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A B S T R A C T   

Optoacoustic tomography is commonly performed with bulky and expensive short-pulsed solid-state lasers 
providing high per-pulse energies in the millijoule range. Light emitting diodes (LEDs) represent a cost-effective 
and portable alternative for optoacoustic signal excitation that can additionally provide excellent pulse-to-pulse 
stability. Herein, we introduce a full-view LED-based optoacoustic tomography (FLOAT) system for deep tissue in 
vivo imaging. It is based on a custom-made electronic unit driving a stacked array of LEDs, which attains 100 ns 
pulse width and highly stable (0.62 % standard deviation) total per-pulse energy of 0.48 mJ. The illumination 
source is integrated into a circular array of cylindrically-focused ultrasound detection elements to result in a full- 
view tomographic configuration, which plays a critical role in circumventing limited-view effects, enhancing the 
effective field-of-view and image quality for cross-sectional (2D) imaging. We characterized the FLOAT perfor-
mance in terms of pulse width, power stability, excitation light distribution, signal-to-noise and penetration 
depth. FLOAT of the human finger revealed a comparable imaging performance to that achieved with the 
standard pulsed Nd:YAG laser. It is anticipated that this compact, affordable and versatile illumination tech-
nology will facilitate optoacoustic imaging developments in resource-limited settings for biological and clinical 
applications.   

1. Introduction 

The availability of commercial optoacoustic tomography (OAT) 
systems based on tunable pulsed lasers has led to an explosive growth of 
the use of this modality in a myriad of biological applications [1–3]. 
Recently, hand-held systems have also been used in a number of clinical 
trials further demonstrating the powerful capabilities of this imaging 
technology for diagnosis of medically-relevant conditions [4–6]. The 
optical-absorption-based contrast of OAT provides unique advantages 
for resolving spectrally-distinctive functional contrast from tissue 
chromophores [7,8], retrieving molecular information from targeted 
and genetically-encoded agents [9–12], sensing local temperature 
changes [13–15], as well as high-resolution imaging of rapid biological 
dynamics [16–22]. However, the use of OAT by biomedical researchers 
and physicians is largely hampered by the bulky and costly solutions 
associated with conventional nanosecond laser pulsing technologies. 
Hence, development of more affordable light sources capable of efficient 
optoacoustic signal generation can greatly facilitate dissemination of the 

OAT technology. 
Typically, short-pulsed (< 100 ns) light pulses with sufficient energy 

are required for OAT of biological tissues at millimeters to centimeter 
depths. OAT is generally performed with Q-switched Nd:YAG lasers 
having < 10 ns pulse durations and energies from a few to hundreds of 
mJ [23]. These are often combined with optical parametric oscillator 
(OPO) crystals enabling tuning the optical wavelength within visible 
and near-infrared ranges [24]. The high cost and form factor of these 
lasers represents an important drawback, exacerbated by thermal and 
other sources of instability leading to significant pulse energy fluctua-
tions. Recently, alternative light sources such as pulsed laser diodes 
(PLDs) [22,25,26] and light emitting diodes (LEDs) [27–29] have been 
explored due to their compact size, low cost and ability to operate at 
high pulse repetition rates (PRRs) of several kHz [30]. LEDs offer a safe 
(diverging beam) and cost-effective solution for OAT implementations, 
particularly in resource-limited and clinical settings. The pulse energies 
delivered by single LED sources are typically in the range of a few µJ, 
which is arguably insufficient for OAT. However, stacked arrays of LEDs 
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can deliver higher pulse energies thus can potentially be used for deep 
tissue imaging purposes if properly arranged to effectively illuminate 
the imaged volume [31,32]. 

Angular aperture and detection bandwidth of the ultrasound detec-
tion array are key determining factors of the OAT performance [19,33, 
34]. To this end, LED-based imaging systems have been implemented 
with linear-array transducers that are afflicted by limited-view artefacts 
and poor image quality at depths. This can be overcome by rotating the 
array around the sample, albeit at the expense of lower temporal reso-
lution and other accompanying motion artifacts [35]. Concave arrays of 
cylindrically-focused elements have been shown to outperform linear 
arrays by attaining superior image quality due to an increased angular 
coverage exploiting the tomographic nature of OAT [36,37]. A full ring 
configuration is particularly advantageous for cross-sectional imaging as 
it averts the limited-view artefacts, which has successfully been 
exploited for imaging human finger joints [38–40]. Also, OAT systems 
based on full-ring arrays can readily be combined with reflection- and 
transmission-based ultrasound imaging to additionally retrieve 
pulse-echo images as well as speed of sound and acoustic attenuation 
maps [41]. 

Herein, we developed a full-view LED-based optoacoustic tomogra-
phy (FLOAT) system that employs a stacked array of LEDs integrated 
into a circular array transducer configuration. We characterize the 
FLOAT performance in terms of power stability and penetration depth in 
a tissue-mimicking phantom and compare it to that achieved with a 
conventional pulsed Nd:YAG laser source. We further demonstrate the 
feasibility of in vivo imaging of human finger joints with the system. 

2. Materials and methods 

2.1. FLOAT system 

The schematic of the FLOAT system is shown in Fig. 1a. Stacked 
arrays of 10 high-power LEDs (SFH4171S, OSRAM, Munich, Germany) 
emitting at 850 nm wavelength were employed as the excitation light 
source. In total, 16 LED arrays were used, 8 attached on each side (top 
and bottom) of the custom-designed circular 80 mm-diameter ultra-
sound array transducer (Imasonic Sas, Voray, France). The LED arrays 
were arranged such that a uniform illumination is provided around the 
circumference of the imaged object. A plexiglass membrane was 
attached on the inner side of the LED array box to isolate the LED circuit 
from water while being transparent for light delivery. The LED arrays 
were operated in a pulsed mode by overdriving them with peak currents 
of ~ 40 A using a custom-designed driver unit (see details in Section 
2.2). The driver was triggered with an external function generator 

(model 33220A, Agilent, CA, USA) producing 80 ns trigger pulses at 50 
Hz frequency. The pulsed current delivered to the LED arrays was 
controlled using a high voltage power supply (WMX-ASD10003, 
Wemaxpower technology Co. Ltd., Shenzhen, China). The per-pulse 
energy for each LED is ~ 3 µJ, as measured with a pyroelectric sensor 
(J-10MT-10KHZ, Coherent Inc.), which results in a total light energy of 
0.48 mJ generated with all the 16 LED arrays (160 individual LEDs). 

The circular ultrasound array transducer consists of 512 sensing el-
ements, each having 0.37 × 15 mm2 area, interelement pitch of 
0.47 mm, central frequency of 5 MHz and > 60 % nominal detection 
bandwidth [36]. All transducer elements were equidistantly distributed 
on 2 arcs, each covering a 174◦ angle. All the transducer elements are 
cylindrically focused in the elevational direction at 38 mm distance. The 
generated optoacoustic signals were digitized by a custom-made parallel 
data acquisition unit (DAQ, Falkenstein Mikrosysteme GmBH, Tauf-
kirchen, Germany) at 40 mega samples per second and transferred 
through a 1 Gb/s Ethernet connection to a PC for storage and further 
processing. The external pulse generator was also used to trigger the 
DAQ. Data acquisition is controlled using a PC-based MATLAB (R2020b) 
interface. 

2.2. LED driver design 

Each pulsed-current LED driver [42] is driving a separate LED 
waterproof box containing 4 LED arrays. A SiC-based MOSFET 
(IMZA65R027M1H, Infineon, Munich, Germany) is used as a switch to 
generate pulsed current on a single LED driver. Each MOSFET is oper-
ated by a MOSFET gate driver (TC4422, Microchip, Chandler, USA). 
Eight capacitors (0.1 μF, C1812C104KCRACAUTO, KEMET, Fort Lau-
derdale, FL, USA) were used to store sufficient energy for the pulsed 
electrical current, and 8 current-sensing resistors (800 mΩ, YAGEO, 
New Taipei City, Taiwan) were connected in series with these capacitors 
to measure the pulsed current. Four protection diodes (RS07G-M-08, 
Vishay, Malvern, USA) were connected in reverse parallel with the series 
of 20 LEDs to prevent the over voltage damage for the LED series. A 
1.8 Ω gate source resistor was used to ensure the fast switching of the 
MOSFET, and a 10 Ω gate sink resistor was used to reduce ringing 
oscillation during the switch off. Three bypass capacitors (0.1 μF, 0.1 μF, 
and 4.7 μF) were used for the MOSFET gate driver TC4422 with two 
SMC connectors (Amphenol RF, Danbury, USA) for triggering and cur-
rent monitor connection. A 50 Ω resistor was connected in series to the 
current monitor SMC connector for impedance matching. For the pulse 
generation, the 8 energy storage capacitors are charged to 340 V to 
provide enough voltage to overdrive 20 LEDs connected in series. Once 
the MOSFET is turned on by the gate driver, the capacitor is being 

Fig. 1. Full-view LED-based optoacoustic tomography (FLOAT) system for deep tissue in vivo imaging. a, Lay-out of the system. b, Photograph of the LED arrays 
(only the bottom eight arrays are shown) fixed to the circular-ring array transducer. US: ultrasound. 
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discharged by the current flowing through the LEDs, causing them to 
emit light. Subsequently, the falling edge of the trigger signal switches 
off the pulsed current flowing through the LEDs. The latter can be 
calculated by measuring, with an oscilloscope, the voltage across the 
low-side current sensing resistors whose one side is grounded. 

2.3. LED array design 

Each array consists of 10 LEDs connected in series on a 11 mm long, 
5 mm wide aluminum-core based double-layer printed circuit board 
(PCB). The aluminum core can enhance the heat transfer and cooling 
down the LEDs. The PCB has two through holes for the positive and 
negative connection from the back side as well as a customized heatsink 
glued on the back side of the array using heat transfer glue. The arrays 
were connected in pairs, yielding a total of 20 individual LED sources 
connected in each series. Altogether, 8 sets of series-connected LED ar-
rays operated in parallel, corresponding to 160 individual LED sources. 

2.4. Signal processing and image reconstruction 

Several signal processing steps were implemented prior to the OAT 
image reconstruction. Initially, the raw optoacoustic signals collected 
from the imaged object were averaged over multiple consecutive pulses. 
Next, background noise signals, obtained without the object present in 
the field of view (FOV), were subtracted and the resultant signals were 
bandpass-filtered between 0.1 and 8 MHz. A notch filter was then 
employed to further mitigate strong harmonic noise appearing in the 
Fourier transform of the signal matrix. The filtered signal matrix was 
then used for OAT image reconstruction using a model-based recon-
struction algorithm featuring statistical weighting to minimize artefacts 
associated to acoustic reflections and scattering [43]. 

3. Results 

3.1. FLOAT system characterization 

Temporal profile of the pulsed current flowing through a LED box, as 
measured with an oscilloscope (HMO 2024, Rohde&Schwarz, Munich, 
Germany), is shown in Fig. 2a. The LED light pulse measured by a 
photodiode (DET10A2, Thorlabs, New Jersey, United States) closely 
resembles the current pulse shape (Fig. 2a). The full width at half 

maximum (FWHM) of the light pulse is ~ 100 ns with rise and fall times 
of ~ 40 ns and ~30 ns, respectively. The normalized pulsed light energy 
fluctuation is shown in Fig. 2b. The light energy was measured contin-
uously for a duration of 2000 s (~ 33.33 min) at 100 Hz PRR (200 K 
pulses), resulting in excellent pulse-to-pulse stability (Fig. 2b) with a 
minor standard deviation of 0.62 %. This constitutes an important asset 
for dynamic functional and molecular measurements, e.g to map bio-
distribution of contrast agents or blood sO2 changes [44]. The light 
beam profile of the LED arrays was computed using simulations and 
validated with experimental measurements. For this, TracePro software 
was employed to simulate the light beam profile generated by the 8 LED 
arrays occupying one arc (174◦) of the transducer array (Fig. 2c). A 
CMOS camera (BASLER ace 2 Basic) was subsequently used to capture 
the light beam distribution experimentally (Fig. 2d), exhibiting good 
correspondence to the simulated results. Considering the total optical 
energy, this corresponds to a peak energy density of ~ 51 µJ/cm2 on the 
surface of the sample. 

3.2. Imaging performance and comparison with Nd:YAG-based OAT 

We compared the FLOAT performance with that of the conventional 
Nd:YAG laser-based OAT in tissue-mimicking phantoms. Briefly, the 
excitation laser operated at 850 nm wavelength and 52.8 mJ per pulse 
energy, resulting in an energy density of 5.9 mJ/cm2 at the object’s 
surface. The same circular transducer array and DAQ were used for both 
systems. The imaged phantom consisted of three cylindrical 2 mm 
diameter black India ink insertions with 2.5 OD optical density, 
approximately corresponding to whole blood absorption of µa 
= 5.7 cm− 1 at 850 nm [45]. The insertions were embedded at a depth of 
3 mm inside a 20 mm agar cylinder (1.3 % agar powder by weight) 
containing black India ink and 1.2 % by volume of Intralipid to simulate 
a background absorption coefficient of μa = 0.23 cm− 1 and a reduced 
scattering coefficient of μs’ = 10 cm− 1 (Fig. 3a). The reconstructed im-
ages obtained using laser-based OAT and FLOAT systems for different 
numbers of averaged frames (1, 10, 100, 1000) are shown in Figs. 3b and 
3c, respectively. As expected, all the three ink insertions in the phantom 
are clearly discernible with the laser-based OAT system, even for 
single-shot excitation. For FLOAT, the ink insertions are barely visible 
with less than 10 averages with the image quality consistently increasing 
with the number of frames being averaged. For a quantitative compar-
ison of FLOAT and laser-based images, the contrast-to-noise-ratio (CNR) 
as a function of the number of averages is shown in Fig. 3d. The CNR was 
calculated as 20 ∗ log10[(Signal − Background)/Noise], where Signal is the 
mean signal amplitude in the region of interest (ROI) indicated with a 
red box (inside ink insertion), Background is the mean signal amplitude 
in the ROI outside the phantom (indicated with a yellow box) and Noise 
is the standard deviation of the noise in the latter ROI. The high CNR for 
the laser-based images is attributed to the high per-pulse energy with the 
SNR of the FLOAT images increasing proportionally to the square root of 
the number of averages. With > 500 averages the FLOAT image quality 
becomes comparable to that rendered with the laser excitation with all 
the three ink insertions together with the phantom boundary clearly 
discernible. 

3.3. In vivo human finger imaging 

To further demonstrate the potential of the FLOAT system for in vivo 
imaging, the images of the index finger of a healthy male volunteer were 
examined and compared with those rendered with the laser-based OAT 
system. The finger was secured in a 3D-printed plastic holder, which was 
then fixed within the water tank to minimize any motion during the 
scan. As a proof-of-concept, the medial phalange of the index finger was 
scanned, as indicated in Fig. 4a. We then employed a dedicated signal 
and image processing pipeline to mitigate common artifacts and opti-
mize image quality. While commonly employed filtered back-projection 
algorithms result in diminished contrast and inadequate representation 

Fig. 2. FLOAT system characterization. a, Pulsed current and light pulse 
waveform of a LED box. b, LED pulse energy stability over time. Inset shows 
pulse-to-pulse fluctuations. c and d, Simulated and experimental light beam 
profiles on the x-z plane with 8 LED arrays corresponding to half of the full-ring 
ultrasound array transducer and brightness distribution along the dashed lines. 
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of low frequency signal components (Fig. 4b), the model-based recon-
struction schemes offer an enhanced image quality and higher degree of 
image reconstruction accuracy (Fig. 4c) [46–48]. The presence of cir-
cular ring artifacts in cross-sectional finger images, caused by inherent 
electrical noise in the FLOAT system, can be effectively reduced by 
implementing a notch filtering in the signal domain (Fig. 4d). Statisti-
cally weighted model-based reconstruction [43] further mitigates the 
loss of resolution caused by acoustic heterogeneities and uneven light 
deposition across the finger. This resulted in reduced artifacts, clear 
delineation of skin boundaries and enhanced visualization of internal 
structures (Fig. 4e). Median filtering was subsequently applied for effi-
cient smoothing of spiky noise and preserving sharp edges, while 
background signals were further suppressed outside the finger for final 
image contrast enhancement (Fig. 4f). The number of frames to be 

averaged (500) has been selected by considering the inevitable trade-off 
between image quality enhancement and acquisition time (Fig. 4g). 
While the images reconstructed with a single frame are dominated by 
noise, the skin boundary and internal large blood vessels are partially 
visible with only 10 averages. When the number of averaged frames was 
increased to 100, the skin boundary and almost all large vessels are 
easily discernible. With 500 averages, the background noise is reduced, 
revealing a clear skin boundary, large blood vessels and smaller 
microvascular structures. No significant changes in the image quality 
were noticed between 500 and 1000 averages. 

Following the image enhancement, the skin boundary and several 
arbitrarily-oriented blood vessels are clearly visible in the reconstructed 
2D cross-sectional image of the index finger obtained with FLOAT 
(Fig. 5a). The diameters of the resolvable blood vessels vary between 0.2 
and 1 mm, i.e., major blood vessels along with arterioles and venules can 
be resolved. Anatomical structures can be detected up to a depth of 
~ 3 mm, similar to what is achieved with laser-based OAT (Fig. 5b), 
demonstrating the potential of FLOAT for visualizing inflammatory 
diseases in peripheral joints. Peak-contrast-to-noise-ratio (PCNR) was 
then computed for the blood vessels located across different depths from 
the skin surface in the reconstructed images obtained with FLOAT 
(Fig. 5c) and with laser-based OAT (Fig. 5d). PCNR was defined as 
20 ∗ log10[(Peak Signal − Background)/Noise], where Peak Signal is the 
maximum signal amplitude within a single blood vessel at a particular 
depth, Background and Noise are the mean signal amplitude and standard 
deviation of noise in the ROI outside the finger region, respectively. 
Although the PCNR values for FLOAT were generally lower as compared 
to the laser-based OAT due to the significantly lower per-pulse energies, 
a similar signal decay with respect to depth was observed for both sys-
tems owing to the light intensity decay inside the tissue. 

4. Discussion 

Compared to pulsed laser systems, LEDs exhibit low peak power 
making them suboptimal for efficient optoacoustic signal generation, 
Yet, the FLOAT system introduced in this work takes advantage of close 
proximity of the LED arrays to the sample to generate sufficient energy 
density at the imaged sample. The LEDs offer a safe, cost-effective, 
lightweight and portable (reduced form factor) alternative for opto-
acoustic signal excitation compared to standard Nd:YAG lasers and 
PLDs. The price of the LEDs including driving electronics is approxi-
mately ~ 1–2 kUSD, significantly lower than conventional laser sources 
used for OAT whose cost typically exceeds 100 kUSD. This anticipates a 
wider dissemination of this technology, particularly in resource-limited 
settings. 

Previously reported LED-based systems employed linear array 
transducers, which resulted in severe limited-view artifacts thus 
compromising image quality and quantification ability. FLOAT features 
instead an accurate tomographic imaging performance enabled with a 
custom-made full-ring circular ultrasound array transducer. Simulta-
neous full 360◦ panoramic light illumination is essential for an optimal 
imaging performance of the FLOAT system considering the low per- 
pulse optical energy. In this way, full cross-sectional imaging has been 
implemented with a relatively low number of averaged frames with the 
array kept in a static position. A much longer scan time is required for 
capturing the same FOV with commercially-available linear arrays that 
need to be rotated around the imaged object together with the illumi-
nation LED source [49]. This also helps minimizing blurring/motion 
artefacts thus potentially enabling real-time imaging if high-frame-rate 
acquisition is performed [50]. 

Similar to the Nd:YAG laser-based OAT system, FLOAT was capable 
of rendering high-resolution images from a tissue-mimicking phantom. 
Individual LEDs inherently suffer from low per-pulse energies of only a 
few µJ, which could be increased to a few 100 s of µJ by compact 
stacking. Sufficient SNR levels were achieved by 1) signal averaging, 2) 
notch filtering and 3) a weighted model-based iterative reconstruction 

Fig. 3. Performance comparison of FLOAT and Nd:YAG laser-based OAT. a, 
Photograph of the tissue-mimicking phantom with ink insertions. b and c, 
Reconstructed OAT images obtained using a Nd:YAG OPO laser (850 nm) and 
FLOAT, respectively, for different number of consecutive frames (1, 10, 100, 
1000) being averaged. d, Contrast-to-noise-ratio (CNR) comparison of Nd:YAG- 
based and FLOAT images. The regions of interest (ROIs) used to estimate the 
signal and noise are shown in red and yellow in b and c, respectively. 
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[51]. The signal levels can be further enhanced with specifically 
designed transducer arrays enabling a more efficient distribution of 
stacked LED arrays. Dual- or multi-wavelength FLOAT can also be 
implemented by combining different types of LEDs. This implies either 

reducing the number of LEDs per wavelength or using a larger number of 
LEDs located at a larger distance from the tissue surface. Also, 
multi-wavelength imaging implies the design of a new LED electronic 
circuit to drive LEDs emitting light at different wavelengths in a 
consecutive manner. 

We further demonstrated the feasibility of in vivo FLOAT. Vascular 
structures in the finger joint of a healthy volunteer were clearly visible 
with 500 signal averages. Note that the LEDs were operated at 50 Hz 
PRR, which resulted in a slow 0.1 Hz effective frame rate. By optimizing 
the thermal parameters, the PRR can potentially be increased to 1 kHz 
thus enabling 2 Hz effective frame rates without exceeding the laser 
safety limit of 40 mJ/cm2 at the 850 nm illumination wavelength [52]. 
Multi-spectral imaging with LEDs operating at different wavelengths can 
potentially provide additional functional information related to blood 
oxygen saturation and contrast agent perfusion to the detriment of 
temporal resolution. This can greatly facilitate clinical translation e.g. to 
study synovial angiogenesis as a hallmark of early rheumatoid arthritis 
in human joints [53]. In addition, the circular-ring array transducer can 
be employed for transmission and reflection ultrasound imaging, thus 
providing highly complementary information on elastic and functional 
properties of the finger joints [54,55]. The limited SNR achieved with 
the current FLOAT system can potentially be improved by employing 
advanced reconstruction and processing methods. For example, ring 
artefacts appearing in the cross-sectional finger images are commonly 
attributed to electrical noise within the system and can potentially be 
reduced with deep-learning-based methods [56]. Other model-based 
least squares (LS) minimization techniques can be further employed to 
enhance the in vivo image quality and mitigate artefacts [57]. 

5. Conclusions 

In summary, we have introduced a cost-effective, portable OAT 
system capable of tomographic acquisition with panoramic 360◦ light 
illumination using pulsed LEDs. The circular ultrasound array trans-
ducer provides optimal angular coverage to facilitate cross-sectional 
image acquisition and circumvent limited-view effects. FLOAT thus of-
fers an affordable solution for optoacoustic imaging in various 

Fig. 4. Enhancement of FLOAT image contrast. a, Index finger schematic indicating the location of the imaging planes within the medial phalange. b, Cross-sectional 
image of index finger slice reconstructed using filtered back-projection algorithm. c, The corresponding model-based reconstruction. d, Notch-filtering in the signal 
domain reduces ring noise artifacts. e, Statistically weighted model-based algorithm mitigates artifacts cause by acoustic heterogeneities. f, Median filtering and 
background intensity suppression further enhances the image contrast. FBP: Filtered back-projection, MB: Model-based, NF: Notch filter, WT: weighted, MF: median 
filter, seg: segmented finger region. g, Difference in model-based reconstructed image contrast with different number of averaged frames. 

Fig. 5. In vivo human index finger imaging with FLOAT. a, Representative 2D 
cross sectional images obtained with FLOAT within the region of interest (ROI) 
marked in Fig. 4a. 500 consecutive frames were averaged for the re-
constructions. b, The respective images acquired with the laser-based OAT 
system. c, Peak-contrast-to-noise-ratio (PCNR) computed as a function of depth 
from the skin surface for the FLOAT images. Four images were considered in 
calculating the mean and standard deviation/error bars. d, The respective 
PCNR for the laser-based OAT images. 
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preclinical and clinical settings, such as diagnosis and therapy moni-
toring in rheumatoid arthritis or small animal whole body imaging. 
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