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Accumulating evidence over the past decade has linked the development of metabolic 
syndrome related to diabetes to variations in gut microbiota, an emerging, critical 
homeostatic regulator of host energy metabolism and immune responses. Mechanistic 
studies in rodent models have revealed an ever-increasing multitude of molecular mech-
anisms whereby the gut microbiota interacts with various host sensing and signaling 
pathways, leading to modulation of endocrine system, immune responses, nervous 
system activity, and hence, the predisposition to metabolic diseases. Remarkably, the 
microbiota-driven immune responses in metabolic tissues and the host nutrient-sensing 
mechanisms of gut microbial metabolites, in particular short-chain fatty acids, have been 
significantly associated with the proneness to diabetes and related disorders. This review 
will synthesize the recent efforts on unraveling the mediating role of gut microbiota in 
the pathogenesis of metabolic diseases, aiming to reveal new therapeutic opportunities.
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DieT-DRiven GUT MiCROBiOTA DYSBiOSiS iS CAUSALLY 
LinKeD TO THe TYPe ii DiABeTeS MeLLiTUS (T2DM) AnD 
ReLATeD MeTABOLiC DiSORDeRS

Type II diabetes mellitus, a major constituent of metabolic diseases, is clinically hallmarked by 
hyperglycemia, impaired peripheral response to insulin (i.e., insulin resistance) and pancreatic β-cell 
decompensation. T2DM is essentially linked to obesity and the pathophysiology of both entails facets 
of gene–diet/lifestyle interactions. Obesity and T2DM also increase the incidence of non-alcoholic 
steatohepatitis and cardiovascular disease. Gut microbiota is a highly complex bacterial community 
that indigenously colonizes the gastrointestinal tract. It constitutes such a tremendous pool of 
microbial species and genetic variability that the alternations in its composition and repertoire of 
metabolites and components trigger markedly diverse host responses. To date, a wealth of evidence 
has emerged, among which a remarkable example is the replication of obese phenotypes of human 
discordant twin donors in rodent animals by fecal microbiota transplantation (1), substantiating 
the causative and/or mediatory role of gut microbiota particularly in the context of diet-induced 
metabolic diseases.
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The gut microbiota is dominated by the phyla Firmicutes 
and Bacteroidetes. Proteobacteria, Actinobacteria, Fusobacteria, 
Cyanobacteria, and Verrucomicrobia also occur but in much 
less abundance. The dysbiotic signatures in the gut microbiota 
associated with metabolic disease phenotypes include, remark-
ably, an increased ratio of Firmicutes to Bacteroidetes at phylum 
level (2, 3), an expansion of Proteobacteria (4, 5) and a reduced 
abundance of Akkermansia (6–9). Insulin-resistant phenotypes 
also exhibit a manifest proliferation of Prevotella copri and 
Bacteroides vulgatus, which elevate the circulating levels of 
branch chain amino acids (10). An obese microbiota was also 
found to associate with augmented serum glutamate levels due 
to the reduced abundance of Bacteroides thetaiotaomicron that 
converts glutamate (11). Moreover, an increased abundance 
of Proteobacteria and Escherichia coli with a reduction in the 
population of Firmicutes characterizes the gut microbiota associ-
ated with advanced fibrosis in human non-alcoholic fatty liver 
disease (NAFLD) (12). These dysbiotic microbiota configurations 
contribute to metabolic disorders by increasing energy harvest or 
by cross talking with the host immune, endocrine and nervous 
system via various nutrient sensing and signaling transduction 
mechanisms. Unraveling these mechanisms hence provides 
unique insights into the therapeutic opportunities for diabetes, 
obesity, and other metabolic diseases.

In light of the previous findings that have been efficiently 
summarized in several review articles (13–16), we would like to 
discuss the mechanistic basis of the emerging therapeutic strate-
gies that target the host immune and nutrient-sensing pathways 
and to synthesize the most recent innovations and trends in the 
treatment of metabolic diseases.

THe TRiALOGUe BeTween 
nUTRiTiOnAL STATUS, GUT 
MiCROBiOTA, AnD iMMUne SYSTeM 
ReveALS nOveL THeRAPeUTiC 
OPPORTUniTieS FOR MeTABOLiC 
DiSeASeS

Metabolic diseases are characterized by a state of chronic sub-
clinical inflammation in metabolic tissues such as liver, adipose, 
muscles, and pancreatic islets. The causative role of a dysbiotic 
gut microbiota in this inflammatory status by virtue of engaging 
diverse signaling transduction pathways and immune responses 
has been increasingly established in the past decade. In light of 
the increasingly unraveled trialogue between diet, gut micro-
biota, and the host immune system, a multitude of therapeutic 
approaches against metabolic diseases have emerged. One com-
pelling set of mechanisms dictate the translocation of commensal 
bacteria and bacterial fragments toward metabolic tissues, where 
they trigger pro-inflammatory responses at the early onset of 
metabolic disorders. Evidence suggests that this translocation is 
promoted by a diet/microbiota-driven gut barrier impairment 
in dysbiotic conditions, thereby continuously fueling the host 
immune machinery that orchestrates the innate and adaptive 
arms (Figure 1).

High-fat diet (HFD) is known to induce a lipopolysaccharide 
(LPS)-enriched intestinal microbiota with a consequently elevated 
plasma concentration of LPS, which characterizes a state of meta-
bolic endotoxemia (17). In the intestinal tract, LPS triggers the 
dysfunction of the mucosal barrier. Specifically, HFD has been 
shown to induce an increase in gut permeability by impairing the 
expression of tight junction proteins (17) via a mechanism that 
involves LPS-induced activation of the toll-like receptor (TLR)-4 
pathways (18), while prebiotic carbohydrates treatment help 
reverse this impairment via a microbiota-driven modulation of 
endogenous proglucagon-derived peptide (GLP-2) by enteroen-
docrine L cells (19). HFD also reduces the mucus layer thickness, 
which however could be normalized upon administration of the 
mucin-producing Akkermansia muciniphila or prebiotics that 
restore its abundance via the endocannabinoids system that 
essentially regulate the gut barrier function (6). HFD has also 
been shown to cause a loss of intestinal T helper (Th) 17 cells 
putatively through an altered gut microbiota that interfere with 
the induction of Th17 cells by the antigen-presenting cells, result-
ing in diminished intestinal defense and integrity (20). Adoptive 
transfer of Th17  cells to obese mice shapes the gut microbiota 
to resemble that of a lean phenotype by increasing the ratio of 
Bacteroidetes to Firmicutes and the abundance of Akkermansia, 
contributing to improved metabolic profile to the recipients (21). 
Not surprisingly, HFD also impairs the induction of interleukin 
(IL)-22, which plays an essential role in eliciting antimicrobial 
immunity and maintaining mucosal barrier integrity within the 
intestine. Accordingly, promoting the production of IL-22 can 
be a potential intervention strategy to restore mucosal barrier 
integrity to reduce tissue inflammation and to improve metabolic 
profile (22). Moreover, it has been demonstrated that immuniza-
tion with the HFD-associated ileum microbial extracts reversed 
partially gut microbiota dysbiosis and prevented hyperglycemia 
and insulin resistance in response to HFD likely by enhancing 
the proliferation of intestinal CD4 T cells (23). This underlines 
the potential of vaccination for preventing and managing T2DM.

The mechanism of bacterial translocation involves the host 
recognition receptors for the microbe-associated molecular 
patterns, including CD14 that binds bacterial LPS and the pep-
tidoglycan (PG) sensor NOD1 (24). Of note, sensing of PG by 
NOD2 confers, however, protection in HFD-induced metabolic 
disease against gut barrier impairments and the microbiota-
driven tissue inflammation (25, 26). It follows that manipulation 
of intestinal bacterial adherence, bacterial translocation and 
receptors for bacterial fragments could be promising strategies to 
prevent or revert the incidence of metabolic disorders. For exam-
ple, treatments with probiotics, such as Bifidobacteria (24, 27) 
and Akkermansia (28), have been demonstrated to be efficacious 
against the adherence and translocation of mucosal bacteria, 
tissue inflammation, and insulin resistance by modulating the 
gut microbial structure. The administration of polyphenols as 
prebiotics also confers similar protective effects in diet-induced 
metabolic syndrome by increasing the abundance of Akkermansia 
(29). The role of bacterial muramyl dipeptide as a postbiotic has 
also been documented in reducing inflammation and promoting 
insulin signaling in the state of metabolic endotoxemia, glycemia, 
and obesity via a pathway that involves NOD2 (30).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Gut microbiota dysbiosis-driven immune signaling pathways. Bacterial translocation occurs secondary to the mucosal epithelial barrier impairment 
driven by dysbiotic alterations in gut microbiota, leading to elevated circulating and tissue MAMPs such as LPS and PG. Bacterial LPS can disrupt the expression of 
epithelial tight junctions and, upon being translocated to peripheral tissues, trigger inflammation, and insulin resistance through toll-like receptors (TLRs). While PG 
induces tissue inflammation via NOD1, its recognition by NOD2 in intestinal epithelium confers protection against gut barrier dysfunction. The cross talk between 
APC and Th17 cells is also impaired under dysbiotic conditions with a decrease in IL-22. Adversely, the interactions between bacterial flagellin and intestinal 
epithelium or APC via TLR-5 improve gut barrier function. MAMPs, microbe-associated molecular patterns; LPS, lipopolysaccharide; PG, peptidoglycan; APC, 
antigen-presenting cells; IL, interleukin.
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Upon being translocated to metabolic tissues, LPS can elicit 
pro-inflammatory responses via pathways mediated primarily 
by TLR-4 (31) with the involvement of TLR-2 (32) and TLR-9 
(33), diminishing insulin signaling and increasing adiposity in 
the state of obesity and T2DM. This cross talk is mediated by 
gut microbiota as shown by the abrogation of these metabolic 
endotoxemia-induced phenotypes along with a decrease in 
inflammation markers and intestinal permeability after an 
antibiotic treatment (17). Anti-inflammatory agents, such as 
5-aminosalicylic acid, therefore prove to be efficacious in restor-
ing gut barrier and reducing tissue microbiota dysbiosis and 
inflammation in metabolic syndrome (34). The attenuation in 
metabolic endotoxemia also serves as one mechanism that con-
tributes to the resolution of insulin resistance and T2DM after 
Roux-en-Y gastric bypass (RYGB) (35). The RYGB-associated, 
markedly diminished endogenous (i.e., microbiota derived), LPS 
highlights the role of a modulated gut microbiota as a media-
tor of metabolic conditions (36). Gut microbial homeostasis is 
also subject to regulation by intestinal inflammasomes, the loss 
of which can induce a dysbiotic microbiome and exacerbate 
metabolic endotoxemia, as observed in the liver, leading to the 

development of hallmark features of NAFLD including increased 
hepatic steatosis, inflammation, and insulin resistance (33). 
Metabolic endotoxemia also induces endoplasmic reticulum 
stress and concomitantly the activity of histone acetyltransferase 
p300, which acetylates insulin receptor substrate, prevents its 
association with the insulin receptor and hence impairs insulin 
signaling (37). Likewise, TLR-5-dependent signaling regulates 
the gut microbial ecology by sensing bacterial flagellin, confer-
ring protection against metabolic diseases (38, 39). Myeloid 
differentiation primary response 88 (MyD88) is an important 
signaling component of TLR pathways. It is worth noting that 
tissue-specific MyD88 deficiency confers distinct phenotypes. 
Specifically, intestinal specific deletion of MyD88 putatively 
serves to normalize the gut barrier function and increase energy 
expenditure during HFD feeding in a microbiota-dependent 
manner, leading to reduced adiposity and inflammation and an 
improved glucose homeostasis (40). Conversely, hepatocyte-spe-
cific deletion of MyD88 disrupts glucose and lipid homeostasis 
presumably by inducing changes in the related gene expression, 
bile acid signaling, and in the gut microbiota configuration (41). 
Deletion of MyD88 has also been demonstrated to reduce the 
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incidence of spontaneous type I diabetes by inducing transmissi-
ble changes in the gut microbiota (42). These findings support the 
role of MyD88 as a pharmacological target for metabolic disease, 
though it multifaceted functions warrant further investigation.

nUTRienT-SenSinG MeCHAniSMS ARe 
KeY MeTABOLiC MeDiATORS OF HOST 
ReSPOnSeS TO GUT MiCROBiOTA 
ALTeRATiOnS

It has been increasingly established that in the metabolic 
machinery G-protein coupled receptor (GPCR)-mediated 
nutrient sensing serves as essential mechanisms that coordinate 
host responses to dietary and endogenous nutrients, gaining 
significant interest as a putative therapeutic target for metabolic 
diseases. A distinct subset of the nutrient-sensing receptors is 
specifically activated by free fatty acids (FFAs) of various chain 
lengths. In particular, short-chain fatty acids (SCFAs), including 
primarily acetate, propionate, and butyrate, are the most abun-
dant microbial metabolites derived from the otherwise indigest-
ible dietary polysaccharides and the natural ligands for fatty acid 
receptors such as GPR41/FFAR3, GPR43/FFAR2, GPR109A, 
and Olfr78 (Figure 2). Activation of the GPR41 expressed on the 
enteroendocrine cells is reported to stimulate the secretion of the 
gut hormone peptide YY, which functions to reduce energy intake  
(43, 44), while sensing of SCFAs by GPR43 triggers the production 

of glucagon-like peptide-1 (GLP-1), which is known to decrease 
gastric emptying rate and improve glucose-induced insulin 
secretion (44–46). GPR41 and GPR43 also occur on intestinal 
epithelial cells, upon stimulation by SCFAs, playing protective 
role against intestinal inflammation by inducing inflammasome 
activation (47). A propionate-dependent signaling of GPR41 is 
also involved in a gut–brain neural circuit that regulates intestinal 
gluconeogenesis, a substantial mechanism that ensures metabolic 
homeostasis (48). In adipose tissues, SCFA–GPR41 interaction 
correlates with the circulating level of leptin, thereby regulating 
food intake (49), while GPR43 mediates insulin signaling and 
adipogenesis (50). SCFAs, acting through GPR41 expressed 
in neurons of the superior cervical ganglion, also contribute 
to increased energy expenditure by increasing sympathetic 
nervous system activity (51). SCFAs, in addition, have been 
suggested to regulate the proliferation of pancreatic β cells and 
insulin biosynthesis via GPR41 or GPR43 (52–55). GPR109A is 
a receptor for niacin but also responds to butyrate, contribut-
ing to reduced colonic inflammation and homeostatic lipid 
metabolism in adipose tissues (56). On the other hand, SCFAs 
play a role in blood pressure regulation via the receptors in blood 
vessels. Specifically, the activation of GPR41 has been observed 
to reduce blood pressure (57), whereas an olfactory receptor 
Olfr78, upon stimulation by acetate and propionate, leads to 
an increased blood pressure (58). It is also worth noting that 
endogenously derived SCFAs confer an epigenetic mechanism 
whereby chromatin structure and cell fate allocation respond to 

FiGURe 2 | Short-chain fatty acid (SCFA)-receptor-mediated pathways and their effects on host energy metabolism in peripheral tissues. Gut microbes can ferment 
dietary fiber into SCFAs, which induce an array of G-protein coupled receptor-mediated signaling pathways that are essentially implicated in host energy 
homeostasis in multiple tissues.
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glucose and lipid metabolism. Gut microbiota plays a pivotal role 
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