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Abstract
As global systems rapidly change, our collective ability to predict future ecological 
dynamics will become increasingly important for successful natural resource manage-
ment. By merging stakeholder objectives with system uncertainty, and by adapting 
actions to changing systems and knowledge, adaptive resource management (ARM) 
provides a rigorous platform for making sound decisions in a changing world. Critically, 
however, applications of ARM could be improved by employing benchmarks (i.e., points 
of reference) for determining when learning is occurring through the cycle of moni-
toring, modeling, and decision-making steps in ARM. Many applications of ARM use 
multiple model-based hypotheses to identify and reduce systematic uncertainty over 
time, but generally lack benchmarks for gauging discovery of scientific evidence and 
learning. This creates the danger of thinking that directional changes in model weights 
or rankings are indicative of evidence for hypotheses, when possibly all competing 
models are inadequate. There is thus a somewhat obvious, but yet to be filled niche 
for including benchmarks for learning in ARM. We contend that carefully designed 
“ecological null models,” which are structured to produce an expected ecological pat-
tern in the absence of a hypothesized mechanism, can serve as suitable benchmarks. 
Using a classic case study of mallard harvest management that is often used to dem-
onstrate the successes of ARM for learning about ecological mechanisms, we show 
that simple ecological null models, such as population persistence (Nt+1 = Nt), provide 
more robust near-term forecasts of population abundance than the currently used 
mechanistic models. More broadly, ecological null models can be used as benchmarks 
for learning in ARM that trigger the need for discarding model parameterizations and 
developing new ones when prevailing models underperform the ecological null model. 
Identifying mechanistic models that surpass these benchmarks will improve learning 
through ARM and help decision-makers keep pace with a rapidly changing world.
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1  |  INTRODUC TION

Most ecological studies use explanatory inference to test theories 
and hypotheses. Though commonly used statistical models provide 
predicted fits to data (e.g., regression coefficients), these within-
sample fits primarily serve to explain mechanisms that may have 
given rise to the observed data. Explanatory inference provides a 
means for scientific learning, but the accumulation of evidence for 
hypotheses and theories across stand-alone studies can be rather 
slow (Nichols et al., 2019), and the strict focus on within-sample 
model fitting is poorly suited for developing anticipatory policies to 
deal with ongoing changes in climate, land use, and hydrology (i.e., 
“global change”; Dietze et al., 2018). In contrast, predictive infer-
ence seeks to quantitatively assess model predictions against new 
observations (Schmueli, 2010). These out-of-sample validations are 
the gold standard for inference in disciplines where vitally important 
decisions are regularly based on forward-looking predictions (e.g., 
meteorology, climatology, epidemiology), but are rarely conducted 
in ecology (Hooten & Hobbs, 2015).

As global change threatens biodiversity on pandemic levels 
(Cardinale et al., 2012), some ecologists are striving to become 
equally as skilled at predicting the future as those in the disciplines 
listed above (Luo et al., 2011), by the use of either scenario projections 
or probabilistic forecasts with fully specified uncertainties (Caswell, 
2001; Dietze, 2017). The advent of iterative ecological forecasting 
for guiding near-term decisions shares many similarities to adaptive 
resource management (ARM), which has been widely used by applied 
ecologists (Dietze et al., 2018). For example, temporal applications of 
ARM have long accounted for multiple sources of uncertainty when 
evaluating future predictions against newly collected monitoring data 
as part of a “learn-by-doing” process (Holling, 1978; Walters, 1986), 
with the goal of helping decision-makers choose the best available 
action given a specified objective (Williams & Hooten, 2016).

In Section 2 herein, we provide a brief overview of how scientific 
learning can occur through ARM, and argue that benchmarks (i.e., 
points of reference) are sometimes needed to assess whether or not 
the process of ARM is resulting in sufficient learning. Our focus is 
strictly on model-based learning about ecological processes through 
ARM, not on the connection to structured decision making, which 
has been covered in depth elsewhere (e.g., Runge et al., 2020). More 
intricate than statistical null hypotheses, we describe in Section 3 
that ecological null models are designed to produce an expected pat-
tern in the absence of a hypothesized mechanism, thereby serving 
as a benchmark for evaluating whether or not the focal mechanism 
plays an important role in generating empirical data (Gotelli & Ullrich, 
2012). They are commonly used by ecologists and evolutionary bi-
ologists to learn about the importance of modeled mechanisms in 
nature (e.g., interspecific competition shaping natural selection and 
biodiversity; Gotelli, 2001; Harvey et al., 1983). We contend that 
there is a niche for using ecological null models as benchmarks for 
learning in ARM, and in Section 4, we demonstrate this utility using a 
classic case study, harvest management for mallards (Anas platyrhyn-
chos) in the North American midcontinent.

2  |  LE ARNING THROUGH ARM

A fundamental principle of ARM involves learning about the re-
sponses of ecological systems to management actions, and then 
using that knowledge to inform future decisions. As a consequence, 
the practice of ARM should reduce uncertainty over time, often in 
the form of iterated, structured decision making that is connected 
to model-based representations of ecological processes (Groot 
& Rossing, 2011; Williams, 2011). Management actions therefore 
resemble a form of pseudo-experiment that should provide more 
power to isolate key mechanisms compared to pure observation 
without any intervention, and these insights can be achieved at 
scales that are not amenable to controlled experiments or interven-
tions (Underwood, 1994; Walters & Holling, 1990). “Active” ARM 
can result in dual-control decision policies (Walters & Hilborn, 1978) 
that attempt to balance the rate of learning with attaining resource 
management objectives, and thus, managers might temporarily push 
a system away from optimal resource objectives to elicit stronger 
mechanistic responses (e.g., alter abundance to a level where 
density-dependent feedbacks can be elicited). Such actions help im-
prove understanding of how an ecological system operates, reduc-
ing key uncertainties that should increase management performance 
in the future. In contrast, learning through “passive” ARM may be 
slower because actions are driven by resource management objec-
tives and not the reduction of uncertainty, which can result in con-
founding between management actions and ecological processes 
(Sedinger & Herzog, 2012). Nevertheless, learning might still occur 
as a by-product of iterated applications of passive ARM (Schreiber 
et al., 2004; Williams, 2011).

As applied ecology moved away from the paradigm of com-
paring single hypotheses against trivial null hypotheses of “no 
difference,” it shifted into an arguably more powerful paradigm 
of multiple hypothesis comparison (Burnham & Anderson, 2002; 
Hilborn & Mangel, 1997), which is also an important aspect of 
many ARM programs (Nichols et al., 2019). Other applications of 
ARM use single models and focus on changes in the strength and 
precision of estimated coefficients for mechanisms hypothesized 
to affect a focal system as management actions are implemented 
(e.g., Eaton et al., 2021). Unfortunately, many ecological studies 
and applications of ARM have abandoned the use of null hypoth-
eses altogether, wherein lies the red herring of thinking that, on 
their own, model weights, rankings, or parameter estimates por-
tray strong evidence for hypotheses (Guthery, 2008). Inclusion of 
an appropriate null hypothesis might reveal that all models or vari-
ables under consideration fail to improve out-of-sample predictive 
inference. Thus, a strict focus on model comparison and parameter 
estimation can, in some situations, result in inference being based 
on the “best of a bad bunch” of models and errors of commission 
(Arnold, 2010). Such pitfalls can easily occur whenever sufficient 
benchmarks for evidence are not considered (Scheiner, 2004), or 
when the ability of a model to adequately represent the data is 
not properly evaluated (e.g., goodness of fit; Conn et al., 2018). In 
passive applications of ARM where the focus is primarily placed 
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on meeting objectives, the consequences of these pitfalls are that 
practitioners can become overly confident in their understanding 
of system mechanisms (Conn & Kendall, 2004), and satisfaction 
with the restricted model framework becomes ill-equipped to in-
dicate when adjustments are needed to meet objectives once the 
system undergoes substantial change (e.g., ARM in an era when 
deluge transitions to drought; Nichols et al., 2011).

3  |  ECOLOGIC AL NULL MODEL S

Traditional null statistical hypotheses parsimoniously represent the 
expectation that observed data arise purely from random sampling, 
whereas ecological null models acknowledge important elements of 
a system (e.g., equilibria, process variance) and are designed to eval-
uate alternative mechanisms of interest while controlling for some 
variables that are known to affect the system (i.e., they are more 
than just an intercept-only model; Gotelli & Graves, 1996). They 
represent an intermediate point between null statistical hypotheses 
and mechanistic models by imposing pattern-based constraints to 
preserve important features of observed systems (e.g., basic aspects 
of presiding knowledge), but are devoid of the focal mechanisms 
being tested (Gotelli & Ullrich, 2012). Failure to outperform an eco-
logical null model may indicate that a particular mechanism plays no 
role in the study system, that it has been poorly parameterized, that 
samples size is insufficient for detecting its effect, or that confound-
ing variables have not been accounted for. Carefully designed eco-
logical null models can therefore provide a guard against errors of 
commission and omission in observational studies, and are used as 
benchmarks for evidence in some subdisciplines of ecology (Gotelli 
& Ullrich, 2012). Most notably, ecological null models are used by 
community ecologists to expose mechanisms of species interactions 
involved in species coexistence and patterns of biodiversity (e.g., 
Adler et al., 2010), and by evolutionary biologists to examine the role 
of competition in shaping natural selection on trait divergence (e.g., 
Anderson & Weir, 2021). Though ecological null models are tradi-
tionally used in explanatory inference, the same philosophy can be 
used to increase the rigor of predictive ecological inference (Dietze 
et al., 2018), and the identification of null models for specific types 
of data continues to be a topic of inquiry (Molina & Stone, 2020).

Fortunately, applied ecologists, including practitioners of ARM, 
can look to disciplines such as economics, meteorology, climatology, 
and epidemiology that have ample experience developing null mod-
els to improve predictive inference. In meteorology, for example, 
intuitive measures of “persistence” (e.g., tomorrow's temperature, 
wind speed, or precipitation will equal the long-term average for the 
day among years, or tomorrow's weather conditions will resemble 
today's) serve as pattern-based null models for gauging the improved 
accuracy of near-term mechanistic weather forecasts (Silver, 2015). 
Mechanistic forecasting models must beat models of persistence to 
be considered as skillful candidates among an ensemble of models 
for real-world weather forecasting (Hamill & Juras, 2006). In other 
words, the null models used in meteorology (and other predictive 

disciplines) serve as benchmarks for gauging evidence and learning 
about system mechanisms, and can even include sophisticated pat-
terns similar to the null models used in ecology (e.g., cyclic equilib-
ria, environmental stochasticity; Dietze et al., 2018). The use of null 
models as benchmarks for evidence and learning can also inspire 
fields to improve anticipatory predictions, such as iterative forecast-
ing efforts that have resulted in steady improvements in weather 
and climate forecasting skills over time (e.g., see figure 1 in Luo et al., 
2011). Learning is defined as the acquisition of new knowledge or 
skills (OED Online, 2020), and below we demonstrate why ecologi-
cal null models should be given greater attention as benchmarks for 
evaluating learning performance in ARM so that better decisions can 
be made during an era of rapid global change.

4  |  APPLIC ATION TO A CL A SSIC C A SE 
STUDY OF ARM

4.1  |  Background and methodology

Arising out of decades of contentious stakeholder disagreements 
about the impact of harvest mortality on waterfowl populations, 
adaptive harvest management (hereafter AHM) was adopted in 
1995 to scientifically guide the process of setting harvest regula-
tions for mallards in the North American midcontinent (Anas platy-
rhynchos; Johnson et al., 1993, 1997; Nichols et al., 1995; Williams 
et al., 1996). Though just one example, the AHM of midcontinent 
mallards is widely regarded as an ARM success story in the literature 
(e.g., Nichols et al., 2019, 2021 and citations therein) because of the 
annual effort to reduce uncertainty through iterated structured de-
cision making that is connected to competing model-based hypoth-
eses of how mallard demography operates, which is a process that 
tends to yield more sustainable management outcomes than reac-
tive decisions (Gerber & Kendall, 2018).

Learning is not an explicit objective in AHM (Johnson et al., 
2015), but the passive implementation of AHM is directed at resolv-
ing structural uncertainty in the mechanisms that govern mallard 
population dynamics. It does so by considering four models with 
contrasting hypotheses about survival and reproduction. Age- and 
sex-specific annual survival probabilities are modeled as a function 
of harvest rates according to the additive (Sa) versus compensatory 
(Sc) mortality hypotheses (Anderson & Burnham, 1976; Burnham & 
Anderson, 1984). Annual reproductive rate is modeled as a function 
of annually observed wetland abundance and strong (Rs) versus weak 
(Rw) density dependence, wherein the functions are based on anal-
yses of historical data collected prior to 1995 (see Table 1; Johnson 
et al., 1997; U.S. Fish & Wildlife Service, 2019). When combined in a 
factorial manner, these alternative pairs of hypotheses result in four 
models meant to encompass structural uncertainty (SaRs, SaRw, ScRs, 
ScRw). As such, the AHM models should be expected to provide a 
range of under- and overprediction in any given year, with the goal 
of basing decisions more heavily on those models that consistently 
predict better than others over time. In 1995, initial weights of 0.25 
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TA B L E  1 Balance equation used in AHM of mallards in the North American midcontinent that can incorporate one of two mortality 
submodels (additive harvest mortality Sa, or compensatory harvest mortality Sc) combined with one of two reproduction submodels (weak 
density dependence in reproductive rate Rw, or strong density dependence in reproductive rate Rs)

AHM balance equation

Nt+1 = �SNt

(

mSt,am + (1 − m)
(

St,af + �RRt

(

St,jf + St,jm�
sum
f

∕�sum
m

)))

AHM submodels

Model Features

St,age,sex = SA
0,sex

(1 − Kt,age,sex) Deterministic model for age- and sex-specific additive harvest mortality 
(Sa)

St,age,sex =

(

SC
0,sex

if Kt,age,sex≤1−SC
0,sex

1−Kt,age,sex if Kt,age,sex>1−SC
0,sex

)

Deterministic model for age- and sex-specific compensatory harvest 
mortality (Sc) according to a segmented threshold, whereby harvest 
mortality becomes additive once it exceeds baseline mortality in the 
absence of harvest; neither of the AHM survival models account for 
possible effects of density dependence, habitat conditions, etc.

Rt = 0.7166 + 0.1083Wt − 0.0373Nt Weak density-dependent model for reproduction (Rw) that also includes 
an effect of wetland availability

Rt = 1.1390 + 0.1376Wt − 0.1131Nt Strong density-dependent model for reproduction (Rs); differences 
between the Rw and Rs models were based on the 80% confidence 
ellipsoid of a best-fitting linear model to historical reproduction 
data, and the two points on this ellipsoid with the largest and 
smallest values for the effect of Nt were used to develop the Rw and 
Rs parameters

Ecological null models

Model Features

Nt+1 = Nt + �t Null model of population persistence that strips away the vital rate 
mechanisms in the AHM balance equation, and replaces them with 
a phenomenological model of temporal process variance around an 
assumed equilibrium (i.e., � ≈ 1)

Nt+1 =
(

ereq+�⋅Wt+�t
)

Nt
Null model with a wetlands predictor that incorporates common 
knowledge that duck populations ebb and flow with wetland 
availability, but does so without specifying the vital rate 
mechanism(s) that may govern such effects, whereas AHM models 
include such effects for reproduction but not mortality

Parameters Explanation

Nt Currently observed abundance

Nt+1 One-step-ahead forecast of abundance

m The proportion of males in the breeding population treated as a 
constant (0.52)

�S Constant bias correction factor (0.94) applied to survival to improve 
forecasts of Nt+1

St,am Adult male survival from year t to t + 1, modeled as a function of 
harvest rate according to either the Sa or Sc hypothesis, but not 
estimated directly from contemporary band-recovery data

St,af Adult female survival from year t to t + 1, modeled as above

St,jm Juvenile male survival from year t to t + 1, modeled as above

St,jf Juvenile female survival from year t to t + 1, modeled as above

S0 Baseline survival in the absence of harvest, which is assumed to be 
different in additive (A) and compensatory (C) models above

Kt Harvest rate adjusted for crippling loss (i.e., kill rate)

�sum
f

∕�sum
m

Ratio of female to male summer survival treated as a constant (0.90)

�R Constant bias correction factor (0.86) applied to reproduction to 
improve forecasts of Nt+1
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were assigned to each model (i.e., complete structural uncertainty, 
conditional on the considered models). As new monitoring data 
become available, combinations of the survival and reproduction 
submodels are implemented into a balance equation to forecast pop-
ulation abundance for the following spring (see Table 1). Differences 
between model forecasts and eventual observations of abundance 
are implemented in Bayes’ theorem to iteratively update the model 
weights. Over time, model weights have gravitated toward the SaRw 
model that has performed best at 1-year-ahead forecasting (72% of 
weight), ScRw still receives some support (28% of weight), and both 
SaRs and ScRs received near zero support in 2019 (U.S. Fish & Wildlife 
Service, 2019).

Models can nevertheless make reasonable predictions even 
when the governing mechanisms are poorly specified (Johnson 
et al., 2002). For example, because mallard harvest rates are highly 
correlated with changes in population density, and because density-
dependent natural survival (i.e., survival in the absence of hunting) 
is not explicitly considered in the four AHM models, support for 
the additive mortality hypothesis may be an artifact of not includ-
ing density dependence in survival (i.e., a problem of confound-
ing variables; Conn & Kendall, 2004; Sedinger & Herzog, 2012; 
Sedinger & Rexstad, 1994; Zhao et al., 2016). This and other factors 
have spurred the suggestion that the four models currently used in 
AHM are limiting abilities to learn about the system, which in turn 
may limit future management performance (Conn & Kendall, 2004; 
Johnson et al., 2002).

It is always healthy to question whether a model is adequately 
specified (Box, 1976). A simple ecological null model for gauging the 
predictive performance (i.e., skill) of mechanistic population models 
is that of “population persistence,” which is related to the concepts 
used in meteorology mentioned earlier, and assumes that a popula-
tion remains at equilibrium where the birth and death mechanisms 
strike a perfect balance (i.e., � ≈ 1). This would effectively cancel out 
the vital rate mechanisms in the AHM balance equation (Table 1), 

leaving a model where the prediction of abundance at t + 1 is equal 
to the observed abundance at time t (Nt+1  =  1∙Nt, or Nt+1  =  Nt). 
Though system persistence is rarely considered as a benchmark for 
evidence and learning in ARM, an interim strategy for the AHM of 
mourning doves did consider its utility (Zenaida macroura; Sanders 
& Seamans, 2012). In practice, one might want to consider greater 
realism by allowing for stochastic variation around an assumed equi-
librium with a random walk:

where εt ~ Norm(0, σ2). This simple null model of population persistence 
captures the intuition of a naturalist that waterfowl populations do not 
radically change from one year to the next (i.e., � ≈ 1). Alternatively, 
one might consider an ecological null model that adds an effect of wet-
land abundance at time t (Wt) on the population growth rate from t to 
t + 1, sans the vital rate mechanisms, since it has long been known that 
duck populations ebb and flow with wetland availability (Lynch, 1984):

where req is the average per capita growth rate at equilibrium that 
equals 0, Wt is standardized (mean 0, s.d. 1), εt ~ Norm(0, σ2), and the 
parameters (Nt+1, β, εt) are estimated recursively with data up to time t.

We compared one-step-ahead forecasts at t + 1 associated with 
each of the four AHM models to eventually observed abundances 
at t + 1 for midcontinent mallards between 1996 and 2019. We per-
formed the same out-of-sample predictions for a weighted average 
of the four AHM models, and for our two ecological null models (the 
population persistence and wetland models; see Supplement for 
modeling details). We scored each model's forecasting skill across 
the time series using the root mean square error (RMSE; Dietze 

Nt+1 = Nt + �t

Nt+1 = �t ⋅ Nt

log(�t) = req + � ⋅Wt + �t

Parameters Explanation

Rt Predicted reproduction in year t (offspring recruitment to fall flight), 
modeled as a function of Nt according to either the Rw or Rs 
hypothesis and wetland abundance at t, Wt, but not estimated 
directly from contemporary reproduction data

Wt Wetland abundance at t, which is modeled with an autoregressive 
pattern and temporal process variability (using another 
submodel not shown here) that facilitates prediction at t + 1

�t Error term for temporal process variance of population dynamics 
within one of the two null models

req Average per capita growth rate at equilibrium that equals 0

� Estimated effect of wetland abundance on population growth rate

Note: See U.S. Fish and Wildlife Service (2019) for details. Briefly, both the survival and reproduction submodels are based primarily on data 
collected prior to 1995. In 2002, both the survival and reproduction submodels were altered to include bias-adjustment terms to account for severe 
discrepancies between model predictions and empirical data, but the basic structure of each submodel remained unchanged. These correction 
factors were then applied from 1995 onward to improve model predictions, though the correction factors provide ostensible explanations of the 
data (Runge et al., 2002). For reference, we also provide the two ecological null models presented as benchmarks for learning about the ability of 
mechanisms contained in the AHM models to provide more accurate predictions of future mallard abundance.

TA B L E  1 (Continued)
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et al., 2018). Specifically, we normalized the RMSE by the mean of 
observed abundances over the time series (NRMSE) to help facili-
tate comparison of scores among models. The NRMSE balances pre-
diction bias with precision, but it does not measure systematic bias. 
Systematic bias is a tell-tale sign of a misspecified model, which we 
measured using the normalized mean signed difference (NMSD). The 
NRMSE and NMSD can certainly be measured and evaluated in the 
absence of an ecological null model, but below we demonstrate how 
comparisons of these scores with those for a null model can serve 
as benchmarks for evaluating model-based evidence and learning 
about ecological processes in ARM.

4.2  |  AHM forecasting skill

Our ecological null model of population persistence, devoid of any 
mechanisms, yielded an equivalent NRMSE as that for the SaRw 
model, which is currently the top-weighted model in AHM. This 
equivalence is not terribly surprising because as complexity is 
added to models, bias should be reduced while variance increases 
(Burnham & Anderson, 2002). What is more insightful is that the 
NMSD of the persistence model was more than six times better 
than that of the SaRw model, and eight times better than the AHM 

model-averaged predictions. The ecological null model with a wet-
land predictor had an even better NMSD than the persistence model 
(Figure 1). Forecasting skills of all other AHM models were notably 
worse (Appendix S1).

AHM has been a success in many regards because it has gathered 
disparate stakeholders around a structured decision-making pro-
cess, and it has opened people's minds to the concepts of alternative 
models (e.g., multiple working hypotheses) and learning by doing. 
Given that the AHM models consistently underpredict observed 
abundance and cannot surpass the NMSDs of ecological null models, 
however, there seems to be ample room for improvement as a means 
to guide science-based decision making in a changing world. Though 
systematic biases in the AHM models have been acknowledged (e.g., 
U.S. Fish & Wildlife Service, 2010), our ecological null models pro-
vide the needed benchmark for gauging the severity of systematic 
bias and inability to surpass null representations of basic knowledge. 
It therefore seems to be an appropriate time for the AHM commu-
nity to embrace new model-based hypotheses and methodologies 
going forward.

Discrepancies between scientific insight and management prac-
tice likely exist in many if not all applications of ARM because the 
process of structured decision making must also balance trade-offs 
with stakeholder desires (Runge et al., 2020; Westgate et al., 2013). 

F I G U R E  1 Forecasted mallard abundances (in millions) at time t + 1 plotted against the observed abundances at t + 1 for the SaRw (a) and 
weighted average AHM models (b), compared with the null models of population persistence (c) and that with an additional parameter for 
an effect of wetlands (d; the other AHM models described in the text are not shown because they currently receive little to no weight, but 
see Appendix S1 for pertinent results). The expected 1:1 relationships are shown with dashed lines, which are equivalent to the bullseye of 
a forecasting target. Also provided are the normalized root mean square error (NRMSE) and normalized mean signed difference (NMSD) for 
each model. Note that forecasted precisions of the null models are scattered nicely around the targeted relationship (c & d), indicative of 
unbiased predictions, whereas the tendencies of the AHM models (a & b) are to underpredict observed abundances. Shading of the green 
circles becomes increasingly darker over time; more recent years have a darker shade
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Ideas that have been suggested based on scientific studies, but not 
yet implemented in midcontinent mallard AHM, include the treat-
ment of additive and compensatory mortality as a continuum as op-
posed to a discrete model choice (e.g., Burnham et al., 1984; Conroy 
& Krementz, 1990), the incorporation of ecological drivers of survival 
alongside effects of harvest (Sedinger & Herzog, 2012; Zhao et al., 
2018; TVR pers. comm.), flexible parameterizations for the influence 
of conspecific and wetland densities on fecundity (Specht & Arnold, 
2018; Zhao, Arnold, et al., 2019), cross-seasonal environmental ef-
fects on reproduction (e.g., Heitmeyer & Fredrickson, 1981; Osnas 
et al., 2016, BSS pers. comm.), and individual heterogeneity in de-
mographic performance and vulnerability to harvest (Arnold, 2021; 
Cooch et al., 2014; Johnson et al., 1984; Lindberg et al., 2013). As in 
other applications of ARM, stakeholder concerns can impede adap-
tive considerations of new models in AHM. From a data perspective, 
however, waterfowl managers could make better use of the moni-
toring systems already in place and intended to measure changes in 
reproductive success (age ratios from the Parts Collection Survey; 
U.S. Fish and Wildlife Service), survival (systematic banding and 
hunter recoveries; USGS Bird Banding Laboratory), and abundance 
(Waterfowl Breeding Population and Habitat Survey; U.S. Fish & 
Wildlife Service, 2021) on an annual or even seasonal basis (Devers 
et al., 2021). Since 1995, only the latter dataset has been used in 
AHM (see U.S. Fish & Wildlife Service, 2019), and integrated popula-
tion models provide one approach to utilizing all of these monitoring 
data in iterative applications of AHM (Arnold et al., 2018).

Serendipitously, the AHM community has long recognized the 
limitations of the four models for midcontinent mallards (Johnson 
et al., 2002; U.S. Fish & Wildlife Service, 2010), and recently high-
lighted the need to re-evaluate and update the functional relation-
ships used to predict mallard population dynamics. As part of the 
double-loop learning process of ARM (Williams & Brown, 2018), the 
Mississippi and Central Flyways along with the U.S. Fish and Wildlife 
Service have been reconsidering all elements of the AHM frame-
work, including deliberations of appropriate harvest management 
objectives, evaluating alternative regulatory options, and the explo-
ration of Bayesian integrated population models to estimate import-
ant population parameters that form the basis for deriving harvest 
policies. Unfortunately, the COVID-19 pandemic has impeded the 
aerial survey of waterfowl abundances that AHM decisions hinge 
upon (U.S. Fish & Wildlife Service, 2021), and has stalled progress on 
re-evaluating components of AHM. Concurrently, a severe drought 
has recently gripped the Prairie Pothole Region (see referenced CDM 
& NDMC drought monitors), the core breeding area for midconti-
nent mallards, further emphasizing the need for AHM to be based 
on more accurate forecasting models than those used in the past.

5  |  DISCUSSION

The purpose of ARM is not to seek truth with modeling, which is 
impossible (Box, 1976), but rather to resolve uncertainty about 
system responses to actions and apply that learning to future 

decisions in pursuit of management objectives (Nichols et al., 
2019). Perhaps because of the need to deal with uncertainty at 
large scales, and because models are often cast within the con-
text of informing decisions as opposed to that of testing hypoth-
eses, practices of ARM commonly lack the benchmarks used in 
evidence-based science (Gillson et al., 2019). Indeed, we searched 
the literature and found the use of ecological null models or simi-
lar benchmarks for evidence and learning in ARM to be rare (see 
Table 2). Gillson et al. (2019) suggest that concepts used in ARM 
need to be merged with those used in smaller-scale practices of 
evidence-based science to inform the decision-making process. 
The use of ecological null models may very well provide a seamless 
way to fuse these philosophies for spatial and temporal applica-
tions at large scales.

To realize this potential in a rapidly changing world, we sug-
gest practitioners (a) consider agreed-upon ecological null mod-
els as benchmarks for evaluation of learning in their applications 
of ARM, (b) iteratively track improvements in the predictive skill 
of ARM models over time (e.g., figure 1 in Luo et al., 2011), and (c) 
when necessary, use both (a) and (b) to inspire alternative hypothe-
ses and model structures (i.e., a more rapid trigger for double-loop 
learning; Johnson et al., 2015). Other fields that are experienced in 
forecasting and predictive inference have benefitted greatly from 
each of these practices (e.g., economics, meteorology, climatology, 
and epidemiology).

Though models of population persistence and simple phenome-
nological models commonly provide more accurate forecasts of fish 
and wildlife abundance than more complicated mechanistic models 
(Adkison, 2009; Ludwig & Walters, 1985; Ward et al., 2014), which 
is also true in other complex systems such as economics (Hyndman, 
2020; Makridakis & Hibon, 2000), a reliance on ecological null mod-
els will never result in learning nor can decisions be based on them 
(because they will typically exclude the parameters informing man-
agement decisions). Ecological null models simply provide a bench-
mark to surpass in the quest to learn through ARM. Fortunately, it 
should be relatively easy to overcome these hurdles because of the 
rapid advancement in quantitative methods that can expedite the 
scientific method. For example, Bayesian hierarchical models readily 
allow for the decoupling of sampling, process, structural, and driver 
uncertainties when making model-based forecasts (Berliner, 1996). 
Programming tools for quickly assimilating data into model fitting 
and ecological forecasting are also advancing rapidly (Simonis et al., 
2021; Taylor & White, 2020; White et al., 2019), which can expedite 
learning about the mechanisms that yield sound, scientific forecasts 
of the future versus those that do not (Luo et al., 2011; Niu et al., 
2014). Multiple monitoring datasets can also be leveraged (i.e., fused 
or reconciled) to improve inference at multiple scales (Arnold et al., 
2018; Maunder & Punt, 2013; Pacifici et al., 2017; Zhao et al., 2019; 
Zipkin & Saunders, 2018), so long as such methods are used carefully 
(Riecke et al., 2019). Finally, the careful construction of such models 
can allow for inference regarding the existing types and magnitudes 
of uncertainty affecting predictions, guiding future research and 
ARM efforts.
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More generally, learning through ARM could be enhanced by 
encouraging diverse ways of thinking about the modeling and scien-
tific aspects of decision problems. New and creative ideas arise more 
quickly from a diverse consortium of thinkers contributing to a com-
mon topic of inquiry (e.g., Hong & Page, 2004; Woolley et al., 2010). But 
without inclusion, institutional diversity initiatives may not be sufficient 
to generate truly diverse contributions to common topics of inquiry 
(Puritty et al., 2017). Alongside an array of other strategies, incentive-
based grants or competitions could overcome barriers to the inclusion 
of diverse groups contributing to ARM, as well as other near-term fore-
casting enterprises in ecology (Hyndman, 2020; Petchey et al., 2015).
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TA B L E  2 Results from a Web of Science literature search for studies that may have used ecological null models as benchmarks for 
evidence and learning in ARM (conducted April 28, 2021)

Hits Description

Main keywords

Adaptive Management AND (Wildlife OR Fish* 
OR Marine OR Terrestrial OR Aquatic OR 
Habitat OR Ecosystem)

6768 An array of studies that formally addressed the ARM process of monitoring, 
modeling, and decision making (application) to “learn by doing,” many that 
misapplied the term to “trial and error” management of natural resources (see 
Westgate et al., 2013), and yet more that did not pertain to ARM at all

Additional keywords

(Null Model OR Null Hypothesis OR Null 
Expectation)

14 Seven of the 14 studies did not pertain to ARM, three referred to null statistical 
models (i.e., random outcome), 1 study implemented an ecological null model 
and referred to ARM in the discussion but was not an explicit study of ARM, 
1 used a null expectation within the application step of ARM (i.e., no action) 
as opposed to a benchmark model for learning about system mechanisms or 
structure per se (Ketz et al., 2016), one mentioned the need for ecological null 
models in ARM but did not actually implement them (Linklater, 2000), and 1 
fisheries study actually implemented a null model in an ARM context that was 
emblematic of a persistence model (Staton et al., 2017).

Persistence AND Model AND (Predict* OR 
Forecast*)

36 35 of 36 studies used the term persistence as a synonym for the viability of an 
ecosystem, community, population, or species, not as a benchmark model for 
gauging evidence or learning, one study implemented a persistence forecasting 
model but did not pertain to ARM (Page et al., 2018)

Benchmark AND Model 24 14 of 24 studies used the term benchmark differently than as a reference model 
for learning about system mechanisms (e.g., a historical state of a system for 
gauging change in the state variable), six studies implemented benchmark 
models for prediction but did not pertain to ARM, one used a benchmark 
within the application step of ARM (i.e., no action) as opposed to a benchmark 
model for learning about system mechanisms or structure per se (Hoggart 
et al., 2014), 1 theoretical study used benchmark models to assess the ability 
of an agent (manager) to learn via ARM (Lindkvist & Norberg, 2014), and 1 
fisheries study actually implemented benchmark models in an ARM context for 
learning about system mechanisms (Bischi et al., 2013), as well as 1 restoration 
ecology study (Parasiewicz et al., 2013)

Note: that topical keywords were always included together and that a simple term such as “adaptive management” also hit the more verbose versions 
such as ARM and adaptive harvest management. Papers that did not address ARM but separately included the terms “adaptive” and “management” 
were also found by the literature search.
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