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Intravital imaging – dynamic insights
into natural killer T cell biology
Pei Xiong Liew and Paul Kubes*

Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

Natural killer T (NKT) cells were first recognized more than two decades ago as a separate
and distinct lymphocyte lineage that modulates an expansive range of immune responses.
As innate immune cells, NKT cells are activated early during inflammation and infection,
and can subsequently stimulate or suppress the ensuing immune response. As a result,
researchers hope to harness the immunomodulatory properties of NKT cells to treat
a variety of diseases. However, many questions still remain unanswered regarding the
biology of NKT cells, including how these cells traffic from the thymus to peripheral
organs and how they play such contrasting roles in different immune responses and
diseases. In this new era of intravital fluorescence microscopy, we are now able to employ
this powerful tool to provide quantitative and dynamic insights into NKT cell biology
including cellular dynamics, patrolling, and immunoregulatory functions with exquisite
resolution. This review will highlight and discuss recent studies that use intravital imaging
to understand the spectrum of NKT cell behavior in a variety of animal models.

Keywords: natural killer T cells, intravital imaging, innate immunity, host–pathogen interactions, sterile
inflammation

Introduction

Modern advances in technology have provided a plethora of in vitro and ex vivo methods to
investigate the molecular systems and cellular functions of immune cells. These advances have
resulted in significant insights into biological processes at the cellular level and deciphered multiple
complex signaling pathways. Nevertheless, the most relevant experimental conditions in which
to observe and document these biological processes remain the live animal. The use of intravital
microscopy (IVM) provides such a view into the lives and dynamic interactions of diverse immune
cell populations in various tissues and organs. Importantly, IVM is performed under experimental
conditions which closely resemble the natural environment. As cellular functions and behaviors are
influenced by several factors such as shear forces, anatomical location, and extracellular components,
absence of these factors could result in tremendously different outcomes in in vitro versus in vivo
settings.

Historically, IVM was first employed in the nineteenth century with brightfield microscopy to
visualize leukocyte trafficking in translucent tissues (1). In the last two decades, brightfield-based
IVM has brought about important discoveries especially in molecular and biophysical mechanisms
of leukocyte adhesion to endothelial cells (2, 3). However, this basic technique applying visible light
could only visualize uniformly colorless cells sufficiently slowed by adhesion, which allowed them to
be distinguished from rapidly flowing cells (4). The advent of fluorescence-based intravital imaging
withmodern optical imaging agents and equipment nowopens up exciting possibilities for biological
observations. Many immune cells can now be tagged with fluorescent probes to visualize their
behavior in real time in a live animal. Other important additions to fluorescence-based IVM are the
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different varieties of confocal microscopes, which provide deep
tissue imaging and better subcellular resolution by excluding out-
of-focus light via point illumination and pinhole apertures (5, 6).
For example, spinning disk confocal intravital imaging systems
provide rapid image acquisitions at the expense of deep tissue
imaging, and are extremely competent for dynamic observations
of immune behavior and cell–cell interactions particular within
the vasculature (7–9). In contrast, multiphoton microscope sys-
tems, which employ a pulsed infrared laser excitation to gener-
ate fluorescence, have allowed deep tissue imaging of cell–cell
interactions up to 500 µm depth (10, 11).

In recent years, fluorescence-based confocal IVM systems have
been employed to visualize immune cells in almost all types of
tissues to address a variety of immunological questions. Natural
killer T (NKT) cells are credited with modulatory roles in a
wide variety of diseases, and there is great interest in employing
these cells for therapy in diseases or as biomarkers for prognostic
purposes. In this review, we will focus on how IVM as a tool has
revealed novel insights into NKT cell dynamics and biology.

NKT Cells – A Quick Primer

The name “NKT cell” was first conceived about 25 years ago, and
was used to broadly define a subset of murine T lymphocytes that
shared functional and phenotypic characteristics with the natural
killer cell, including the NK1.1 (NKR-P1 or CD161c) surface
marker (12, 13). Although the term NKT cell is now accepted and
applied to these cells in both mice and humans, this definition is
inaccurate and possibly misleading as NKT cells in certain mouse
strains do not expressNK1.1 due to the allelic divergence ofNK1.1
genes (14, 15). To further complicate this classification, some
conventional T cells have been described to spontaneously express
NK1.1 after activation (16).

Around the time when NKT cells were identified, a novel
process of presenting lipid antigens was discovered (17, 18). This
antigen presentation process occurred through the MHC class I-
like molecule designated as CD1 (cluster of differentiation 1) that
includes CD1a–CD1e (19, 20). All of these CD1molecules present
lipids instead of peptides as antigens. While humans express all
five CD1 genes, mice express only CD1d. In mammals, CD1d
is highly conserved (21). Further studies in mice subsequently
demonstrated that CD1d molecules presented lipids to invariant
T cell receptor (TCR)-bearing cells, which also expressed NK1.1
(22–24). This finding led to the realization that NKT cells were
reactive to CD1d, and that the invariant TCR α-chain and CD1d
were essential for the development of NKT cells. These unique
phenotypic characteristics are now used to define NKT cells. An
excellent review highlights the detailed timeline of discoveries that
contributed to the identification of NKT cells (12).

The discovery of the compound α-galactosylceramide
(αGalCer) in 1997 contributed greatly to the understanding
of NKT cells (25). This potent and specific lipid antigen,
isolated from a marine sponge sample (likely from an infecting
proteobacterium), was the first identified antigen for a specific
population of NKT cells termed Type I NKT cells or invariant
NKT (iNKT) cells. Through the use of CD1d tetramers loaded
with αGalCer, iNKT cells in mice were discovered to express

the invariant Vα14–Jα18 TCR α-chain paired with a β-chain
biased toward Vβ2, Vβ3, and Vβ8 (26, 27). More than 80% of
NKT cells were found to express these invariant chains. A similar
TCR limited repertoire was found in human iNKT cells, which
expressed Vα24–Jα18 paired with the Vβ11 chain (28). Due to
large structural and functional similarities between the TCRs
expressed by human and mice iNKT cells, αGalCer can bind
to and activate iNKT cells from both species (29). In fact, this
property has been taken advantage of by researchers to develop
multimeric molecules with loaded synthetic αGalCer to identify
iNKT cells ex vivo (30). These synthetic loaded tetramers are
used in conjunction with anti-CD3 or anti-TCRβ antibodies
to identify and enumerate iNKT cells in multi-parameter flow
cytometry. In addition to αGalCer, a considerable number of
exogenous ligands have been identified to activate iNKT cells
(31). Further, self-derived endogenous lipids as well as the
cytokines interleukin (IL)-12 and IL-18 have also been described
to activate iNKT cells (32, 33). As iNKT cells can be activated
by a range of exogenous and endogenous antigens and diverse
inflammatory stimuli (Figure 1), they were found to be more
important than initially realized in a variety of diseases (34, 35).
Apart from Type I NKT cells, another subset of NKT cells has also
been described (36–38). These Type II NKT cells recognize lipid
antigens but express diverse TCR α- and β-chains (39, 40) and
do not recognize αGalCer (41, 42). As this group of NKT cells
cannot be identified through αGalCer-loaded CD1d tetramers,
they are comparatively less characterized and understood (as
compared to iNKT cells). This review shall focus mainly on
findings discovered in mouse and human iNKT cell studies.

Although iNKT cells develop in the thymus, they are generally
categorized as innate lymphocytes because iNKT cells exist in
a poised effector state when they mature. Accordingly, mature
iNKT cells are able to rapidly release large quantities of pro-
inflammatory T helper type 1 (TH1) [(for example, interferon-γ
(IFN-γ)] or T helper type 2 (TH2) (IL-4 and IL-10) cytokines
within hours of activation (43, 44). In mice, resting iNKT cells
contain preformed mRNA for both IFN-γ and IL-4 to allow swift
cytokine production (45). These cytokines are able to transactivate
other immune cells including neutrophils, NK cells, dendritic
cells, and macrophages during an immune response (15, 46).
Because iNKT cells are able to rapidly release substantial quan-
tities of cytokines that can polarize the immune response, they
are hypothesized to be important orchestrators of immunity. For
example, activation of iNKT cells during infection results in the
secretion of pro-inflammatory cytokines, which stimulates the
developing immune response to fight off microbial invaders (47–
49). A similar protective effect of iNKT cells is also observed
during cancer (50, 51). On the other hand, iNKT cells can
strengthen immuno-suppressive pathways during autoimmunity
or ischemia–reperfusion injuries such as stroke (52, 53). In a
mouse stroke model, there is increased sympathetic drive which
induces iNKT cells to make more IL-10 and less IFN-γ (8). This
leads to overall immuno-suppression but places individuals at
a greater risk to infections. iNKT cells are therefore pivotal in
shaping immune responses during diverse pathological states. An
ongoing challenge is to unravel the factors that determine if iNKT
cells facilitate or suppress an immune response.
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FIGURE 1 | Pathways of invariant natural killer T (iNKT) cell activation
during infection and injury. (A) Antigen-presenting cells (APCs) engulf
invading microbes during infection and present exogenous antigens via CD1d
molecules directly to the T cell receptor (TCR) on iNKT cells. (B) Injury to the
central nervous system (CNS) results in signals transmitted via neurones and
release of neurotransmitters such as noradrenaline. These neutrotransmitters
bind to adrenergic receptors on iNKT cells resulting in their activation.

(C,D) During infection and injury, pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs) are released.
These PAMPs and DAMPs bind to pattern-recognition receptors (PRRs) on
APCs, which result in the production of inflammatory cytokines such as
interleukin-12 and presentation of self-antigens on CD1d to the TCR of iNKT
cells. The synergy of cytokine or self-antigen presentation contributing to iNKT
cell activation depends on the type of injury or microbe involved during infection.

Thus far, iNKT cells have been described to produce IL-2, IL-5,
IL-6, IL-10, IL-13, IL-17, IL-21, tumor necrosis factor-α, trans-
forming growth factor-β, and granulocyte monocyte-colony-
stimulating factor (15, 54, 55). How does a single population of
cells produce such a large variety of cytokines? The type and quan-
tity of cytokine produced is influenced by several non-mutually
exclusive factors. First, the quality of TCR signal (i.e., antigen
signal strength and CD1d-binding kinetics) affects the cytokine
profile. For example, use of different αGalCer analogs have been
described to result in different ratios of IFN-γ/IL-4 produced (56–
58). A similar phenomenon should occur with endogenous anti-
gens compared to relevant foreign antigens. Second, targeting of
antigen to different antigen-presenting cells will alter the pattern
of cytokines made by iNKT cells (59, 60). Finally, functionally
different subsets of iNKT cells have been described based on
tissue localization and cell surface phenotype, whichmay promote
different outcomes when iNKT cells are activated (15, 61).

Imaging iNKT Cells

There are a multitude of publications that describe the activa-
tion and cytokine production profiles of iNKT cells in mice and
humans. However, their tissue distribution and dynamic behavior
have only been brought to light recently. The capacity to visualize
and observe iNKT cell behavior relies considerably on the labeling
method. Todate, no lineage-specific fluorescent antibody has been
able to label iNKT cells. Isolating iNKT cells and staining them ex

vivo with a fluorescent dye (for example, carboxyfluorescein diac-
etate succinimidyl ester) for adoptive transfer provides a manner
to observe their behavior in an organ (62). However, this opens the
possibility that cellular behavior may be altered by the potential
artifact of cell isolation. So far, the best avenue is the use of
genetically engineered knock-in mice where fluorescent proteins
are inserted into a lineage-specific gene locus (63). Both mouse
and human iNKT cells express high levels of the Cxcr6 chemokine
receptor, which has been demonstrated to mediate the survival
of iNKT cells in the liver (64–66). To image iNKT cells in a live
animal, a mouse containing enhanced green fluorescent protein
(GFP) inserted into the Cxcr6 gene (Cxcr6Gfp/+) was generated
(67). iNKT cells have been found to account for 75–80% of all
GFPbright cells in the liver. For the first time, the dynamic behavior
of iNKT cells in different tissues and organs could be observed.
Using IVM, hepatic iNKT cells were seen to crawl along the
luminal side of liver sinusoidal endothelial cells without direc-
tional bias with an average speed of 10 µm/min (Figure 2A) (9,
67). This distinct behavior is unlike leukocyte behavior observed
in post-capillary venules where leukocytes roll along continuous
endothelium (3, 68). Detailed analysis of iNKT cell behavior in
the liver demonstrated that iNKT cell crawling was random and
independent of blood flow (67).

Resident iNKT cells are enriched in the liver, comprising up to
30% of all lymphocytes as compared to the thymus, lung, colon,
bone marrow, spleen, lymph nodes, and blood (44). The cause
for the higher frequency of resident iNKT cells in the liver is

Frontiers in Immunology | www.frontiersin.org May 2015 | Volume 6 | Article 2403

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Liew and Kubes Visualizing NKT cell behavior in tissues

FIGURE 2 | Intravital imaging of iNKT cells in the liver and joints with
Cxcr6Gfp/+ mice. Still snapshots of videos recorded during imaging in a live
animal are presented in: (A) iNKT cells (bright green) in the liver are
intravascular and crawl on the luminal side of liver sinusoidal endothelial cells
(blue) under basal conditions. When iNKT cells are activated, they no longer
crawl and instead slow down their crawling phenotype or completely arrest.
20× objective, scale bar 50µm. (B) In contrast, iNKT cells (bright green) in
the joint are extravascular and line the capillaries (blue). These iNKT cells do
not crawl and are stationary. During pathogen invasion in the joint, as in the
case of B. burgdorferi, iNKT cells begin to crawl along vessel walls. Joint iNKT
cells limit the dissemination of bacteria. Arrows: iNKT cells lining the
vasculature. 10× objective, scale bar 110µm.

not completely clear; however, the adhesion molecule leukocyte
function-associated antigen-1 (LFA-1, CD11a) has been suggested
to be important in retaining iNKT cells in the liver (69). A tan-
dem blockade of LFA-1 and its corresponding ligand, intercellular
adhesionmolecule 1 (ICAM-1), created a substantial rise in iNKT
cells in blood and a reciprocal decrease in their number in the
liver. Furthermore, LFA-1-deficient mice have notably reduced
numbers of iNKT cells in the liver (70). Although we observed
that the crawling phenotype of iNKT cells in liver sinusoids was
not affected by LFA-1 and ICAM-1 antibodies, they did detach in
collecting venules after treatment with blocking antibodies (71).
Taken together, these data indicate that LFA-1 and ICAM-1 were
perhaps necessary for interactions in larger vessels but not for
crawling in sinusoids.

Previous studies have demonstrated that T cells arrest their
movement when they encounter cognate antigen (72, 73). iNKT
cells in the liver exhibit a similar behavior; when αGalCer was
injected intravenously, crawling GFPbright iNKT cells became sta-
tionary within an hour (67). Other studies have shown that hep-
atic iNKT cell arrest was correlated with iNKT cell activation
(8, 9). Activation of iNKT cells via various mechanisms including
CD1d, cytokines, or even neurotransmission all induce cell arrest
within liver sinusoids. For example, synergistic effects between the
inflammatory cytokines IL-12 and IL-18 resulted in the arrest of
hepatic iNKT cells (74). In a mouse stroke model, norepinephrine
release by the sympathetic nervous system during stroke caused
rapid arrest of iNKT cells in the liver (8). Hepatic iNKT cells
have been shown to express adrenergic receptors to receive neural
signals (75). When iNKT cells are activated through cytokines
or noradrenergic receptors, blockade of CD1d had no effect on
the arrest of iNKT cells which suggests that classical antigen
presentation through CD1d did not play a major role in arrest and
activation in these situations.

FIGURE 3 | Intravital imaging of iNKT cells in the lymph node and
spleen of Cxcr6Gfp/+ mice. (A) Still image demonstrating distribution of
iNKT cells (bright green) in different regions of a lymph node. Vasculature of
the lymph node is labelled with PECAM-1 (blue). The medullar and
interfollicular regions are outlined in yellow while the paracortex is outlined in
white. 10× objective, scale bar 210µm. (B) Still snapshot of splenic iNKT
cells (bright green) in red pulp of spleen reveals that these cells are located
outside the vasculature (blue). Arrows: extravascular iNKT cells. 20×
objective, scale bar 50µm.

Despite the fact that the frequency of iNKT cells in other organs
than the liver is low, various studies have highlighted the impor-
tance of iNKT cells in these organs in response to blood-borne
pathogens (76–78). The Cxcr6Gfp/+ mouse has been employed to
study the spatial organization, behavior, and functional roles of
iNKT cells in several organs including the joints, lymph node,
spleen, and lung. In distinct contrast to the liver, intravital imaging
of iNKT cells in joints revealed dramatic localization of these
cells around the joint blood vessels but not inside the vessels
(Figure 2B) (78). Joint iNKT cells also exhibited different behavior
under basal conditions as they were stationary and non-motile.
In the lymph node, iNKT cells are located in the medulla and
the interfollicular region but mainly absent in the deep paracortex
where naïve T cells reside (Figure 3A) (79). These iNKT cells are
highly motile in the lymph node and actively communicate with
resident subcapsular sinus macrophages. During systemic infec-
tion, resident macrophages produce IL-18 and complementary
cytokines, which elicit an innate IFN-γ response from lymph node
iNKT cells. On the other hand, iNKT cells were found to be widely
distributed throughout the spleen, including B and T cell follicles
in the periarteriolar lymphoid sheath, the marginal zone (MZ),
as well as the red pulp (69, 76, 80). Dissimilar to the liver, iNKT
cells were observed to be crawling outside the vasculature in the
spleen (Figure 3B) (71, 76). Interestingly, the localization of iNKT
cells changes in the spleen during infection or in the presence of
cognate lipid antigens. Under these conditions, iNKT cells slow
down or arrest, and are confined to the MZ where antigen-rich
MZ macrophages and dendritic cells reside (76, 80).

Although there is evidence demonstrating that iNKT cells are
important in allergy and airway inflammation, information on the
anatomical distribution of iNKT cells in lung, their mechanism of
activation, and role in lung diseases remain scarce (77, 81). Recent
studies have attempted to address these questions. Two-photon
fluorescence microscopy was employed to examine the localiza-
tion of iNKT cells in a harvested lobe of a murine lung (82). They
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revealed that pulmonary iNKT cells mainly resided in the lung
microvasculature. Upon exposure to aerosolized lipid antigen,
iNKT cells mobilized and extravasated into lung tissue. Thomas
et al. (69) showed that there was an approximate 10- to 20-fold
enrichment of iNKT cells in blood drawn from the right or left
ventricles of the heart as compared to peripheral blood. Another
study suggests that some pulmonary iNKT cells can be long-
lived (83).Using parabioticmice, Bendelac and colleagues demon-
strated that pulmonary iNKT cells do not recirculate between
parabiotic mice pairs even after 30 days (69).

Interactions Between the Host and
Pathogens

Although αGalCer was extracted from a marine sponge sam-
ple, the presence of this iNKT cell ligand in marine sponges
was not linked to any physiological relevant function. This
highly reactive glycolipid likely originated from a bacterium
present inside the sample rather than the sponge itself as marine
sponges are commonly colonized by α-proteobacteria such as
Sphingomonas spp. (84, 85). Indeed, the physiologically rele-
vant αGalCer-related compounds, α-glycuronylceramide, and
α-galacturonosylceramide which are found in the cell wall of
Sphingomonas, are strong and potent activators of iNKT cells (48,
49, 86, 87). In addition to ceramide-based compounds from Sph-
ingomonas, glycerol-based lipids have been described to potently
activate iNKT cells. These include α-galactosyldiacylglycerol
from Borrelia burgdorferi and α-glucosyldiacylglycerol from
Streptococcus pneumoniae (88, 89).

Borrelia burgdorferi is a spirochete pathogen that continues
to spread in North America (90). This pathogen induces Lyme-
disease, and delayed or inadequate treatment typically leads to
disabling symptoms as the bacteria invade the joints, heart,
and central nervous system (91). The liver functions as an
important organ that is positioned to intercept disseminating
pathogens in the blood (92). This interception ismediated by liver-
resident intravascularmacrophages (Kupffer cells), which ensnare
pathogens from the blood stream. Visualizing iNKT cell activity
in the liver showed dramatically altered iNKT cell behavior after
B. burgdorferi infection (9). Instead of crawling through the liver
sinusoids, iNKT cells formed clusters and arrested next to Kupffer
cells that had captured B. burgdorferi. This clustering occurred as
early as 4 h after exposure and could be inhibited by blocking the
Cxcr3 receptor. Anti-CD1d antibody blocked the firm adhesion of
iNKT cells to Kupffer cells as well as the activation of iNKT cells,
which suggests that Kupffer cells were responsible for presenting
antigens to activate iNKT cells. Intravital imaging during this
process revealed that Kupffer cells phagocytose B. burgdorferi
from blood for antigen presentation to iNKT cells, which then
produce IFN-γ and other inflammatory cytokines. This activated
the local hepatic innate immunity system to prevent bacteria
dissemination.

The absence of iNKT cells in mice caused a remarkable 25-
fold increase in B. burgdorferi burden in joints, but other organs
did not have a similar burden, which indicated that iNKT cells
in the joint microenvironment had a unique feature. This unique
in vivo observation led investigators to question the functional
significance of joint iNKT cells. Intravital imaging of the joint

during B. burgdorferi infection revealed that extravascular iNKT
cells interact directly with the spirochetes at joint blood vessel
walls (78). This joint iNKT cell behavior was in distinct contrast
to iNKT cells in the liver, which were oblivious to the pathogen in
the absence of Kupffer cells. During this interaction, joint iNKT
cells were no longer stationary but actively crawled along vessel
walls toward the pathogen, perhaps due to complement activation.
B. burgdorferi that interacted with iNKT cells subsequently died,
which suggests that joint iNKT cells limit the dissemination of
this pathogen into the joint. Indeed, absence of iNKT cells led to a
large number of motile spirochetes outside the vasculature in the
joint cavity of mice. It is worth noting that human joints had far
fewer iNKT cells, and perhaps this may lead to the susceptibility
of humans, but notmice, to B. burgdorferi-induced Lyme arthritis.

Streptococcus pneumoniae infection is a leading cause of mor-
bidity and mortality in adults and children (93, 94). This encapsu-
lated bacteria typically resides on themucosal surface of the upper
respiratory tract or the nasopharynx of humans and appears to
be asymptomatic (95). However, if S. pneumoniae gains access to
the sterile lower respiratory tract, it causes a potent inflammatory
response that result in severe disease. In this situation, pulmonary
iNKT cells are important in the protection of the host against
an infection by S. pneumoniae (96). If iNKT cells are absent
(in Jα18−/− mice) following infection by S. pneumoniae, lower
cytokine levels, less neutrophils, and increased bacteria burden
were found in the lung. The iNKT cell-deficient mice also had
increased mortality following S. pneumoniae infection. A recent
paper demonstrated that this protective effect was dependent on
recognition of a S. pneumoniae glycoplipid (89). The behavior of
iNKT cells in the lung under basal and S. pneumoniae infection
has not been fully elucidated due to challenges of imaging the
lung. Moreover, it is unclear which immune cells are presenting
S. pneumoniae glycolipids to iNKT cells. Clearly, it would be of
benefit to examine the dynamics of iNKT cells in the lung under
these different conditions.

Other naturally occurring microbial antigens including choles-
terol ester from Helicobacter pylori (97), lipopeptidophosphogly-
cans from Leishmania donovani (98), and Entameba histolytica
(99) can activate iNKT cells, but the antigenicity of these lipids are
not well characterized and direct evidence of significant contri-
bution of these lipid antigens during infection and disease remain
elusive. Further study is necessary to determine their contribution
to the activation of iNKT cells during these specific infections.

The Balance Between Regulating
Inflammation After Tissue Injury Versus
Host Defense

The inflammatory response is critical for host defense against
invading pathogens. Known as sterile inflammation, inflamma-
tion also occurs when self tissue is damaged in the absence
of infection (100). Akin to inflammation induced by microbes,
sterile inflammation also results in recruitment of neutrophils,
monocytes, and macrophages, and the release of chemokines and
pro-inflammatory cytokines such as IL-1 (101). Sterile inflamma-
tion has been identified to underlie many medical afflictions such
as burn injuries or ischemia–reperfusion injury in the heart, liver,
and brain (102). Following the initial trauma, the outcome of these
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afflictions are immunosuppression and susceptibility of the host
to subsequent infection. Some medical examples of these compli-
cations include patients with acute myocardial infarction, stroke,
or major burn injuries. Systemically inhibiting inflammation in
these conditions can lead to adverse infectious complications.
With the ability to react to self or invasive pathogens, iNKT cells
are the linchpins which can determine a favorable or detrimental
outcome during inflammation in these conditions.

Able to respond to “self ” lipid antigens, iNKT cells are able
to regulate inflammation during tissue injury (46, 103). Several
endogenous lipids have been proposed to activate iNKT cells,
although identification of the primary endogenous lipid antigen is
a subject of intense research (104–106). Nevertheless, during tis-
sue injury and cell death, endogenous antigens can serve as danger
signals to activate iNKT cells in the absence of exogenous ligands.
The functional role of iNKT cells have been investigated in mouse
models of burn injury. In a cauterization-induced corneal inflam-
mation model, iNKT cell-deficient mice had increased neutrophil
accumulation and higher levels of pro-inflammatory cytokines
in the cauterized eye (107). In addition, lack of iNKT cells led
to greater corneal edema and opacity. In this model, iNKT cells
played an important role in curbing inflammation andmaintained
corneal clarity. A similar immunoregulatory effect was observed
in a dorsal burn injury model where iNKT cells were found to
mediate T cell proliferation after injury by producing IL-4 (108).
Production of IL-4 by iNKT cells suppressed antigen-specific
T cell delayed-type hypersensitivity after dorsal burn injury.

During stroke, intravital imaging revealed that norepinephrine
release rapidly arrested and activated iNKT cells in the liver
(8). Interestingly, this increased sympathetic drive induced acti-
vated iNKT cells to produce increased levels of anti-inflammatory
cytokines such as IL-10, which led to post-stroke immunosup-
pression. This effect likely protects the brain from inflammatory
damage (109) but also leaves the patient open to infection, which
is a major cause of post-stroke death (110). In contrast, activating
iNKT cells with the potent agonist αGalCer reduced bacterial
infection after stroke (8). Collectively, these findings suggest that
iNKT cell activation was not the determining factor that mediated
immunosuppression after stroke but rather the adrenergic activa-
tion and modulation of iNKT cells resulted in a shift from pro-
inflammatory to anti-inflammatory cytokine production. This
also raises the possibility of therapeutically targeting iNKT cells
in the liver to quench detrimental neuro-immunosuppression as
long as it does not enhance inflammation in the brain.

Concluding Remarks

There is no doubt that iNKT cells have a pivotal function in
directing innate and adaptive immunity during diseases where
their diverse effector repertoire can lead to varied outcomes
ranging from promoting inflammation to immunosuppression.
Despite recent advances in unraveling mechanisms of iNKT cell
activation and a greater understanding of iNKT cell biology,
more research to elucidate the interactions between iNKT cells
and other leukocytes is still needed. Traditionally, visualizing the
spatial distribution of iNKT cells and understanding the role of
iNKT cells in context of other immune cells were through static

snapshots of tissue sections. However, technological advances in
fluorescence microscopy and maturation of IVM technology have
revolutionized the iNKT cell research field, allowing us to image
the behavior of these cells in different organs under basal and
inflammatory conditions at high resolution.

Although the ability to accurately visualize cells in a live animal
at microscopic scale provides exciting opportunities for biological
observation, caution is still needed at this stage. Fluorescence IVM
is dependent on labeling cell types, and current technology is
restricted by an inability to label all cell types, structural com-
ponents, and chemical mediators at the same time. Therefore,
only visible cell–cell interactions can be observed. In addition, the
reporter mice that are presently available for lineage specific cell
types including the Cxcr6Gfp/+ mice are not entirely specific and
in some organs like the intestines, the percentage of GFP-positive
cells that are iNKT cells is <50%, which makes it impossible to
specifically track these cells. Further, current limitations of IVM
technologies do not allow high-resolution imaging of all tissues
and for those that can be visualized, itmay not be possible to image
deep into the tissue. Ongoing improvements to IVM technology
such as the use of multiphoton microscopes, far-red probes, and
longer wavelength lasers would address some of these issues (5,
10). Finally, current IVM techniques do not allow large areas of
the tissue to be scanned at quick speeds; this limits imaging to
relatively slower dynamic processes for observation ifmacroscopic
levels are desired. Nevertheless, a thorough understanding of the
spectrum of iNKT cell behavior and mechanisms of action will
occur as IVM technology improves. Understanding iNKT cell
biology will ultimately determine our ability to successfully target
iNKT cells for clinical applications.

Outstanding Questions

1. What factors determine the outcome, inflammation versus
immunosuppression, of iNKT cell activation during diverse
pathological states?

2. What are the roles of iNKT cells in the context of other immune
cells under basal and inflammatory states?

3. How does the location and behavior of iNKT cells in the
liver differ from other organs (such as the spleen, lung, and
intestine)? Are there any similarities?

4. How can an enhanced understanding of the spectrum iNKT
cell biological behaviors be utilized to manipulate their func-
tion for clinical settings?

5. Are iNKT cell counts and roles altered during pathological
states? Are they reversible and does it affect the therapeutic
ability of iNKT cells?
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