)
1 − exp(−2𝑁𝑠)

of fixing, with 𝑠 = 𝑠𝑏 − 𝑠𝑐. Putting it all together,

Prob. fixation: 1 − exp
©­­­«−

∫
𝑑𝑡

rate of successful mutation︷                  ︸︸                  ︷
𝜇𝑁 𝑓mut (𝑡) 𝜙(𝑠, 𝑁)

ª®®®¬ (1)
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The fraction of mutators in the population satisfies

𝑑𝑓mut
𝑑𝑡

= −𝑠𝑐 𝑓mut (1 − 𝑓mut)

⇒ 𝑓mut (𝑡) =
1

1 + 𝑒𝑠𝑐𝑡
(2)

with an initial condition of 𝑓mut(𝑡 = 0) = 1/2. Plugging everything in, we get:

1 − exp
(
− ln 2

𝜇𝑁

𝑠𝑐

1 − 𝑒−2𝑠

1 − 𝑒−2𝑁𝑠

)
(3)

In the main text, we report the quantity in the exponent as Φ. If we expand Φ, up to O(1) factors, we obtain a simpler,
approximate criterion for mutators winning:

𝜇𝑁
𝑠𝑏 − 𝑠𝑐

𝑠𝑐
> 1 (4)

Time-varying environment (“ramp”)
Let us suppose we go between two environments:

• Env. 1 (low selection): Short-term cost 𝑠𝑐 and long-term benefit 0 (ie mutator-mutants have the same fitness as
mutator-wildtype).

• Env. 2 (high selection): Very high short term cost (we’ll never need it explicity), but a long-term benefit such that the
overall fitness of a mutator-mutant is 𝑠 > 0.

By definition, env. 1 is in the bottom-left region of the phase diagram in Fig. 2 of the main text. For simplicity, we will
suppose that env. 2 is in the centre (‘kinetically trapped’) phase. Consequently, mutators do not win in either static env. 1 or
in static env. 2 (or any environment that interpolates between them)

The population will start in env. 1 with an initial frequency of mutators 𝑓mut = 1/2, spend time 𝜏 there, and then find itself
in the harsh env. 2 for the remainder of the calculation. We will assume that the only route to fixation is that a mutator-mutant
arises in env. 1, survives until time 𝜏, and then fixes in env 2. This neglects the possibility of successful mutants arising in
env. 2 itself – as env. 2 is in the kinetically trapped phase, this is a low-probability event, and so we neglect it.

Once again, we will calculate fixation probability from the rate of generating successful mutants:

Prob. fixation: 1 − 𝑒−𝐼 (𝜏)

𝐼 (𝜏) ≡
∫ 𝜏

0
𝑑𝑡 𝜇 𝑛(𝑡) 𝑃fix (𝜏 − 𝑡) (5)

except now the probability that a particular mutation fixes depends on it surviving until the environmental switch. We can
write 𝑃fix (𝑡) as follows. First: we’ll need to average over the frequency of the lineage established by the mutant at time 𝜏 when
the environment switches:

𝑃fix (𝜏 − 𝑡) =
∫

𝑑𝑓 𝑃( 𝑓 , 𝜏 − 𝑡) 𝜙( 𝑓 ) (6)

where 𝜙( 𝑓 ) = 1−exp(−2𝑁𝑠 𝑓 )
1−exp(−2𝑁𝑠) is the prob. that a mutant with frequency 𝑓 fixes, and 𝑃( 𝑓 , 𝜏 − 𝑡) is the probability that a mutation

that occured at time 𝜏 − 𝑡 in env. 1 has frequency 𝑓 at time 𝜏:

𝑃( 𝑓 , 𝑡) = (1 − 𝑝𝑠 (𝑡)) · 𝛿( 𝑓 ) +
𝑝𝑠 (𝑡)
𝑓𝑠 (𝑡)

exp
(
− 𝑓

𝑓𝑠 (𝑡)

)
(7)

where 𝑝𝑠 (𝑡) is the probability that the mutant lineage has not gone extinct, and 𝑓𝑠 (𝑡) is the average lineage size (conditioned
on having not gone extinct):

𝑝𝑠 (𝑡) =
2𝑠𝑐

exp(𝑠𝑐 𝑡) − 1

𝑓𝑠 (𝑡) =
1 − 𝑒−𝑠𝑐 𝑡

2𝑁𝑠𝑐
(8)
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So, we can plug Eqn. 7 into Eqn. 6 to get:

𝑃fix (𝑡) =
𝑝𝑠 (𝑡)

1 − 𝑒−2𝑁𝑠

(
1 − 1

2𝑁𝑠 𝑓𝑠 (𝑡) + 1

)
=

2𝑠𝑐
1 − 𝑒−2𝑁𝑠

1
𝑒𝑠𝑐𝑡 − 1

(
1 − 𝑠𝑐

𝑠(1 − 𝑒−𝑠𝑐𝑡 ) + 𝑠𝑐

)
(9)

Proceed by sticking the above into Eqn. 5:

𝐼 (𝜏) =

∫ 𝜏

0
𝑑𝑡 𝜇 𝑛(𝑡) 𝑃fix (𝜏 − 𝑡)

=
2𝜇𝑁𝑠𝑐

1 − 𝑒−2𝑁𝑠

∫ 𝜏

0
𝑑𝑡

1
1 + 𝑒𝑠𝑐𝑡

1
𝑒𝑠𝑐 (𝜏−𝑡) − 1

(
1 − 𝑠𝑐

𝑠
(
1 − 𝑒−𝑠𝑐 (𝜏−𝑡)

)
+ 𝑠𝑐

)
=

2𝜇𝑁
1 − 𝑒−2𝑁𝑠

∫ 𝐴

1
𝑑𝑦

1
1 + 𝑦

1
𝐴 − 𝑦

(
1 − 𝐴

𝑟 (𝐴 − 𝑦) + 𝐴

)
(10)

Here, 𝐴 = 𝑒𝑠𝑐 𝜏 and 𝑟 = 𝑠/𝑠𝑐, and we have changed variables to 𝑦 = 𝑒𝑠𝑐𝑡 . Evaluating the integral,

Prob. fixation: 1 − 𝑒−𝐼 (𝜏)

𝐼 (𝜏) = 2𝜇𝑁
1 − 𝑒−2𝑁𝑠

𝑟

𝐴 + 𝑟 (1 + 𝐴) ln
(
𝐴2 (1 + 𝑟) + 𝐴 − 𝑟

2𝐴

)
(11)

as reported in the main text.

Numerical methods
All simulations are done with a simple implementation of Wright-Fisher dynamics with mutations and selection. We work
with a fixed population 𝑁 and multiple genotypes with 𝑛𝑖 individuals each. At each time step, we draw the composition of the
new population by sampling with replacement from the old one. The probability of sampling genotype 𝑖 is 𝑃𝑖 ∝

∑
𝑗 𝑊𝑖 𝑗𝑛 𝑗 ,

where:

𝑊𝑖 𝑗 = 𝛿𝑖 𝑗 𝑓𝑖

(
1 −

∑︁
𝑘

𝜇𝑖→𝑘

)
+ 𝑓 𝑗 𝜇 𝑗→𝑖 (12)

where 𝜇𝑖→ 𝑗 is the mutation rate from genotype 𝑖 to genotype 𝑗 .

These dynamics are implemented with the function wrightFisherDynamics, seen below. For instance, the code here simulates
(many replicates of) a single mutator competition:

1 ### Parameters
2

3 nPopulation = 100000 # Population size
4

5 # Mutation rate
6 Mij = np.zeros([4, 4]) # 0 is non-mut-wt, 1 is non-mut-mut, 2 is
7 Mij[0,1] = 0 # non-mutator doesn’t mutate
8 Mij[2,3] = 1e-6 # mutator
9

10 nGen = 2000 # Number of generations to simulate
11 nRep = 250 # Number of replicates for each parameter choice
12

13 stc = 0.3 # Short-term costs
14 ltb = 0.35 # Long-term benefits
15

16 ### Simulation
17

18 # The initial conditions -- a 50-50 mix of mutators and non-mutators
19 initFreq = np.array([0.5, 0,
20 0.5, 0])
21
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22 # Matrix of selection coefficients for each genotype
23 selCoeff = np.array([0, 0 + ltb,-stc, -stc + ltb])
24

25 popGen = wrightFisherDynamics(selCoeff, Mij = Mij, initFreq = initFreq , nGen = nGen, nRep = nRep,
nPopulation=nPopulation)

1 def wrightFisherDynamics(selCoeff, Mij = [], initFreq = [],
2 nPopulation = 100000, nGen = 1000,
3 nRep = 1):
4 """
5 Simulates a Wright Fisher process with mutation and selection.
6 Returns a set of time series: [replicate , generation , species]
7 """
8

9 nGenotypes = len(selCoeff)
10

11 # If I haven’t specified mutations
12 if len(Mij) == 0:
13 Mij = np.zeros((nGenotypes , nGenotypes))
14

15 if len(initFreq) == 0:
16 initFreq = np.ones(nGenotypes)/nGenotypes
17

18 fitness = np.exp(selCoeff)
19

20 # Build transition matrix
21 Wij = np.zeros((nGenotypes ,nGenotypes))
22 for i in np.arange(nGenotypes):
23 for j in np.arange(nGenotypes):
24 Wij[i,j] = (i==j)*fitness[i]*(1 - np.sum(Mij[i,:])) + fitness[j]*Mij[j,i]
25

26 # Iterate through time
27 rng = np.random.default_rng()
28 popVec = np.zeros((nRep, nGen, nGenotypes))
29 for rep in np.arange(nRep):
30 if len(initFreq.shape) == 1:
31 population = np.array(initFreq*nPopulation , dtype = np.int64)
32 if len(initFreq.shape) == 2: # one for each replicate
33 population = np.array(initFreq[rep]*nPopulation , dtype = np.int64)
34 for gen in np.arange(nGen):
35 weights = np.dot(Wij,population)
36 population = rng.multinomial(nPopulation , weights/np.sum(weights))
37 popVec[rep, gen,:] = population
38

39 return popVec

Parameter values

• Fig. 1c of main text: population size 𝑁 = 107, non-mutator 𝜇 = 0, mutator 𝜇 = 10−5, strength of beneficial
𝑠𝑏 ∈ {0.1, 0.15, 0.2, 0.25, 0.4}.

• Fig. 2e of main text: population size 𝑁 = 105, non-mutator 𝜇 = 0, mutator 𝜇 = 10−5. From left-to-right, pairs of
{𝑠𝑐, 𝑠𝑏} for the mutator are {10−2, 5 × 10−3}, {10−2, 0.105}, {10−2, 0.015}, and {2 × 10−3, 10−1}.

• Fig. 2f of main text: population size 𝑁 = 105, non-mutator 𝜇 = 0, mutator 𝜇 = 10−6. Data points were generated from
a grid of values spanning 𝑠𝑐 ∈ [0.05, 2] and 𝑠𝑏 ∈ [0.01, 0.25], with 250 replicates for each pair of parameter values.
Simulations were run for 2000 generations each.

• ‘Rock-paper-scissors’: Fig 5b of main text. We simulated 10,000 replicate Wright-Fisher simulations, 250 generations
each, with the following parameters:

1. A fixed long-term-benefit 𝑠𝑏 = 0.3 for all strains.
2. Non-mutator A: 𝜇 = 0, short-term cost 𝑠𝑐 = 0.
3. Mutator B: 𝜇 = 10−5, 𝑠𝑐 = 0.08
4. Super-mutator C: 𝜇 = 10−3, 𝑠𝑐 = 0.2

• Time varying selection, Fig. 5d,e of main text: populations size 𝑁 = 105, non-mutator 𝜇 = 0, mutator 𝜇 = 10−5. All
simulations began in an environment with 𝑠𝑐 = 0.005 and 𝑠𝑏 = 0. After time 𝜏, populations were transitioned to an
environment with an {𝑠𝑐, 𝑠𝑏} of {0.5, 0.5025} (orange), {0.5, 0.51} (black), or {0.5, 0.55} (green).
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