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Abstract

Background: Black flies (Diptera: Simuliidae) are haematophagous insects that can cause allergic reactions and act
as vectors of pathogens. Although their saliva has been thought to contain a diverse array of physiologically active
molecules, little information is available on antimicrobial factors in black fly salivary glands, especially no defensins
have been reported so far.

Methods: A novel cationic defensin designated SibaDef was purified using reverse phase high-performance liquid
chromatography (RP-HPLC) from the salivary glands of the black fly Simulium bannaense. The amino acid sequence
of SibaDef was determined by a combination method of automated Edman degradation and cDNA sequencing.
The morphologic changes of Gram-positive bacteria Staphylococcus aureus or Bacillus subtilis treated with SibaDef
were assessed by scanning electron microscopy (SEM). Quantitative PCR (qPCR) was performed to analyze the
expression of SibaDef mRNA in whole bodies of insects after oral infection with the bacteria S. aureus or B. subtilis.

Results: Surprisingly, the phylogenetic analysis of defensin-related amino acid sequences demonstrated that
SibaDef is most closely related to defensins from the human body louse Pediculus humanus corporis (Anoplura:
Pediculidae), rather than to other dipteran defensins. SibaDef showed potent antimicrobial activities against Gram-positive
bacteria with minimal inhibitory concentrations (MICs) ranging from 0.83 μM to 2.29 μM. SEM analysis indicated
that SibaDef killed microorganisms through the disruption of cell membrane integrity. The transcript levels of
SibaDef in the bacteria-immunized flies increased with the time course, reaching maximum at 36 h and then
slowly decreased from that time point.

Conclusions: Our results indicate that SibaDef is involved in the innate humoral response of the black fly S.
bannaense, and it might play a significant role in the defence against microorganisms in both sugar and blood meals.

Keywords: Insect, Antimicrobial peptide, Defensin, Salivary gland, Black fly, Simulium bannaense
Background
Black flies (Diptera: Simuliidae) are closely related to
some blood-sucking insects such as mosquitoes and bit-
ing midges [1,2]. They are not only a biting nuisance for
humans and livestock but also transmit diseases includ-
ing human onchocerciasis (river blindness) caused by
the nematode Onchocerca volvulus and livestock disease
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caused by vesicular stomatitis virus [3-5]. To facilitate a
blood meal, haematophagous Diptera have developed an
extraordinary array of salivary proteins that can over-
come the host’s hemostatic barriers, as well as suppress-
ing inflammatory and immunologic reactions [6-9]. In
addition, these Diptera also take sugar meals.
Several salivary anti-haemostatic factors have been identi-

fied from black fly, including inhibitors of coagulation fac-
tors (Factor Xa, V and thrombin), potent vasodilators
(Simulium vittatum erythema proteins, SVEPs) and anti-
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platelet aggregation factors (apyrase) [10-16]. Hyaluronidase
and immunomodulatory activities have also been described
in S. vittatum salivary gland extract [5,17,18].
As an important hematophagous arthropod, there was

not much information available about pharmacologically
active compounds in black fly salivary glands, until salivary
transcriptomes have been made and described from three
black fly species (S. guianense, S. vittatum and S. nigrimanum)
[19-21]. In these studies, many more substances with
potential anti-haemostatic functions or immunity-related
activities have been uncovered. Immunity-related gene
products including six antimicrobial peptides of the cecro-
pin family, nine lysozymes, and three members of the
Gram-negative bacteria-binding protein, have been identi-
fied from these three species. However, no antimicrobial
peptide (AMP) belonging to the defensin family has so far
been biochemically characterized from black fly.
Insect defensins are a class of gene-encoded effector

molecules of innate immunity. They have six strictly
conserved cysteine residues linked in the 1–4, 2–5, 3–6
pattern, except for the antifungal peptide drosomycin
from Drosophila melanogaster, which has eight cysteine
residues forming four stabilizing disulfide bridges [22].
So far, more than 60 defensins have been identified from
different species of insect orders (Diptera, Lepidoptera,
Hymenoptera, Hemiptera, Isoptera, Coleoptera and
Odonata) [22,23], The majority of insect defensins were
isolated from the haemolymph, fat body or midgut of
bacteria-immunized larvae [24-27], while such defensins
were seldom reported from the saliva or salivary glands.
In the current work, we firstly report the purification
and characterization of the defensin from the black fly
salivary glands.

Methods
Black fly salivary gland dissection
Adult S. bannaense (about 2,000 flies) were collected
near streams in Xishuangbanna, Yunnan, China (21.556°N
101.162°E). The collections were made in five months
(April-May, September-October 2013; May 2014). The
black fly salivary glands (1,800 pairs) used for protein ex-
traction (1,660 pairs) or total RNA extraction (140 pairs),
were dissected in ice cold HEPES saline (10 mM HEPES
pH 7.2, 150 mM NaCl) using fine entomological needles
under a tereomicroscope, and stored in liquid nitrogen until
use. The study was approved by the Animal Care and Use
Ethics Committee of Kunming Medical University.

Peptide purification
1,660 pairs of black fly salivary glands in HEPES saline
were thawed and homogenized. After a centrifugation at
12,000 × g for 15 min at 4°C, the supernatant was pre-
purified through a 10-kDa cut-off Centriprep filter
(Millipore, CA). The filtrate was then subjected to
RP-HPLC on an Inertsil C4 column (25 × 0.46 cm) as
illustrated in Figure 1A. The linear gradient elution
was performed in a 0–70% acetonitrile containing
0.1% (v/v) trifluoroacetic acid for 80 min. The eluted
peaks of A1 and A2 showed antimicrobial activities.
The protein peak of A2 was pooled, lyophilized, and
further purified by RP-HPLC on a Wondasil C18 col-
umn (25 × 0.46 cm) as indicated in Figure 1B. Elution
was performed with a linear gradient of 0-60% aceto-
nitrile in acidified water over 70 min at a flow rate of
0.7 ml/min. The antimicrobial activity of fractions
was determined as indicated below. The interesting
eluted peaks were subjected to automated Edman
degradation analysis on an Applied Biosystems pulsed
liquid-phase sequencer (model ABI 491, USA).

MALDI-TOF MS analysis
1 μl of the eluted peak with antimicrobial activity was
spotted onto a matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) plate
with 1 μl of α-cyano-4-hydroxycinnamic acid matrix
(10 mg/ml in 60% acetonitrile) and analyzed by an Ultra-
Flex I mass spectrometer (Bruker Daltonics, Germany) in
a positive ion mode.

cDNA library construction and screening of cDNA
encoding defensin
Total RNA was extracted using TRIzol reagent (Invitrogen,
USA) from salivary glands of S. bannaense. mRNA was
purified from the total RNA by affinity chromatography in
oligo(dT) cellulose columns (Promega, USA) and then
used for cDNA library construction by the In-Fusion
SMARTer™ Directional cDNA Library Construction
Kit (Takara, Japan) according to the instructions of the
manufacturer.
The synthesized second-strand cDNAs was used as a

template for PCR to screen the cDNAs encoding defen-
sin. Primers used in this research are shown in Table 1.
SibaDef-F1 and 3′ PCR primer were used in PCR reac-
tion to screen the 5′ fragments of cDNAs encoding
defensin. SibaDef-F1 is designed from the amino acid se-
quence of SibaDef determined by Edman degradation,
and 3′ PCR primer is based on the adaptor sequence of
3′ In-Fusion SMARTer CDS Primer provided in the kit.
The PCR conditions were: 95°C for 5 min and 30 cycles
of 95°C (30 s), 58°C (40 s), 72°C (1 min) followed by an
extension step at 72°C for 10 min. The PCR product was
purified by gel electrophoresis, cloned into pMD19-T
vector (Takara, Japan) for sequencing. After the 3′ frag-
ments of cDNA had been obtained, an antisense primer
(SibaDef-R1) was designed based on the 3′-coding re-
gion of defensin cDNA and coupled with 5′ PCR primer
provided in the kit to screen the full length cDNA en-
coding defensin. The PCR conditions were: 95°C for



Figure 1 Isolation of SibaDef from the salivary gland of S. bannaense and MALDI–TOF MS. (A) The filtrate of the salivary gland homogenate of
S. bannaense by 10 kDa cut-off was divided by an Inertsil C4 RP-HPLC column (25 × 0.46 cm) equilibrated with 0.1% (v/v) trifluoroacetic acid/water. The
elution was performed with the indicated gradient of acetonitrile at a flow rate of 1 ml/min. (B) The eluted peak of A2 containing antimicrobial activity
was further purified by C18 RP-HPLC column (25 × 0.46 cm) developed with a linear gradient of 0 to 70% acetonitrile in acidified water at a flow rate of
0.7 ml/min. The purified antimicrobial peptide is indicated by an arrow. (C) MALDI-TOF mass spectrometry analysis of the antimicrobial peptide.
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5 min and 30 cycles of 95°C (30 s), 56°C (30 s), 72°C
(50 s) followed by an extension step at 72°C for 8 min.
DNA sequencing was performed on an Applied Biosys-
tems DNA sequencer (model ABI PRISM 377, USA).

Sequence analysis
Deduced defensin sequence was performed with ExPASy
Translate Tool (http://web.expasy.org/translate/). Database
searches were performed with Blastx (http://www.ncbi.
nlm.nih.gov/), and the amino acid sequence identity be-
tween defensin sequences was aligned using ClustalW
(http://embnet.vital-it.ch/software/ClustalW.html) [28].
The theoretical isoelectric point (pI) and molecular
weight (Mw) were carried out using ExPASy Compute
pI/Mw tool (http://web.expasy.org/compute_pi/) [29].
The dendrogram was drawn using the neighbor-joining

http://web.expasy.org/translate/
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Table 1 Primer sequences used for cloning and qPCR in
this study

Primer Sequence (5′→ 3′) Application

3′ PCR primer CGGGGTACGATGAGACACCA 3′ end screening

SibaDef -F1 TIYTIWSIATHWSNACNCC* 3′ end screening

SibaDef -R1 TCGTACATCAGTCAGATCCACCG 5′ end screening

5′ PCR primer AAGCAGTGGTATCAACGCAGAGT 5′ end screening

SibaDef - F2 AGAAGAGCAACCTGCGACCTG qPCR

SibaDef - R2 AGTCAGATCCACCGCCCGAAT qPCR

Actin-F TGTTGTCACTGTACGCCTCCG qPCR

Actin-R TGATGTCGCGAACGATTTCCC qPCR

*Where Y stands for C or T, W stands for A or T, S stands for C or G , H stands
for A, C or T, N stands for A, C, G or T, and I stands for hypoxanthine.
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(NJ) method in the Mega 5 package. A total of 1,000
bootstrap replicates were used to test the reliability of
each branch.

Antimicrobial assay
The microbicidal activity of SibaDef was evaluated as
described in our previous papers [6,30]. Briefly, bacteria
were cultured in Mueller-Hinton broth (MH broth) at
37°C to exponential phase and diluted with fresh MH
broth to 5 × 105 colony-forming units (CFUs)/ml.
Aliquots (50 μl) of serial dilutions of sample were dis-
pensed into a 96-well microtiter plate and mixed with
50 μl of bacteria inoculums in MH broth. The microtiter
plate was incubated at 37°C for 18 h, and the absorbance
at 600 nm was measured using an automatic microplate
spectrophotometer. The minimal concentrations at
which no growth of microorganisms occurred were re-
corded as minimal inhibitory concentration (MIC).

Hemolytic assay
Hemolytic assay was conducted as previously reported
[31]. Serial dilutions of SibaDef were incubated with
washed human erythrocytes at 37°C for 30 min and then
the cells were centrifuged at 1,000 × g for 5 min. The ab-
sorbance of supernatant was measured at 540 nm. 1%
(v/v) Triton X-100 was used to determine the maximal
hemolysis and 0.9% saline was used as negative control.

SEM
The morphologic changes of the bacteria treated with
SibaDef were assessed by SEM as previously reported
[31]. Gram-positive bacteria S. aureus ATCC 6538 and
B. subtilis ATCC 6633 were cultured in MH broth to ex-
ponential phase respectively, and then incubated with
SibaDef (1 ×MIC) at 37°C for 45 min. After a centrifu-
gation at 1,000 × g for 10 min, bacteria pellets were fixed
with 2.5% glutaraldehyde solution for 2 h at 4°C. The
bacteria were postfixed in 1% osmium tetroxide for 2 h
at 4°C, and dehydrated in a graded series of alcohols.
After being mounted onto aluminium stubs and vacuum
sputter-coated with gold, the samples were observed
with a Hitachi S-4800 SEM under standard operating
conditions.

Bacterial feeding
Bacterial feed experiment was carried out as previously
described [32]. The collected S. bannaense (200 flies)
were fed with 70% sucrose solution ad libitum. After
starving for 12 hour, black flies were fed through cotton
wool with 20% sucrose solution (OD600 = 0.2) con-
taining Gram-positive bacteria S. aureus ATCC 6538
or B. subtilis ATCC 6633. All the black flies, including
the naïve (sugar fed controls), were kept under con-
trolled conditions of temperature (26 ± 2°C), humidity
(85-90%), and photoperiod (12 h/12 h). Total RNA
was extracted from whole bodies of immune stimulated or
naive insects at 12, 24, 36, 48 and 72 h after feeding and
processed immediately as described below.

qPCR
qPCR was performed to analyze the expression of Siba-
Def mRNA in whole bodies of immune stimulated or
naive insects, with the housekeeping gene β-actin as an
endogenous control. As listed in Table 1, primers for
SibaDef amplification were designed on the SibaDef
cDNA sequence, and β-actin was amplified using
primers based on the sequence from black fly S. vitta-
tum (GenBank accession number AY083375.1). Prime-
Script® Reverse Transcriptase (Takara, Japan) and SYBR
green master mix (Takara, Japan) were used following
the manufacturer’s instruction.
q-PCR was performed on a Realplex Mastercycler

real-time PCR system (Eppendorf, Germany) with the
following parameters: 95°C for 2 min, and 40 cycles of
95°C for 30 s,60°C for 30 s. SibaDef mRNA expression
level was calculated following normalization to β-actin
by ΔΔCt method. The accuracy of qPCR was verified by
melt curve analysis.

Homology modeling
Defensin homology modeling was performed by Easy-
modeller version 2.0 [33]. The solution NMR structure
of Sapecin (PDB entry code 1L4V) from Sarcophaga
peregrine (Diptera: Sarcophagidae) was used as the tem-
plate because this defensin antimicrobial peptide shared
the highest identity of 44% with SibaDef. The comparative
three-dimensional structure model of SibaDef was opti-
mized using PYMOL software (http://www.pymol.org).

Data and statistical analysis
Statistical analyses were performed using GraphPad
Prism 5.0 (GraphPad Software Inc., San Diego, CA,
USA) and Stata 10.0 software (StataCorporation, College

http://www.pymol.org


Figure 2 The cDNA sequence of SibaDef precursor and the deduced amino acid sequence. Deduced amino acid sequence is shown below
the cDNA sequence. The amino acid sequence of mature peptide is underlined and the stop codon is indicated by an asterisk. The dibasic cleavage
site and the putative polyadenylation consensus signal are italicized and gray shaded. Amino acid numbers or nucleotide numbers are shown after
the sequences.
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Station, TX, USA). Data were presented as mean ±
standard errors of mean, and compared using two-tailed
equal variance Student’s t-test. P < 0.05 was considered
as statistical significance.

Results
Characterization of SibaDef
The fractions with antimicrobial activity (marked by A2)
were collected, lyophilized, and further purified by C18

RP-HPLC as illustrated in Figure 1B. After Edman deg-
radation, a primary structure of 18 amino acid residues
was identified with the following sequence: ATCDLL-
SISTPWGSVNSA. MALDI-TOF MS analysis (Figure 1C)
indicated that the peptide (SibaDef) had a measured
molecular mass of 4795.23 Da, matching well with the
Figure 3 Alignment of the amino acid sequence of SibaDef with diffe
results. The symbols under the alignment indicate: (*) identical sites; (:) con
involved in disulfide bridges are grey shaded and activation peptide cleava
the analyzed sequences are shown in Figure 4.
calculated molecular mass 4795.55 Da. The complete
nucleotide sequence of cDNA (GenBank accession
KJ842485) and deduced amino acid sequence of SibaDef
precursor are shown in Figure 2. The N-terminal de-
duced sequence of SibaDef precursor is completely con-
sistent with the result of Edman degradation sequencing.
The cDNA encoding protein precursor is composed of
105 amino acid residues, including a predicted 22 amino
acid signal peptide, a 37 amino acid propeptide region
and a 46 amino acid mature SibaDef peptide. There is a
characteristic dipeptide cleavage site (−R58R59-) for
trypsin-like proteases between propeptide and mature
peptide. Analysis using the ExPASy MW/pI tool showed
that it has a predicted pI of 8.94. The eluted peak of
A1 containing antimicrobial activity was also purified,
rent insect defensins. These sequences were based on BLAST search
served sites; (.) less conserved sites. The six conserved cysteine residues
ge sites are marked with a triangle. GenBank accession numbers for



Figure 4 Phylogenetic tree based on the amino acid sequence of insect defensins. The numbers on the branches represent the percent
bootstrap support and only values over 50% are shown. The bar at the bottom represents 5% amino acid divergence. SibaDef is indicated by
a triangle.
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sequenced and aligned well with other insect cecropins
(data not shown).
BLAST search indicated that the amino acid sequence

identity between SibaDef and their homologues from
different insect species varied widely, ranging from 52%
to 67%. Surprisingly, SibaDef shared the highest identity
of 67% (31/46) with the defensin-2 from the human
body louse P. humanus corporis (Anoplura: Pediculidae).
Multi-sequence alignment of insect defensin precur-

sors (Figure 3) indicated that the signal peptide and
propeptide region of these sequences are divergent.
However, sixteen amino acids residues within the mature
peptides are highly conserved, including a signature
motif of six conserved cysteines and an additional ten
residues (Ala60, Thr61, Asp63, Ser66, His76, Ala80,
His82, Gly92, Gly93 and Arg104). A characteristic
feature of all the mature peptides is the presence of an
alanine residue and a threonine residue (−AT-) at the N-
terminus. In addition, there are two basic residues (−RR-
or -RK-) at the C-terminus of the mature peptide, except
for the defensin A from Nilaparvata lugens, which pos-
sesses an arginine residue and an asparagine residue
(−RN-) at the C-terminus.

Phylogenetic analysis
The phylogenetic tree was generated from 53 defensin-
related amino acid sequences (25 insect species including
11 Diptera, 6 Hymenoptera, 4 Hemiptera, 2 Coleoptera, 1
Anoplura and 1 Homoptera). As showed in Figure 4, all
defensin sequences are divided into two distinct clusters
including 47 sequences derived from different orders of
insects (Diptera, Hemiptera, Coleoptera, Anoplura and
Homoptera) and 6 sequences derived from hymenopteran
insects, respectively. SibaDef was grouped together with
the anopluran defensins (defensin-2 and defensin) from
the human body louse P. humanus corporis.

Antimicrobial activity
The MICs of SibaDef against Gram-positive and Gram-
negative bacteria were determined. As listed in Table 2,
Table 2 Antimicrobial activity of SibaDef

Microorganisms MIC (μM)*

Gram-positive bacteria

Staphylococcus aureus ATCC 6538 0.83

Bacillus subtilis ATCC 6633 1.04

Bacillus cereus ATCC 14579 2.08

Micrococcus luteus ATCC 4698 2.29

Gram-negative bacteria

Escherichia coli ATCC 8739 ND

Pseudomonas aeruginosa ATCC 9027 ND

*MIC: minimal inhibitory concentration. These MICs represent mean values of three
independent experiments performed in duplicates. ND: no detectable activity.
SibaDef showed strong antimicrobial activities against
four tested Gram-positive bacteria, with MICs ranging
from 0.83 μM to 2.29 μM. However, no effect was observed
against Gram-negative bacteria E. coli and P. aeruginosa.

Hemolysis
Human fresh erythrocytes were used to evaluate the
hemolytic activity of SibaDef. The result showed SibaDef
displayed negligible hemolytic activity on human
erythrocyte even with peptide concentrations up to
41.71 μM, which is almost 40-fold higher than their cor-
responding MIC values.

SEM
SEM was performed to study the possible mechanisms
of action of SibaDef on Gram-positive bacteria S. aureus
and B. subtilis. In contrast to the untreated S. aureus
cells (Figure 5A) and B. subtilis (Figure 5C), cells treated
with SibaDef (1 ×MIC) showed obvious morphological
alterations (Figure 5B, D). The membrane integrity of
cells seemed to be disrupted, and there were a large
number of filaments on the surface of cells. In addition,
exposure of S. aureus to SibaDef resulted in aggregation
(Figure 5B).

Transcription of SibaDef in black flies fed on bacteria
After S. aureus or B. subtilis ingestion, the expression
levels of SibaDef mRNA in whole bodies of bacteria-
immunized or naive insects were compared at the differ-
ent time course. As illustrated in Figure 6A, the levels of
SibaDef mRNA were up-regulated by bacterial-challenge
at 12, 24, 36, 48 and 72 h after S. aureus ingestion (9.8,
17.4, 31.1, 22.6 and 18.5 fold, respectively). After B. sub-
tilis ingestion, the fold increase in defensin transcription
at different time course (12.3, 20.9, 34.7, 26.8 and 21.7
fold, respectively) was shown in Figure 6B. The expres-
sion of defensin mRNA peaked at 36 h (31.1 and 37.4
fold, respectively) and relatively decreased with time.

3D structure analysis of SibaDef
The homology modeled structures of SibaDef are shown
in Figure 7. The common motifs are preserved in the se-
quence alignment of the template and SibaDef struc-
tures. It consists of one α-helix (residues Gly13-His23,
in red), two antiparallel β-sheets (residues Ala26-Phe31
and Tyr35-Lys39, in green) and some random coils (in
blue) locating at both terminal end of SibaDef and re-
gions between α-helix and β-sheets (Figure 7A). It also
shows the positive charges distribution of SibaDef (five
basic residues) in the surface of the three-dimensional
structure (Figure 7B, in red). Electrostatic surface ana-
lysis revealed that several regions of the solution struc-
ture surface are positively charged at a neutral pH
(Figure 7C, in blue). Taken together, SibaDef shared



Figure 5 Scanning electron microscopy analysis of SibaDef-treated bacteria. (A) Control, untreated S. aureus. (B) 1 ×MIC (0.83 μM)
SibaDef-treated S. aureus. (C) Control, untreated B. subtilis. (D) 1 ×MIC (1.04 μM) SibaDef-treated B. subtilis. Arrow indicates severe leakage of
cellular cytoplasmic contents.
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common structural features and electrostatic character-
istics with a variety of insect defensins.

Discussion
Insects lack an acquired immune response, but they have
an unspecific cellular response (phagocytosis and encap-
sulation of invading microorganisms by blood cells) and
humoral immune reactions (activation of proteolytic
pathways and the rapid synthesis of immune-related
peptides) [34]. These peptides are synthesized either by
the fat body and various epithelia in holometabolous
Figure 6 Fold increase of SibaDef in whole bodies of insects after ora
of sibaDef in insects after S. aureus ingestion. (B) Fold increase of SibaDef in in
bacteria-immunized insects were calculated relative to the level of SibaDef in
infection treatment are significantly different from control values. *P < 0.05, **
insects, or by hemocytes in heterometabolous insects
[23]. Extensive research in the past decades has estab-
lished that insect AMPs are ubiquitous and ancient con-
tributors to immune defense against bacterial, fungal and
parasitic infections [23,26,35]. As an important blood-
sucking insect, there have been comparatively few studies
on antimicrobial substances in black fly, especially no
defensins have been reported so far.
Here, a novel cationic defensin designated SibaDef was

purified from the salivary glands of the black fly S. ban-
naense, The structural organization of SibaDef precursor
l infection with bacteria at different time course. (A) Fold increase
sects after B. Subtilis ingestion. Expression levels in whole bodies of
corresponding naive insects, which was arbitrarily defined as 1. Values for
P < 0.01 significantly different compared to the control (n = 9).



Figure 7 Homology modeling of SibaDef. (A) Representation of
the homology-derived solution structure of SibaDef. It consists of
one α-helix (in red), two antiparallel β-sheets (in green) and some
random coils (in blue). (B) Basic residues (Lys and Arg, in red) are
displayed in the structures. (C) Electrostatic potential map of SibaDef,
positively charged region and negatively charged region are shown
in blue and red, respectively. Homology model was performed by
Easymodeller version2.0 and optimized by using PYMOL software.
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(Figure 2) is similar to other insect defensin precursors,
comprising a signal peptide sequence, an N-terminal
propeptide region containing several aspartic and glu-
tamic acid residues, and the mature peptide at the C-
terminus of the precursor. These sequences also share
the conserved enzymatic processing sites (−KR- or -RR-)
to release the mature peptides. The dibasic cleavage site
(Figure 3) has been found in many insect defensins
identified from the different orders (Diptera, Anoplura,
Coleoptera, Homoptera and Hemiptera) [22,23,26]. The
first two amino acid residues (AT) at the N-terminus of
SibaDef is conserved in phylogenetically higher insects
such as mosquitos and triatomines [36]. The consensus
motifs of SibaDef are C-X16-C-X3-C-X11-C-X5-C-X1-C
(where C is a cysteine, and X is any amino acid except
cysteine), which is consistent with the spacing pattern
of insect defensins (C-X5–16-C-X3-C-X9–11-C-X4–7-C-
X1-C) [37].
Phylogenetic analysis (Figure 4) showed that SibaDef

is most closely related to anopluran defensins from the
human body louse P. humanus corporis, rather than to
other dipteran defensins. The evolutionary trends of insect/
mosquito defensins have revealed the similar outcomes, in
which two dipteran defensins (Agd3 and Agd4) from
Anopheles gambiae are grouped with lepidopterans more
than with mosquitoes. In addition, a lepidopteran defensin
(Mbd1) from cabbage moth Mamestra brassicae is clus-
tered with the members of the mosquito specific cluster
[38]. However, no meaningful explanation for these associ-
ations can be found. Previous research on evolution of in-
vertebrate defensins has shown that the available data in
hand is inadequate to provide an integrated view of the
evolutionary history of AMPs [39]. We suggest that defen-
sins in P. humanus corporis and SibaDef, possibly perform
similar functions in vivo due to tremendous evolutionary
pressure such as the immune pressure imposed by the ver-
tebrate hosts.
Insect defensins are classified into antimicrobial defen-

sins and antifungal defensins according to their in vitro
activity against bacteria or filamentous fungi [23]. The
antimicrobial defensins are known to be active mainly
against Gram-positive bacteria at different concentra-
tions (MICs ranging from 0.4 μM to 100 μM) [26,40].
They interact with negatively charged bacterial mem-
branes and insert into membrane bilayers to form pores,
leading to membrane permeabilization and disruption
[41]. Homology modeling of SibaDef (Figure 7) shows
that it has a cationic structure with one α-helix and two
antiparallel β-strands. The structure contributes to the
ability of antimicrobial defensins to kill bacteria [23]. As
expected, SibaDef shows strong activities (Table 2)
against Gram-positive bacteria (MICs ranging from 0.83
to 2.29 μM). SEM analysis indicated that such activities
are carried out with a lytic effect on the bacterial mem-
branes (Figure 5). These results confirm that the micro-
bial membrane is a key target for cationic defensins. The
potent antimicrobial effect of SibaDef facilitates the pre-
vention of bacterial contamination in sugar or blood
meal acquisition. However, the actual functions of defen-
sin in the salivary gland of haematophagous insects re-
main to be elucidated.
The transcript levels of SibaDef in whole bodies of in-

sects increase after oral infection with Gram-positive
bacteria S. aureus or B. subtilis, and peak at 36 h post-
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feeding (Figure 6). In these experiments, black flies chal-
lenged with B. subtilis express relatively higher levels of
defensin mRNA when compared to those insects chal-
lenged with S. aureus at different time course. Mean-
while, we also observe increased levels of transcription
for cecropin in S. bannaense after infection (data not
shown). These results suggest that SibaDef involves in S.
bannaense innate humoral response and cooperates with
other immune-related peptides such as cecropin to con-
trol bacterial infection.

Conclusions
In conclusion, the black fly defensin was first identified
in the present work by peptide purification and molecu-
lar cloning procedures. This defensin exhibited potent
antimicrobial activity against Gram-positive bacteria
through the disruption of microbial membrane. Further
work needs to be done to investigate what is the actual
functions of this immune-related peptide during the
meal and bacterial infection.
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