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Abstract

Motivation: The goal of pharmacogenomics is to predict drug response in patients using their single- or multi-omics
data. A major challenge is that clinical data (i.e. patients) with drug response outcome is very limited, creating a
need for transfer learning to bridge the gap between large pre-clinical pharmacogenomics datasets (e.g. cancer cell
lines), as a source domain, and clinical datasets as a target domain. Two major discrepancies exist between pre-
clinical and clinical datasets: (i) in the input space, the gene expression data due to difference in the basic biology,
and (ii) in the output space, the different measures of the drug response. Therefore, training a computational model
on cell lines and testing it on patients violates the i.i.d assumption that train and test data are from the same
distribution.

Results: We propose Adversarial Inductive Transfer Learning (AITL), a deep neural network method for addressing
discrepancies in input and output space between the pre-clinical and clinical datasets. AITL takes gene expression of
patients and cell lines as the input, employs adversarial domain adaptation and multi-task learning to address these
discrepancies, and predicts the drug response as the output. To the best of our knowledge, AITL is the first adversar-
ial inductive transfer learning method to address both input and output discrepancies. Experimental results indicate
that AITL outperforms state-of-the-art pharmacogenomics and transfer learning baselines and may guide precision
oncology more accurately.

Availability and implementation: https://github.com/hosseinshn/AITL.

Contact: ccollins@prostatecentre.com or ester@cs.sfu.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The goal of pharmacogenomics (Evans and Relling, 1999) is to pre-
dict response to a drug given some single- or multi-omics data. Since
clinical datasets in pharmacogenomics (patients) are small and hard
to obtain, it is not feasible to train a computational model only on
patients. As a result, many studies have focused on large pre-clinical
pharmacogenomics datasets such as cancer cell lines as a proxy to
patients (Barretina et al., 2012; Iorio et al., 2016). A majority of the
current computational methods are trained on cell line datasets and
then tested on other cell line or patient datasets (Ding et al., 2018;
Geeleher et al., 2014, 2017; Güvenç et al., 2019; Mourragui et al.,
2019; Rampá�sek et al., 2019; Sakellaropoulos et al., 2019; Sharifi-
Noghabi et al., 2019b). However, cell lines and patients data, even
with the same set of genes, do not have identical distributions due to
the lack of an immune system and the tumor microenvironment in
cell lines, which means a model cannot be trained on cell lines and
then tested on patients (Mourragui et al., 2019). Moreover, in cell
lines, the response is often measured by the drug concentration that

reduces viability by 50% (IC50), whereas in patients, it is often
based on changes in the size of the tumor and measured by metrics
such as response evaluation criteria in solid tumors (RECIST;
Schwartz et al., 2016). This means that drug response prediction is a
regression problem in cell lines but a classification problem in
patients. As a result, discrepancies exist in both the input and output
spaces in pharmacogenomics datasets. Therefore, a need exists for a
novel method to address these discrepancies to utilize cell line and
patient data together to build a more accurate model eventually for
patients.

Transfer learning (Pan and Yang, 2009) attempts to solve this
challenge by leveraging the knowledge in a source domain, a large
data-rich dataset, to improve the generalization performance on a
small target domain. Training a model on the source domain and
testing it on the target domain violates the i.i.d assumption that the
train and test data are from the same distribution. The discrepancy
in the input space decreases the prediction accuracy on the test data,
which leads to poor generalization (Zhang et al., 2019).
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Transductive transfer learning (e.g. domain adaptation) and induct-
ive transfer learning both use a labeled source domain to improve
the generalization on a target domain. Transductive transfer learn-
ing assumes an unlabeled target domain, whereas inductive transfer
learning assumes a labeled target domain where the label spaces of
the source and target domain are different (Pan and Yang, 2009).
Many methods have been proposed to minimize the discrepancy be-
tween the source and the target domains using different distribution
metrics such as maximum mean discrepancy (Gretton et al., 2012)
In the context of drug response prediction, Mourragui et al. (2019)
proposed PRECISE, a subspace-centric method based on principal
component analysis to minimize the discrepancy in the input space
between cell lines and patients. Recently, adversarial domain adap-
tation has shown great performance in addressing the discrepancy in
the input space for different applications, and its performance is
comparable to the metric-based and subspace-centric methods in
computer vision (Chen et al., 2017; Ganin and Lempitsky, 2015;
Hosseini-Asl et al., 2018; Long et al., 2018; Pinheiro, 2018; Tsai
et al., 2018; Tzeng et al., 2017; Zou et al., 2018). However, adver-
sarial adaptation that addresses the discrepancies in both the input
and output spaces have not yet been explored neither for pharmaco-
genomics nor for other applications.

In this article, we propose Adversarial Inductive Transfer
Learning (AITL), the first adversarial method of inductive transfer
learning. Different from existing methods for inductive transfer learn-
ing as well as methods for adversarial transfer learning, AITL adapts
not only the input space but also the output space. In pharmacogen-
omics, the source domain is the gene expression data obtained from
the cell lines and the target domain is the gene expression data
obtained from patients. Both domains have the same set of genes (i.e.
raw feature representation). Discrepancies exist between the gene ex-
pression data in the input space, and the measure of the drug response
in the output space. AITL learns features for the source and target
samples and uses these features as input for a multi-task subnetwork
to predict drug response for both the source and the target samples.
The output space discrepancy is addressed by the multi-task subnet-
work by assigning binary labels, called cross-domain labels, to the
source samples which only have continuous labels. The multi-task
subnetwork also alleviates the problem of small sample size in the tar-
get domain by joint training with the source domain. To address the
discrepancy in the input space, AITL performs adversarial domain
adaptation. The goal is that features learned for the source samples
should be domain-invariant and similar enough to the features learn-
ed for the target samples to fool a global discriminator that receives
samples from both domains. Moreover, with the cross-domain binary
labels available for the source samples, AITL further regularizes the
learned features by class-wise discriminators. A class-wise discrimin-
ator receives source and target samples from the same class label and
should not be able to predict the domain accurately.

We evaluated the performance of AITL and state-of-the-art
pharmacogenomics and transfer learning methods on pharmacogen-
omics datasets in terms of the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-
recall curve (AUPR). In our experiments, AITL achieved a substan-
tial improvement compared with the baseline methods, demonstrat-
ing the potential of transfer learning for drug response prediction, a
crucial task of precision oncology. Finally, we showed that the
responses predicted by AITL for The Cancer Genome Atlas (TCGA)
patients (without the drug response recorded) for breast, prostate,
lung, kidney and bladder cancers had statistically significant associa-
tions with the level of expression of some of the annotated target
genes for the studied drugs. This shows that AITL captures biologic-
al aspects of the response.

2 Background and related work

2.1 Transfer learning
Following the notation of (Pan and Yang, 2009), a domain like
DM is defined by a raw input feature space (this is different from
learned features by the network) X and a probability distribution

p(X), where X ¼ fx1; x2; . . . ; xng 2 X and xi is the ith raw feature
vector of X. A task T is associated with DM ¼ fX; pðXÞg, where
T ¼ fY;Fð:Þg is defined by a label space Y and a predictive func-
tion Fð:Þ which is learned from training data of the form (X, Y),
where X 2 X and Y 2 Y. A source task TS that is associated with
a labeled source domain DMS ¼ fXS; pðXSÞg is defined as
TS ¼ fYS;Fð:Þg. Fð:Þ is learned from training data
fðxS1

; yS1
Þ; . . . ; ðxSnS

; ySnS
Þg 2 ðXS;YSÞ. Similarly, a target task TT

that is associated with a labeled target domain DMT ¼
fXT ;pðXTÞg is defined as TT ¼ fYT ;Fð:Þg. Fð:Þ is learned from
training data fðxT1

; yT1
Þ; . . . ; ðxTnT

; yTnT
Þg 2 ðXT ;YTÞ. Since

nT � nS, it is challenging to train a model only on the target do-
main. Transfer learning addresses this challenge with the goal to
improve the generalization on a target task TT using the know-
ledge in DMS and DMT, as well as their corresponding tasks TS

and TT . Transfer learning addresses this challenge with the goal
to improve the generalization on a target task TT using the know-
ledge in DMS and DMT, as well as their corresponding tasks TS

and TT . Transfer learning can be categorized into three categories:
(i) unsupervised transfer learning, (ii) transductive transfer learn-
ing and (iii) inductive transfer learning. In unsupervised transfer
learning, there is no label in the source and target domains. In
transductive transfer learning, the source domain is labeled,
whereas the target domain is unlabeled. In this category, domains
can be either the same or different (domain adaptation), but the
source and target tasks are the same. In inductive transfer learn-
ing, the target domain is labeled and the source domain can be ei-
ther labeled or unlabeled. In this category, the domains can be the
same or different, but the tasks are always different (Pan and
Yang, 2009).

2.2 Inductive transfer learning
There are three approaches to inductive transfer learning: (i) deep
metric learning, (ii) learning and (iii) weight transfer (Scott et al.,
2018). Deep metric learning methods are independent of the number
of samples in each class of the target domain, denoted as k. Few-
shot learning methods focus on small k (k � 20). Finally, weight
transfer methods require a large k (k � 100 or k � 1000; Scott
et al., 2018).

In drug response prediction, a limited number of samples are for
each class is available in the target domain; therefore, few-shot
learning is more suitable for such a problem. Few-shot learning
involves training a classifier to recognize new classes, provided only
a small number of examples from each of these new classes in the
training data (Snell et al., 2017). Various methods have been pro-
posed for few-shot learning (Chen et al., 2019; Scott et al., 2018;
Snell et al., 2017). For example, ProtoNet (Snell et al., 2017) uses
the source domain to learn how to extract features from the input
and applies the feature extractor in the target domain. The mean
feature of each class, obtained from the source domain, is used as
the class prototype to assign labels to the target samples based on
the Euclidean distance between a target sample’s feature and class
prototypes.

2.3 Adversarial transfer learning
Recent advances in adversarial learning leverage deep neural net-
works to learn transferable representation that disentangles domain-
and class-invariant features from different domains and matches
them properly (Long et al., 2018; Peng et al., 2019; Zhang et al.,
2019). Generative adversarial networks (Goodfellow et al., 2014)
attempt to learn the distribution of the input data via a minimax
framework where two networks are competing: a discriminator D
and a generator G. The generator tries to create fake samples from a
randomly sampled latent variable z that fool the discriminator,
whereas the discriminator tries to catch these fake samples and dis-
criminate them from the real ones. Therefore, the generator wants
to minimize its error, whereas the discriminator wants to maximize
its accuracy:

Adversarial inductive transfer learning i381



Min
G

Max
D

VðG;DÞ ¼
X

x2data
log ½DðxÞ�

þ
X

z2noise
log ½1�DðGðzÞÞ� (1)

A majority of literature on adversarial transfer learning are for
transductive transfer learning, often referred to as domain adapta-
tion, where the source domain is labeled while the target domain is
unlabeled. Various methods have been proposed for adversarial
transductive transfer learning in different applications such as image
segmentation (Chen et al., 2017), image classification (Tzeng et al.,
2017), speech recognition (Hosseini-Asl et al., 2018) and adaptation
under label-shift (Azizzadenesheli et al., 2019). The idea of these
methods is that features extracted from source and target samples
should be similar enough to fool a global- (Tzeng et al., 2017) and/
or class-wise discriminators (Chen et al., 2017).

3 Materials and methods

3.1 Problem definition
Given a labeled source domain DMS with a learning task TS and a
labeled target domain DMT with a learning task TT , where
TT 6¼ TS, and pðXTÞ 6¼ pðXSÞ, where XS;XT 2 X, we assume that
the source and the target domains are not the same due to different
probability distributions. The goal of AITL is to utilize the source
and target domains and their tasks in order to improve the learning
of FTð:Þ on DMT.

In the area of pharmacogenomics, the source domain is the gene
expression data obtained from the cell lines, and the source task is
to predict the drug response in the form of log (IC50) values. The
target domain consists of gene expression data obtained from
patients, and the target task is to predict drug response in a different
form—often change in the size of tumor after receiving the drug. In
this setting, pðXTÞ 6¼ pðXSÞ because cell lines are different from
patients even with the same set of genes. Additionally, YT 6¼ YS be-
cause for the target task YT 2 f0; 1g, drug response in patients is a
binary outcome, but for the source task YS 2 Rþ, drug response in
cell lines is a continuous outcome. As a result, AITL needs to address
these discrepancies in both the input and output spaces.

3.2 Adversarial Inductive Transfer Learning
Our proposed AITL method takes input data from the source and
target domains, and achieves the following three objectives: first, it
makes predictions for the target domain using both of the input
domains and their corresponding tasks, second, it addresses the dis-
crepancy in the output space between the source and target tasks
and third, it addresses the discrepancy in the input space. AITL is a
neural network consisting of four components:

• The feature extractor receives the input data from the source and

target domains and extracts salient features, which are then sent

to the multi-task subnetwork component.
• The multi-task subnetwork takes the extracted features of source

and target samples and maps them to their corresponding labels

and makes predictions for them. This component has a shared

layer and two task-specific towers for regression (source task)

and classification (target task). Therefore, by training the multi-

task subnetwork on the source and target samples, it addresses

the small sample size challenge in the target domain. In addition,

it also addresses the discrepancy in the output space by assigning

cross-domain labels (binary labels in this case) to the source sam-

ples (for which only continuous labels are available) using its

classification tower.
• The global discriminator receives extracted features of source

and target samples and predicts if an input sample is from the

source or the target domain. To address the discrepancy in the in-

put space, these features should be domain-invariant so that the

global discriminator cannot predict their domain labels accurate-

ly. This goal is achieved by adversarial learning.
• The class-wise discriminators further reduce the discrepancy in

the input space by adversarial learning at the level of the different

classes, i.e. extracted features of source and target samples from

the same class go to the discriminator for that class and this dis-

criminator should not be able to predict if an input sample from

a given class is from the source or the target domain.

The AITL cost function consists of a classification loss, a regres-
sion loss, and global- and class-wise discriminator adversarial losses
and is optimized end-to-end. An overview of the proposed method is
presented in Figure 1.

3.2.1 Feature extractor

To learn salient features in lower dimensions for the input data, we
design a feature extractor component. The feature extractor receives
both the source and target samples as input and maps them to a fea-
ture space, denoted as Z. We denote the feature extractor as f ð:Þ:

Zi ¼ f ðXiÞ; i 2 fS;Tg (2)

where Z denotes the extracted features for input X which is from ei-
ther the source (S) or the target (T) domain. In pharmacogenomics,
the feature extractor learns features for the cell line and patient
data.

3.2.2 Multi-task subnetwork

After extracting features of the input samples, we want to use these
learned features to (i) make predictions for target samples, and (ii)
address the discrepancy between the source and the target domains
in the output space. To achieve these goals, a multi-task subnetwork
with a shared layer gð:Þ and two task-specific towers, denoted as
MSð:Þ and MTð:Þ, is designed, where MS is for regression (the source
task) and MT is for classification (the target task):

�Yi ¼MiðgðZiÞÞ; i 2 fS;Tg (3)

The performance of the multi-task subnetwork component is
evaluated based on a binary-cross entropy loss for the classification
task on the target samples and a mean squared loss for the regression
task on the source samples:

LBCEðXT ;YT ; f ; g;MTÞ
�
P
ðxt ;ytÞ2ðXT ;YT Þ½yt log �yt þ ð1� ytÞ log ð1� �yt Þ� (4)

LMSEðXS;YS; f ; g;MSÞ ¼
X

ðxs;ysÞ2ðXS ;YSÞ
ð �ys � ysÞ2 (5)

where YS and YT are the true labels of the source and the target sam-
ples, respectively, and LBCE and LMSE are the corresponding losses
for the target and the source domains, respectively. The multi-task
subnetwork outputs (i) the predicted continuous labels for the
source samples, (ii) the predicted binary labels for the target samples
and (iii) the assigned cross-domain binary labels for the source sam-
ples. The assigned cross-domain binary labels are obtained via the
classification tower in the multi-task subnetwork which assigns bin-
ary labels (responder or non-responder) to the source samples be-
cause such labels do not exist for the source samples. Therefore, the
multi-task subnetwork adapts the output space of the source and the
target domains by assigning cross-domain labels to the source do-
main. In pharmacogenomics, the multi-task subnetwork predicts log
(IC50) values for the cell lines and the binary response outcome for
the patients. Moreover, it also assigns binary response labels to the
cell lines which are similar to those of the patients.

3.2.3 Global discriminator

The goal of this component is to address the discrepancy in the input
space by adversarial learning of domain-invariant features. To
achieve this goal, a discriminator receives source and target
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extracted features from the feature extractor and classifies them into
their corresponding domain. The feature extractor should learn
domain-invariant features to fool the global discriminator. In
pharmacogenomics, the global discriminator should not be able to
recognize if the extracted features of a sample are from a cell line or
a patient. This discriminator is denoted as DGð:Þ. The adversarial
loss for DGð:Þ is as follows:

LadvDG
ðXS;XT ;DGÞ

�
P

xs2XS
½log DGðf ðxsÞÞ� �

P
xt2XT

½log ð1�DGðf ðxtÞÞÞ� (6)

3.2.4 Class-wise discriminators

With cross-domain binary labels available for the source domain,
AITL further reduces the discrepancy between the input domains via
class-wise discriminators. The goal is to learn domain-invariant fea-
tures with respect to specific class labels such that they fool corre-
sponding class-wise discriminators. Therefore, extracted features of
the target samples in class i, and those of the source domain which
the multi-task subnetwork assigned to class i, will go to the discrim-
inator for class i. We denote such a class-wise discriminator as DCi.
The adversarial loss for DCi is as follows:

LadvDCi
ðXS;YS;XT ;YT ;DCiÞ �

P
ðxs ;ysÞ2ðXS ;YSÞ½log DCiðf ðxsÞÞ�

�
P
ðxt ;ytÞ2ðXT ;YT Þ½log ð1�DCiðf ðxtÞÞÞ�

(7)

In pharmacogenomics, the class-wise discriminator for the re-
sponder samples should not be able to recognize if the extracted fea-
tures of a responder sample are from a cell line or a patient
(similarly for a non-responder sample).

3.2.5 Cost function

To optimize the entire network in an end-to-end fashion, we design
the cost function as follows:

J ¼ LBCE þ LMSE þ kGLadvDG
þ kDC

X

i

LadvDCi
(8)

where, kG and kDC are adversarial regularization coefficients for the
global- and class-wise discriminators, respectively.

3.2.6 AITL architecture

The feature extractor is a one-layer fully-connected subnetwork
with batch normalization using the ReLU activation function. The
multi-task subnetwork has a shared fully connected layer with batch

normalization and the ReLU activation function. The regression
tower has two layers (one hidden layer and one output layer) with
the ReLU activation function in the first layer and the linear activa-
tion function in the second one. The classification tower has one
fully-connected layer with the Sigmoid activation function that
maps the features to the binary outputs directly. Finally, the global-
and class-wise discriminators are one-layer subnetworks with the
Sigmoid activation function.

3.3 Drug response prediction for TCGA patients
To study AITL’s performance, similar to (Geeleher et al., 2017;
Sharifi-Noghabi et al., 2019b), we employ the model trained on
Docetaxel, Paclitaxel or Bortezomib to predict the response for
patients in several TCGA cohorts for which no drug response was
recorded. For each drug, we extract the list of annotated target genes
from the PharmacoDB resource (Smirnov et al., 2018). We excluded
Cisplatin because there was only one annotated target gene for it in
PharmacoDB. To study associations between the level of expression
of the extracted genes and the responses predicted by ATIL for each
drug in each TCGA cohort, we fit multivariate linear regression
models to the gene expression of those genes and the responses to
that drug predicted by AITL. We obtain P-values for each gene and
correct them for multiple hypotheses testing, using the Bonferroni
correction (a ¼ 0:05). The list of annotated target genes for each
drug is available in the Supplementary Material, Section S1.

3.4 Datasets
In our experiments, we used the following datasets (see Table 1 for
more detail):

• The Genomics of Drug Sensitivity in Cancer (GDSC) cell lines

dataset, consisting of a thousand cell lines from different cancer

types, screened with 265 targeted and chemotherapy drugs (Iorio

et al., 2016).
• The Patient-Derived Xenograft (PDX) Encyclopedia dataset,

consisting of more than 300 PDX samples for different cancer

types, screened with 34 targeted and chemotherapy drugs (Gao

et al., 2015).
• TCGA (Weinstein et al., 2013) containing a total number of 117

patients with diverse cancer types, treated with Cisplatin,

Docetaxel or Paclitaxel (Ding et al., 2016).
• Patient datasets from nine clinical trial cohorts containing a total

number of 491 patients with diverse cancer types, treated with

Bortezomib (Amin et al., 2014; Mulligan et al., 2007), Cisplatin

Fig. 1. Schematic overview of AITL: first, the feature extractor receives source and target samples and maps them to a feature space in lower dimensions. Then, the multi-task

subnetwork uses these features to make predictions for the source and target samples and also assigns cross-domain labels to the source samples. The multi-task subnetwork

addresses the discrepancy in the output space. Finally, to address the input space discrepancy, global- and class-wise discriminators receive the extracted features and regularize

the feature extractor to learn domain-invariant features. The feature extractor has one fully connected layer. The multi-task subnetwork has one fully connected shared layer

followed by two fully connected layers for the regression task and one fully connected layer for the classification task. All the discriminators are single-layered fully connected

subnetworks
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(Marchion et al., 2011; Silver et al., 2010), Docetaxel (Chang

et al., 2005; Hatzis et al., 2011; Lehmann et al., 2011) or

Paclitaxel (Ahmed et al., 2007; Bauer et al., 2010; Hatzis et al.,

2011). For the categorical measures of the drug response such as

RECIST, we consider complete response and partial response as

responder (Class 1) and consider stable disease and progressive

disease as non-responder (Class 0).
• TCGA cohorts including, breast (BRCA), prostate (PRAD), lung

(LUAD), kidney (KIRP) and bladder (BLCA) cancers that do not

have the drug response outcome.

The GDSC dataset was used as the source domain, and all the
other datasets were used as the target domain. For the GDSC data-
set, raw gene expression data were downloaded from ArrayExpress
(E-MTAB-3610) and response outcomes from https:/www.cancer
rxgene.org release 7.0. Gene expression data of TCGA patients were
downloaded from the Firehose Broad GDAC (version published on
January 28, 2016) and the response outcome was obtained from
(Ding et al., 2016). Patient datasets from clinical trials were
obtained from the Gene Expression Omnibus and the PDX dataset
was obtained from the Supplementary Material of Gao et al. (2015).
For each drug, we selected those patient datasets that applied a com-
parable measure of the drug response. For preprocessing, the same
procedure was adopted as described in the Supplementary Material
of Sharifi-Noghabi et al. (2019b) for the raw gene expression data
(normalized and z-score transformed) and the drug response data.
After the pre-processing, source and target domains had the same
number of genes.

4 Results

4.1 Experimental design
We designed our experiments to answer the following four
questions:

1. Does AITL outperform baselines that are trained only on cell

lines and then evaluated on patients (without transfer learning)?

To answer this question, we compared AITL against Geeleher

et al. (2014) and MOLI (Sharifi-Noghabi et al., 2019b) which

are state-of-the-art methods of drug response prediction that do

not perform domain adaptation. The Geeleher et al. (2014) is

non-deep learning method based on ridge regression and MOLI

is a deep learning-based method. Both of them were originally

proposed for pharmacogenomics.

2. Does AITL outperform baselines that adopt adversarial trans-

ductive transfer learning and non-deep learning adaptation

(without adaptation of the output space)? To answer this ques-

tion, we compared AITL against ADDA (Tzeng et al., 2017) and

Chen et al. (2017), state-of-the-art methods of adversarial trans-

ductive transfer learning with global- and class-wise discrimina-

tors, respectively. For the non-deep learning baseline, we

compared AITL to PRECISE (Mourragui et al., 2019), a non-

deep learning domain adaptation method specifically designed

for pharmacogenomics.

3. Does AITL outperform a baseline for inductive transfer learning?

To answer this question, we compared AITL against ProtoNet

(Snell et al., 2017) which is a state-of-the-art inductive transfer

learning method for small numbers of examples per class.

4. Finally, do the predicted responses by AITL for TCGA patients

have associations with the targets of the studied drug?

Based on the availability of patient/PDX datasets for a drug, we
experimented with four different drugs: Bortezomib, Cisplatin,
Docetaxel and Paclitaxel. It is important to note that these drugs
have different mechanisms and are being prescribed for different
cancers. For example, Docetaxel is a chemotherapy drug mostly
known for treating breast cancer patients (Chang et al., 2005),
whereas Bortezomib is a targeted drug mostly used for multiple mye-
loma patients (Amin et al., 2014). Therefore, the datasets we have
selected cover different types of anti-cancer drugs.

In addition to the experimental comparison against published
methods, we also performed an ablation study to investigate the im-
pact of the different AITL components separately. AITL-AD denotes
a version of AITL without the adversarial adaptation components,
which means the network only contains the multi-task subnetwork.
AITL-DG denotes a version of AITL without the global discrimin-
ator, which means the network only employs the multi-task subnet-
work and class-wise discriminators. AITL-DC denotes a version of
AITL without the class-wise discriminators, which means the net-
work only contains the multi-task subnetwork and the global
discriminator.

All of the baselines were trained on the same data, tested on
patients/PDX for these drugs, and eventually compared with AITL
in terms of prediction AUROC and AUPR. Since the majority of the
studied baselines cannot use the continuous log (IC50) values in the

Table 1. Characteristics of the datasets

Dataset Resource Drug Type Domain Sample size Number of genesa

GSE55145 (Amin et al., 2014) Clinical trial Bortezomib targeted Target 67 11 609

GSE9782-GPL96 (Mulligan et al., 2007) Clinical trial Bortezomib targeted Target 169 11 609

GDSC (Iorio et al., 2016) Cell line Bortezomib targeted Source 391 11 609

GSE18864 (Silver et al., 2010) Clinical trial Cisplatin Chemotherapy Target 24 11 768

GSE23554 (Marchion et al., 2011) Clinical trial Cisplatin Chemotherapy Target 28 11 768

TCGA (Ding et al., 2016) Patient Cisplatin Chemotherapy Target 66 11 768

GDSC (Iorio et al., 2016) Cell line Cisplatin Chemotherapy Source 829 11 768

GSE25065 (Hatzis et al., 2011) Clinical trial Docetaxel Chemotherapy Target 49 8119

GSE28796 (Lehmann et al., 2011) Clinical trial Docetaxel Chemotherapy Target 12 8119

GSE6434 (Chang et al., 2005) Clinical trial Docetaxel Chemotherapy Target 24 8119

TCGA (Ding et al., 2016) Patient Docetaxel Chemotherapy Target 16 8119

GDSC (Iorio et al., 2016) Cell line Docetaxel Chemotherapy Source 829 8119

GSE15622 (Ahmed et al., 2007) Clinical trial Paclitaxel Chemotherapy Target 20 11 731

GSE22513 (Bauer et al., 2010) Clinical trial Paclitaxel Chemotherapy Target 14 11 731

GSE25065 (Hatzis et al., 2011) Clinical trial Paclitaxel Chemotherapy Target 84 11 731

PDX (Gao et al., 2015) Animal (mouse) Paclitaxel Chemotherapy Target 43 11 731

TCGA (Ding et al., 2016) Patient Paclitaxel Chemotherapy Target 35 11 731

GDSC (Iorio et al., 2016) Cell line Paclitaxel Chemotherapy Source 389 11 731

aNumber of genes in common between the source and all of the target data for each drug.
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source domain, binarized log (IC50) labels provided by (Iorio et al.,
2016) using the Waterfall approach (Barretina et al., 2012) were
used to train them. Finally, for the minimax optimization, a gradient
reversal layer was employed by AITL and the adversarial baselines
(Ganin et al., 2016) which is a well-established approach in domain
adaptation (Long et al., 2018; You et al., 2019; Zhang et al., 2019).

We performed 3-fold cross-validation in the experiments to tune
the hyper-parameters of AITL and the baselines based on the
AUROC. Two folds of the source samples were used for training
and the third fold for validation; similarly, two folds of the target
samples were used for training and validation, and the third one for
the test. The reported results refer to the average and standard devi-
ation over the test folds. The hyper-parameters tuned for AITL were
the number of nodes in the hidden layers, learning rates, mini-batch
size, the dropout rate, number of epochs and the regularization coef-
ficients. We considered different ranges for each hyper-parameter
and the final selected hyper-parameter settings for each drug and
each method are provided in the (Supplementary Material, Section
S2). Finally, each network was re-trained on the selected settings
using the train and validation data together for each drug. We used
Adagrad for optimizing the parameters of AITL and the baselines
(Duchi et al., 2011) implemented in the PyTorch framework, except
for Geeleher et al. (2014) which was implemented in R. We used the
author’s implementations for Geeleher et al. (2014), MOLI,
PRECISE and ProtoNet. For ADDA, we used an existing implemen-
tation from https://github.com/jvanvugt/pytorch-domain-adapta
tion, and we implemented Chen et al. (2017) from scratch.

4.2 Input and output space adaptation via AITL

improves the drug response performance
Table 2 and Figure 2 report the performance of AITL and the base-
lines in terms of AUROC and AUPR, respectively. To answer the
first experimental question, AITL was compared with the baselines
which do not use any adaptation (neither the input nor the output
space), i.e. Geeleher et al. (2014) and MOLI (Sharifi-Noghabi et al.,
2019b), and AITL demonstrated a better performance in both
AUROC and AUPR for all of the studied drugs. This indicates that
addressing the discrepancies in the input and output spaces leads to
better performance compared with training a model on the source
domain and testing it on the target domain. To answer the second
experimental question, AITL was compared with state-of-the-art
methods of adversarial and non-deep learning transductive transfer
learning, i.e. ADDA (Tzeng et al., 2017), Chen et al. (2017) and
PRECISE (Mourragui et al., 2019), which address the discrepancy
only in the input space. AITL achieved significantly better perform-
ance in AUROC for all of the drugs and for three out of four drugs
in AUPR [the results of Chen et al. (2017) for Cisplatin were very
competitive with AITL]. This indicates that addressing the discrep-
ancies in the both spaces outperforms addressing only the input
space discrepancy. Finally, to answer the last experimental question,
AITL was compared with ProtoNet (Snell et al., 2017)—a represen-
tative of inductive transfer learning with input space adaptation via
few-shot learning. AITL outperformed this method in all of the met-
rics for all of the drugs.

We note that the methods of drug response prediction without
adaptation, namely Geeleher et al. (2014) and MOLI, outperformed
the method of inductive transfer learning based on few-shot learning
(ProtoNet). Moreover, these two methods also showed a very com-
petitive performance compared with the methods of transductive
transfer learning (ADDA, Chen et al., 2017 and PRECISE). For
Paclitaxel, ADDA did not converge in the first step (training a classi-
fier on the source domain), which was also observed in another
study (Sharifi-Noghabi et al., 2019b). ProtoNet also did not con-
verge for this drug.

We observed that AITL, when all of its components are used to-
gether, outperforms additional baselines with modified versions of
AITL. This indicates the importance of both input and output space
adaptation. The only exception was for the drug Paclitaxel, where
AITL-DG outperforms AITL. We believe the reason for this is that
this drug has the most heterogeneous target domain (see Table 1),

and therefore, the global discriminator component of AITL causes a
minor decrease in the performance. Our ablation study showed that
the global- and the class-wise discriminators are not redundant and,
in fact, each of them plays a unique constructive role in learning the
domain-invariant representation. All these results indicate that
addressing the discrepancies in the input and output spaces between
the source and target domains, via the AITL method, leads to a bet-
ter prediction performance.

4.3 AITL predictions for TCGA patients have significant

associations with target genes
To answer the last experimental question, we applied AITL models
(trained on Docetaxel, Bortezomib and Paclitaxel) to the gene ex-
pression data without known drug response from TCGA (breast,
prostate, lung, kidney and bladder cancers) and predicted the re-
sponse for these patients separately. Based on the corrected P-values
obtained from multiple linear regression, there are a number of stat-
istically significant associations between the target genes of the
studied drugs and the responses predicted by AITL. For example, in
breast cancer, we observed statistically significant associations in
MAP4 (P < 1� 10�10) for Doxetaxel, BLC2 (P ¼ 1:7� 10�4) for
Paclitaxel and PSMA4 (P ¼ 4:7� 10�6) for Bortezomib. In prostate
cancer, we observed statistically significant associations in MAP2
(P < 1� 10�10) for Docetaxel, TUBB (P < 1� 10�10) for
Paclitaxel, and RELA (P ¼ 2:2� 10�4) for Bortezomib. For bladder
cancer, NR1I2 (P ¼ 0.04) for Docetaxel, MAP4 (P < 1� 10�10)
for Paclitaxel and PSMA4 (P ¼ 0.001) for Bortezomib were signifi-
cant. In kidney cancer, BLC2 (P ¼ 5:4� 10�8) for Docetaxel,
MAPT (P < 1� 10�10) for Paclitaxel and PSMD2 (P ¼ 1� 10�5)
for Bortezomib were significant. Finally, in lung cancer, MAP4
(P < 1� 10�10) for Docetaxel, TUBB (P < 1� 10�10) for
Paclitaxel and RELA (P < 1� 10�10) for Bortezomib were signifi-
cant. The complete list of statistically significant genes and their im-
portance is presented in the Supplementary Material, Sections S3
and S4. All these results suggest that AITL predictions capture bio-
logical aspects of the drug response.

4.4 Discussion
To our surprise, ProtoNet and ADDA could not outperform
Geeleher et al. (2014), MOLI and PRECISE. For ProtoNet, this may
be due to the depth of the backbone network. A recent study has
shown that a deeper backbone improves ProtoNet performance sig-
nificantly in image classification Chen et al. (2019). However, in
pharmacogenomics, employing a deep backbone is not realistic be-
cause of the much smaller sample size compared with an image clas-
sification application. Another limitation for ProtoNet is the
imbalanced number of training examples in different classes in
pharmacogenomics datasets. Specifically, the number of examples
per class in the training episodes is limited to the number of samples
of the minority class as ProtoNet requires the same number of exam-
ples from each class. For ADDA, this lower performance may be
due to the lack of end-to-end training of the classifier along with the
global discriminator of this method. The reason is that end-to-end
training of the classifier along with the discriminators improved the
performance of the second adversarial baseline (Chen et al., 2017)
in AUROC and AUPR compared with ADDA. Moreover, Chen
et al. (2017) also showed a relatively better performance in AUPR
compared with Geeleher et al. (2014) and MOLI.

In pharmacogenomics, patient datasets with drug response are
small or not publicly available due to privacy and/or data sharing
issues. We believe including more patient samples and more drugs
will increase generalization capability. In addition, recent pharma-
cogenomics studies have shown that using multi-omics data work
better than using only gene expression (Sharifi-Noghabi et al.,
2019b). In this work, we did not consider genomic data other than
gene expression data due to the lack of patient samples with multi-
omics data and drug response data publicly available; however, in
principle, AITL can be extended to work with such data by adding
separate feature extractors for each omics data type. This approach
is particularly crucial if the different data types have different
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dimensionalities. Last but not least, we used pharmacogenomics as
our motivating application for this new problem of transfer learn-
ing, but we believe that AITL can also be employed in other applica-
tions. For example, in slow progressing cancers such as prostate
cancer, large patient datasets with gene expression and short-term
clinical data (source domain) are available; however, patient data-
sets with long-term clinical data (target domain) are small. AITL
may be beneficial to learn a model to predict these long-term clinical
labels using the source domain and its short-term clinical labels
(Sharifi-Noghabi et al., 2019a). Finally, although we designed the
multi-task subnetwork for a regression task on the source domain
and a classification task on the target domain, in principle, AITL
can easily be modified to incorporate different types of outputs.

We observed that predictions for TCGA samples tend to have a
low variance. We believe the reason for that is first, we created target
domains by pooling together samples from different patient datasets

treated with the same drug; however, in reality each dataset has its
own discrepancies compared with the other datasets within each tar-
get domain. Second, we trained the model using pan-cancer cell lines,
however, the patient samples were cancer specific due to the lack of
pan-cancer patient data with drug response which makes the trained
model less applicable for pan-cancer resources such as TCGA. For fu-
ture research directions, we believe that the TCGA dataset consisting
of gene expression data of more than 12 000 patients (without drug
response outcome) can be incorporated in an unsupervised transfer
learning setting to learn better features that are domain-invariant be-
tween cell lines and cancer patients. The advantage of this approach
is that we can keep the valuable patient datasets with drug response
as an independent test set and not use it for training/validation.
Another possible future direction is to incorporate domain-expert
knowledge into the structure of the model. A recent study has shown
that such a structure improves the drug response prediction

Fig. 2. Performance of AITL and the baselines in terms of the prediction AUPR

Table 2. Performance of AITL and the baselines in terms of the prediction AUROC

Method/drug Bortezomib Cisplatin Docetaxel Paclitaxel

Geeleher et al. (2014) 0.48 0.58 0.55 0.53

MOLI (Sharifi-Noghabi et al., 2019b) 0.57 0.54 0.54 0.53

PRECISE (Mourragui et al., 2019) 0.54 0.59 0.52 0.56

Chen et al. (2017) 0.54 6 0.07 0.60 6 0.14 0.52 6 0.02 0.58 6 0.04

ADDA (Tzeng et al., 2017) 0.51 6 0.06 0.56 6 0.06 0.48 6 0.06 Did not converge

ProtoNet (Snell et al., 2017) 0.49 6 0.01 0.40 6 0.003 0.40 6 0.01 Did not converge

AITL-ADa 0.69 6 0.03 0.57 6 0.03 0.57 6 0.05 0.58 6 0.01

AITL-DG
b 0.69 6 0.04 0.62 6 0.1 0.48 6 0.03 0.62 6 0.02

AITL-DC
c 0.69 6 0.03 0.54 6 0.1 0.59 6 0.07 0.59 6 0.03

AITL 0.74 6 0.02 0.66 6 0.02 0.64 6 0.04 0.61 6 0.04

aAITL with only the multi-task subnetwork (no AD).
bAITL with only class-wise discriminators and the multi-task subnetwork (no global discriminator).
cAITL with only the global discriminator and the multi-task subnetwork (no class-wise discriminator).

Boldface in the table indicates the best performing of the corresponding drug.
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performance on cell line datasets and, more importantly, provides an
explainable model as well (Snow et al., 2019).

5 Conclusion

In this article, we introduced a new problem in transfer learning
motivated by applications in pharmacogenomics. Unlike domain
adaptation that only requires adaptation in the input space, this new
problem requires adaptation in both the input and output spaces.

To address this problem, we proposed AITL, an Adversarial
Inductive Transfer Learning method which, to the best of our know-
ledge, is the first method that addresses the discrepancies in both the
input and output spaces. AITL uses a feature extractor to learn fea-
tures for target and source samples. Then, to address the discrepancy
in the output space, AITL utilizes these features as input of a multi-
task subnetwork that makes predictions for the target samples and
assigns cross-domain labels to the source samples. Finally, to ad-
dress the input space discrepancy, AITL employs global and class-
wise discriminators for learning domain-invariant features. In
pharmacogenomics, AITL adapts the gene expression data obtained
from cell lines and patients in the input space, and also adapts differ-
ent measures of the drug response between cell lines and patients in
the output space. In addition, AITL can also be employed in other
applications such as predicting long-term clinical labels for slow
progressing cancers.

We evaluated AITL on four different drugs and compared it
against state-of-the-art baselines in terms of AUROC and AUPR.
The empirical results indicated that AITL achieved a significantly
better performance compared with the baselines showing the bene-
fits of addressing the discrepancies in both the input and output
spaces. Finally, we analyzed AITL’s predictions for the studied drugs
on breast, prostate, lung, kidney and bladder cancer patients in
TCGA. We showed that AITL’s predictions have statistically signifi-
cant associations with the level of expression of some of the anno-
tated target genes for the studied drugs. We conclude that AITL may
be beneficial in pharmacogenomics, a crucial task in precision
oncology.
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