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Malaria is a highly inflammatory and oxidative disease. The production of reactive oxygen
species by host phagocytes is an essential component of the host response to
Plasmodium infection. Moreover, host oxidative enzymes, such as xanthine oxidase,
are upregulated in malaria patients. Although increased production of reactive oxygen
species contributes to the clearance of the parasite, excessive amounts of these free
radicals can mediate inflammation and cause extensive damage to host cells and tissues,
probably contributing to severe pathologies. Plasmodium has a variety of antioxidant
enzymes that allow it to survive amidst this oxidative onslaught. However, parasitic
degradation of hemoglobin within the infected red blood cell generates free heme,
which is released at the end of the replication cycle, further aggravating the oxidative
burden on the host and possibly contributing to the severity of life-threatening malarial
complications. Additionally, the highly inflammatory response to malaria contributes to
exacerbate the oxidative response. In this review, we discuss host and parasite-derived
sources of oxidative stress that may promote severe disease in P. falciparum infection.
Therapeutics that restore and maintain oxidative balance in malaria patients may be useful
in preventing lethal complications of this disease.

Keywords: malaria, Plasmodium falciparum, Plasmodium vivax, oxidative stress, reactive oxygen species,
oxidation, pathogenesis, cerebral malaria
INTRODUCTION

Oxidative stress is caused by reactive oxygen or nitrogen atoms that have unpaired electrons in their
outer shell. They are called reactive oxygen species (ROS) or reactive nitrogen species (RNS) and are
commonly produced in cells. These radicals are oxidants that can damage cellular components, but
are also involved in essential cellular processes, such as intracellular signaling and the oxidative
burst in innate immune cells (Liguori et al., 2018).

Oxidative stress has been related to aging and to a variety of diseases including diabetes, cancer
and cardiovascular complications, based on a general hypothesis that molecular damages induced
by ROS and RNS result in the functional impairments that underlie aging and the aforementioned
diseases (Liguori et al., 2018). However, the role of oxidative stress in infectious diseases is more
complex, since it contributes to the elimination of invading pathogens, but also causes molecular
damage in the host. It is well known that infections frequently induce high levels of ROS and RNS
that are formed as part of the inflammatory response, and also as a consequence of organ damage
and metabolic changes induced by infection (Pohanka, 2013).
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There is a tight relation between inflammation and oxidative
stress during any infection (Nathan and Cunningham-Bussel,
2013). It is well known that innate immune cells recognize
pathogens and respond by triggering strong inflammatory
responses. Innate immune cells phagocytose these pathogens
and attempt to eliminate them by rapidly increasing the
production of ROS in their phagosomes in a mechanism called
oxidative or respiratory burst. ROS produced during the
oxidative burst are also released extracellularly, contributing to
the increase of the oxidative state in the infected host (Thomas,
2017). Inflammatory and oxidative pathways are linked in
immune cells through the transcription factor NF-kB, which is
activated by inflammatory mediators and, in turn, can activate
pro-oxidant genes in these cells (Lingappan, 2018).

Conversely, oxidative stress can induce inflammation, since
ROS regulate the inflammatory response in immune cells
through the activation of NF-kB, which results in the secretion
of inflammatory cytokines (Lingappan, 2018). ROS also serves as
the first signal for the activation of the inflammasome (Ty et al.,
2019), further contributing to the inflammatory response.

Malaria is a highly inflammatory and oxidative disease.
During the blood stage of infection, the level of oxidative stress
in plasma is frequently measured by determining the
concentration of malondialdehyde (MDA), a lipid peroxide
which is formed as a consequence of oxidation of unsaturated
lipids and reflects the levels of free radicals in the circulation
(Ayala et al., 2014). This method has allowed for the
determination of the levels of oxidative stress in plasma
samples from malaria patients. Results indicate that oxidative
stress is higher in malaria patients, caused by either Plasmodium
falciparum or P. vivax infection, compared to healthy controls
(Das and Nanda, 1999; Pabon et al., 2003; Yazar et al., 2004;
Prasannachandra et al., 2006; Tiyong Ifoue et al., 2009; Bilgin
et al., 2012; Narsaria et al., 2012). Additionally, high levels of
oxidative stress were found in monkeys infected with P. knowlesi
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(Srivastava et al., 1992) and mice infected with P. berghei, P.
yoelii or P. chabaudi (Nneji et al., 2013; Scaccabarozzi et al.,
2018), indicating that oxidative stress is a generalized
phenomenon in Plasmodium infections.

The increase in oxidative stress observed in malaria patients
infected with either P. falciparum or P. vivax infections is often
coupled with a decrease of anti-oxidant levels (Table 1). This
decrease in both enzymatic and non-enzymatic antioxidants
during malaria evidences the loss of the homeostatic balance
between free radicals and antioxidant capacity that is maintained
in healthy tissues.

During the blood stage of Plasmodium infection, a relation
between oxidative stress and inflammation is evidenced by ROS-
induced activation of macrophages (Ty et al., 2019) and dendritic
cells (Gotz et al., 2019), which results in the secretion of
inflammatory cytokines. Studies in vitro showed that ROS not
only activates classical cytokine secretion in these cells, but also
provided a first essential signal necessary for inflammasome
activation, with the parasite P. falciparum providing the second
one (Ty et al., 2019). Plasmodium infections in mice show a
gradual increase in both inflammatory cytokines and oxidative
stress in different organs (Gosavi et al., 2016). In P. falciparum
patients, the fact that cytokine levels and oxidative stress both
increase with disease severity (Abdullahi et al., 2020), and the
finding of a direct correlation between inflammatory cytokines
and ROS levels in patient plasma, suggest a link between
inflammation and oxidative stress in malaria (Ty et al., 2019).

During the initial liver stage of malaria, the parasite is
susceptible to oxidative stress which decreases parasite survival
within the hepatocytes. Interestingly, a high-fat diet which
increased the levels of oxidative stress was found to be highly
protective of liver stage malaria infection (Zuzarte-Luis et al.,
2017). Conversely, high levels of heme-oxygenase-1 (HO-1),
which has a strong antioxidant activity, promote Plasmodium
liver infection (Epiphanio et al., 2008). Since HO-1 is part of the
TABLE 1 | Malaria patients have significantly increased lipid peroxidation and decreased levels of antioxidants.

Plasmodium species Lipid peroxidation Antioxidants Study

P. falciparum ↑ ↓ Catalase
↓ Glutathione
↓ Tocopherol
↓Ascorbate

(Das and Nanda, 1999)

P. vivax ↑ ↓ Catalase
↓ Glutathione
↓ Superoxide dismutase
↓ Glutathione peroxidase
↓ Ascorbate
↓ Vitamin A

(Erel et al., 1997)

P. falciparum
& P. vivax

↑ ↓ Tocopherol (Prasannachandra et al., 2006)

P. falciparum & P. vivax ↑ ↓ Catalase (Pabon et al., 2003)
P. falciparum ↓ Vitamin E

↓ Vitamin A
(Delmas-Beauvieux et al., 1995)

P. vivax ↑ ↓ Superoxide dismutase
↓ Glutathione peroxidase

(Bilgin et al., 2012)

P. falciparum ↑ ↓ Ascorbate (Das et al., 1993)
P. falciparum & P. vivax ↑ ↓ Superoxide dismutase

↓ Vitamin E
(Kulkarni et al., 2003)
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inflammatory response induced in the host by Plasmodium
infection, the parasite would ultimately benefit from this
response because of reduced levels of oxidative stress that
would otherwise impair its growth. This constitutes a perfect
example of the close relation between the inflammatory and
oxidative responses during infection and the important
consequences that are derived for the host.
SOURCES OF OXIDATIVE STRESS
DURING MALARIA

During the blood stage of malaria, there are different sources of
host-derived oxidative stress that are either a direct result of
Plasmodium infection of erythrocytes, such as heme, or a
consequence of the host response to infection, which includes
systemic upregulation of host oxidative enzymes and the
phagocytic oxidative burst (Figure 1). Additionally, anti-malarial
treatments are frequently contribute to oxidative stress, since their
mechanism of action is mediated by oxidative killing of
the parasite.

Heme
Heme is a source of oxidative stress that affects both the parasite
and the host during malaria. Plasmodium parasites consume
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
hemoglobin within infected erythrocytes as a source of amino
acids (Becker et al., 2004). The breakdown of hemoglobin results
in the release of heme, which can produce reactive oxygen species
via its iron atom. Heme iron can promote the production of the
hydroxyl radical via the Fenton reaction, which can induce
damage to the parasite and the host (Percario et al., 2012). To
counteract the adverse effects of heme, Plasmodium converts heme
into hemozoin, an intracellular aggregate where heme molecules
are interlinked, forming a crystal structure. Hemozoin does not
induce oxidative damage to the host or parasite.

However, previous reports observed that not all heme
molecules are successfully crystallized into hemozoin within the
infected erythrocyte (Becker et al., 2004), meaning that free heme
that has not been converted to hemozoin can cause damage to host
cells and tissues once it has been released. Heme can also be
released via hemolysis of uninfected red blood cells, which also
occurs during Plasmodium infection (Haldar and Mohandas,
2009). Therefore, lysis of both infected and uninfected
erythrocytes are potential contributors to oxidative stress
in malaria.

Xanthine Oxidase
Another source of oxidative stress during Plasmodium infection is
the host oxidative enzyme xanthine oxidase (XO). XO generates
reactive oxygen species such as superoxide (O2·-) and hydrogen
peroxide (H2O2) as it breaks down hypoxanthine to xanthine and
FIGURE 1 | Oxidative stress during Plasmodium infection. Various sources contribute to the oxidative environment during malaria, including upregulation of host
enzymes such as XO, the oxidative burst in macrophages upon phagocytosis of infected erythrocytes, and heme release from hemoglobin degradation in
host infected erythrocytes. A balance between levels of anti-oxidants in the human host and the generation of ROS determines the levels of oxidative stress. ROS
promote inflammation in malaria, leading to the activation of macrophages and the subsequent release of pro-inflammatory cytokines, such as TNF and IL6 among
others, but also inflammasome-dependent IL1-b, where ROS provide priming signal 1 and P. falciparum the activating signal 2.
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ultimately, to uric acid (Battelli et al., 2016). Elevated levels of this
enzyme have been reported in both mouse (Tubaro et al., 1980)
and human infections (Iwalokun et al., 2006; Ty et al., 2019) with
Plasmodium parasites. Pediatric patients with severe malaria
(Iwalokun et al., 2006) and adult patients with cerebral malaria
(Ty et al., 2019) have higher levels of XO in circulation compared
to patients with uncomplicated malaria, supporting a pathogenic
role for this enzyme in exacerbating severity of disease during
Plasmodium infection. XO also contributes to inflammation in
malaria, since XO-derived extracellular ROS, in combination with
lysates of P. falciparum-infected red blood cells (iRBCs), activate
monocyte-derived macrophages in vitro, leading to the production
of the inflammatory cytokine IL-1b and chemokines IL-8, CCL5,
and CCL2 (Ty et al., 2019). This enzyme also promotesmaturation
and cytokine secretion in dendritic cells incubated with P.
falciparum-iRBCs (Gotz et al., 2019). Moreover, XO augmented
the ability of P. falciparum – activated dendritic cells to induce T
cell proliferation, contributing to both dendritic cell and T cell
responses to Plasmodium infection (Gotz et al., 2019).

Despite its role in promoting inflammation in malaria, there
are reports suggesting a protective role for XO in the context of
Plasmodium infection. XO interferes with the growth of in vitro
cultures P. falciparum, given that it consumes hypoxanthine,
which the parasite needs to synthesize purines (Berman et al.,
1991). Moreover, XO-generated ROS have also been implicated as
detrimental agents for the growth of Plasmodium parasites.
Cultures of P. yoelii that are pre-treated with XO and
subsequently injected into mice are unable to replicate effectively
within a murine host, as indicated by the lower parasitemia in
these animals compared to that of other animals that were
challenged with untreated P. yoelii. However, pre-incubation of
P. yoelii cultures with XO in the presence of the antioxidant
enzyme catalase restored the virulence of the parasite, indicating
that XO-produced ROS interfered with its survival within the host
(Dockrell and Playfair, 1984).

Phagocytic Oxidative Burst
The production of ROS is a crucial part of the host response to
various infectious agents, including Plasmodium. The innate
immune system of the host uses the oxidative burst to eliminate
invading pathogens. This mechanism is triggered in immune cells
such as neutrophils and macrophages after phagocytosis of
microbial pathogens. Cells activate nicotinamide adenine
dinucleotide phosphate reduced (NADPH) oxidase to produce
high concentrations of ROS in the phagosome that result in the
death of the microbe (Forman and Torres, 2002).

Exposure of human neutrophils and monocytes to P. falciparum
merozoites and secreted antigens in vitro triggers the oxidative burst
in these cells, leading to increased production of ROS (Kharazmi
et al., 1987). While the oxidative burst is meant to curb the
replication and survival of the parasite, it has also been shown
that phagocytosis of Plasmodium antigens can be detrimental for
the oxidative capacity of phagocytic cells, since macrophages that
phagocytosed purified hemozoin had diminished NADPH oxidase
activity (Schwarzer and Arese, 1996). A study conducted with
neutrophils isolated from Gambian children with P. falciparum
malaria showed that these cells have diminished oxidative burst
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
capacity compared to neutrophils isolated from healthy controls
(Cunnington et al., 2012), lending further support to the hypothesis
that the oxidative burst can be compromised during Plasmodium
infection. Overall, downregulation of the phagocytic oxidative burst
may be beneficial in that it decreases oxidative stress for the host, but
its inhibition would also facilitate the growth and survival of
the parasite.

Oxidative Stress Induced by
Anti-Malarial Drugs
Given that Plasmodium parasites are sensitive to ROS-mediated
damage, it is not surprising that various antimalarial treatments
exploit this feature of the parasite to limit its growth within
human hosts. Quinolones, including chloroquine and
amodiaquine, act by inhibiting the conversion of free heme to
hemozoin within the infected erythrocyte, effectively increasing
oxidative stress for Plasmodium parasites (Kavishe et al., 2017).
Although the principal mechanism of chloroquine resistance is
based on the ability of the parasites to prevent the drug from
accumulating in their digestive vacuole, an increase in parasite
antioxidant capacity may contribute to resistance. Notably, it has
been shown the chloroquine-resistant strains of human (P.
falciparum) and rodent (P. yoelii, and P. berghei) malaria have
increased activity of the antioxidant enzyme glutathione-S-
transferase compared to chloroquine-sensitive strains of the
same species (Srivastava et al., 1999), which may help these
parasites counteract the oxidative burden caused by the drug.

Another major family of anti-malarial drugs are the
artemisinins, which include dihydroartemisinin and artesunate
(Kavishe et al., 2017). These drugs also exert their anti-parasitic
effects by increasing oxidative stress on the parasite. One of the
proposed mechanisms of action for artemisinin postulates that
its interaction with iron leads to the production of free radicals
(Cui and Su, 2009). Notably, the antioxidant N-acetylcysteine
(NAC) can counteract the anti-parasitic effects of artesunate on
P. falciparum, further supporting the hypothesis that these drugs
act by promoting the production of free radicals that are harmful
to the parasite (Arreesrisom et al., 2007).

While increasing oxidative stress is an effective mechanism of
action for parasite elimination, it may also have a negative
impact on the host. Artesunate-induced oxidative damage was
observed in vitro in human cellular DNA (Berdelle et al., 2011)
and in treated mice (Singh et al., 2015). Moreover, a study
showed that malaria patients treated with anti-malarial drugs
had higher levels of lipid peroxidation and lower levels of anti-
oxidants compared to non-treated patients (Akanbi et al., 2010),
suggesting that anti-malarial drugs increase oxidative stress in
the host. Another report proposed using antioxidants, such as
quercetin, along with chloroquine to offset the oxidative stress
and toxic effects caused by this drug (Kumar Mishra et al., 2013).
OXIDATIVE STRESS AND THE
PATHOGENESIS OF MALARIA

It is well documented that the levels of oxidative stress increase
with severity in P. vivax (Sibmooh et al., 2004; Ray et al., 2016;
November 2021 | Volume 11 | Article 768182
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Aqeel et al., 2021) and P. falciparum (Das and Nanda, 1999; Greve
et al., 2000; Narsaria et al., 2012) infections, suggesting that
oxidation may contribute to the development of complications
in malaria. Although specific mechanisms have not been
characterized, it is possible that ROS contributes to disease
severity directly through detrimental effects of oxidative stress
on the tissues or indirectly through the increase in the
inflammatory response (Hemmer et al., 2005; Taoufiq et al., 2006).

It is known that oxidative stress induces lipid peroxidation in
the surface of erythrocytes, reducing the deformability in these
cells (Becker et al., 2004). Notably, in vitro cultures of
P. falciparum induced lipid peroxidation of both infected and
uninfected erythrocytes (Omodeo-Sale et al. , 2003).
In P. falciparum malaria patients, reduced erythrocyte
deformability which was mostly observed in uninfected
erythrocytes, correlated strongly with death (Dondorp et al.,
1997). Since lipid peroxidation reduces erythrocyte
deformability, and this has been linked to increased mortality
of adults and children with malaria (Dondorp et al., 2002), it has
been proposed that oxidative stress contributes to severe malaria
pathogenesis through this mechanism. Possible negative
consequences of erythrocyte rigidity are microcirculation
obstruction and anemia caused by the increased splenic
removal of uninfected rigid erythrocytes (Becker et al., 2004).

The role of oxidative stress in cerebral malaria has been
studied extensively in mouse models. In mice genetically
modified to express a recombinant indicator of oxidation, it
was observed that oxidative stress in the brain is dependent on
the development of experimental cerebral malaria (Imai et al.,
2014). A positive effect of antioxidant treatments in protection of
mice from the development of cerebral malaria and cognitive
impairments indicates a role for oxidative stress in the
pathogenesis of this complication (Thumwood et al., 1989;
Kremsner et al., 1991; Reis et al., 2010; Imai et al., 2014;
Nyariki et al., 2019). However, mice deficient in the production
of ROS by NADPH oxidase, a key oxidative enzyme involved in
the phagocytic burst, developed cerebral malaria at similar rate as
wild-type mice (Sanni et al., 1999). This lack of difference in the
development of pathology may reflect that there are different
factors contributing to oxidative stress in the host. The knock-
out of one enzyme is probably not sufficient to reduce
significantly the overall oxidative burden that the host faces
during infection.

The role of heme-induced oxidative stress in malaria
pathogenesis has been validated in different in vivo studies
using knockout mice lacking the gene for HO-1. HO-1 breaks
down heme into biliverdin and carbon monoxide (CO), which
are antioxidants (Silva et al., 2020), and iron, which can be bound
by the iron-binding protein ferritin (Balla et al., 2005).
Expression of HO-1 in the context of Plasmodium infection is
important in the prevention of cerebral malaria in mice
(Pamplona et al., 2007). In this study, BALB/c mice challenged
with P. berghei increased expression of HO-1 at the mRNA and
protein levels and did not develop experimental cerebral malaria.
On the other hand, C57BL/6 mice did develop cerebral malaria
upon challenge with P. berghei, but they did not increase
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
expression of HO-1. Notably, treatment of the infected C57BL/
6 mice with cobalt protoporphyrin (CoPPIX), a HO-1 inducer,
increased survival and prevented damage to the blood brain
barrier (Pamplona et al., 2007). HO-1 expression is also involved
in protection against acute kidney injury (Ramos et al., 2019) and
acute lung injury (Pereira et al., 2016) that occur in mice during
Plasmodium infection, indicating that heme may play a role in
mediating various malarial complications.

Analysis of oxidative stress in brain histology of patients who
died of cerebral malaria showed that HO-1 was predominantly
found in the vicinity of vessels and hemorrhages. However a
similar pattern was also found in patients who died of other
causes, suggesting that the proximity of HO-1 to vessels and
hemorrhages may be a consequence, rather than a cause of the
hemorrhage. In general, there was no pattern of widespread
irreversible cell damage found in these patients, which suggests
that oxidative stress is not causing generalized damage to the
brain (Medana et al., 2001).

However, studies in patients suggest that heme may play an
important role in different malaria complications. A study
measuring plasma levels of free heme and hemopexin (a molecule
that binds to heme facilitating its degradation) found that the ratio
of heme to hemopexin was strongly associated with different
malaria complications, including severe anemia, respiratory
distress and acute kidney damage, as well as mortality after 6
months (Elphinstone et al., 2016). Additional studies in patients
show that the levels of cell free hemoglobin and lipid peroxidation
(an indicator of oxidative stress) are associated with acute kidney
injury (Plewes et al., 2017), further suggesting a detrimental role of
heme-induced oxidation in kidney function. Furthermore,
adjunctive treatment with acetaminophen, which inhibits lipid
peroxidation induced by free heme, resulted in decreased kidney
damage in malaria patients (Plewes et al., 2018). Taken together,
these results indicate an important role for heme-induced oxidation
in malaria pathogenesis and open a promising path for
adjunctive treatment.

It is possible that oxidative stress contributes to infected
erythrocyte sequestration in the brain microvasculature by
inducing increased expression of endothelial adhesion
molecules such as ICAM-1 and CD36 (Becker et al., 2004).
This effect may be direct, with oxidative stress potentiating the
expression of adhesive receptors (Terada, 2002) or indirect,
through the increase in cytokine levels, such as TNF, that
strongly increase the expression of adhesive receptors.

It has also been proposed that oxidative stress may promote
malaria-induced thrombocytopenia, since there was a negative
correlation between the number of platelets and levels of lipid
peroxidation in malaria patients (Erel et al., 2001; Araujo
et al., 2008).

Several clinical trials have been performed to test the efficacy of
the antioxidant N-Acetylcysteine (NAC) as an adjunctive treatment
for severe malaria. A pilot study found that NAC induced a faster
normalization of lactate levels [an predictor of severity and death
(White et al., 1985)] in patients with severe malaria compared to the
placebo (Watt et al., 2002), supporting its potential use as an
adjunctive treatment for severe malaria patients. However, larger
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studies showed no improvements in clinical outcomes
(Treeprasertsuk et al., 2003; Charunwatthana et al., 2009). It was
observed that NAC-treated patients presented with significantly
higher levels of parasitemia, which was probably a consequence of a
major antagonistic effect of NAC on the antimalarial activity of
artesunate, which was being used to treat these patients
(Charunwatthana et al., 2009). However, NAC adjunctive
treatment had no effect in the levels of oxidative stress detected in
treated patients compared to untreated controls, suggesting that this
treatment was not effective at decreasing the levels of oxidative
stress in patients (Charunwatthana et al., 2009).

Human clinical trials using the antioxidant pentoxifylline as
adjunctive treatment for cerebral malaria showed conflicting
results ranging from a significant decrease in shortening of
comma resolution time and death (Das et al., 2003), to small
marginally significant effects (Di Perri et al., 1995), to no effect
with a non-significant increase of death in the pentoxifylline-
treated group (Lell et al., 2010). Attempts to decrease oxidation
during malaria by administering vitamin C, which has anti-
oxidative properties, did not result in any measurable changes in
cytokine levels or improvement in anemia in P. vivax patients
(Zen Rahfiludin and Ginandjar, 2013).

In general, the disappointing results of some of the antioxidants
in malaria clinical trials may be due to the inability of these
treatments to significantly decrease oxidative stress in patients.
Since the only trial that measured the levels of oxidative stress in
treated patients found no effects in their oxidation levels
(Charunwatthana et al., 2009), it remains unknown whether
systemically decreasing the levels of oxidative stress in patients
would have a beneficial effect in pathogenesis.
DISCUSSION

The precise role and the mechanisms of oxidative stress in
malaria pathogenesis are still not well defined. On one hand,
there is abundant evidence of strong correlations between levels
of oxidative stress in malaria patients and disease severity in
general disease severity or specific complications. Together with
multiple studies in mice treated with antioxidants, the data
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
suggest that oxidative stress is a major contributor to malaria
pathogenesis. On the other hand, despite multiple proposed
mechanisms, there is no specific demonstrated causal link
between oxidative stress and pathogenesis in human malaria.

Clinical trials with antioxidant treatments could provide a
causal relation between oxidative stress and malaria pathogenesis
in patients. However, it is unclear whether the anti-oxidative
treatments used in the trials actually reduced oxidative stress in
the patients, leaving unanswered the question of antioxidants
efficacy as adjunctive treatment for severe malaria.

There is a need formechanistic studies that candissect the effects
of oxidative stress in specific pathogenic mechanisms during
malaria. Additionally, the relation between inflammation and
oxidative stress, two fundamental players in the pathogenesis of
infection, is still not fully understood.

Overall, maintaining oxidative balance in the host in the
context of Plasmodium infection may be beneficial as it could
prevent the development of pathologic complications. However,
since the oxidative burst in phagocytes and anti-malarial
treatments mechanism of action is mediated by inducing
oxidative killing of the parasite, the possible interference of
antioxidant treatments with parasite elimination must be
carefully analyzed before treatment.
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