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Abstract
As	global	 systems	 rapidly	 change,	 our	 collective	 ability	 to	predict	 future	 ecological	
dynamics	will	become	increasingly	important	for	successful	natural	resource	manage-
ment.	By	merging	stakeholder	objectives	with	system	uncertainty,	and	by	adapting	
actions	to	changing	systems	and	knowledge,	adaptive	resource	management	 (ARM)	
provides	a	rigorous	platform	for	making	sound	decisions	in	a	changing	world.	Critically,	
however,	applications	of	ARM	could	be	improved	by	employing	benchmarks	(i.e.,	points	
of	reference)	for	determining	when	learning	is	occurring	through	the	cycle	of	moni-
toring,	modeling,	and	decision-	making	steps	in	ARM.	Many	applications	of	ARM	use	
multiple	model-	based	hypotheses	to	identify	and	reduce	systematic	uncertainty	over	
time,	but	generally	lack	benchmarks	for	gauging	discovery	of	scientific	evidence	and	
learning.	This	creates	the	danger	of	thinking	that	directional	changes	in	model	weights	
or	 rankings	are	 indicative	of	evidence	 for	hypotheses,	when	possibly	all	 competing	
models	are	inadequate.	There	is	thus	a	somewhat	obvious,	but	yet	to	be	filled	niche	
for	 including	benchmarks	 for	 learning	 in	ARM.	We	contend	 that	 carefully	designed	
“ecological	null	models,”	which	are	structured	to	produce	an	expected	ecological	pat-
tern	in	the	absence	of	a	hypothesized	mechanism,	can	serve	as	suitable	benchmarks.	
Using	a	classic	case	study	of	mallard	harvest	management	that	is	often	used	to	dem-
onstrate	the	successes	of	ARM	for	 learning	about	ecological	mechanisms,	we	show	
that	simple	ecological	null	models,	such	as	population	persistence	(Nt+1 = Nt),	provide	
more	 robust	 near-	term	 forecasts	 of	 population	 abundance	 than	 the	 currently	 used	
mechanistic	models.	More	broadly,	ecological	null	models	can	be	used	as	benchmarks	
for	learning	in	ARM	that	trigger	the	need	for	discarding	model	parameterizations	and	
developing	new	ones	when	prevailing	models	underperform	the	ecological	null	model.	
Identifying	mechanistic	models	that	surpass	these	benchmarks	will	improve	learning	
through	ARM	and	help	decision-	makers	keep	pace	with	a	rapidly	changing	world.
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1  |  INTRODUC TION

Most	ecological	studies	use	explanatory	 inference	to	test	theories	
and	hypotheses.	Though	commonly	used	statistical	models	provide	
predicted	 fits	 to	 data	 (e.g.,	 regression	 coefficients),	 these	 within-	
sample	 fits	 primarily	 serve	 to	 explain	 mechanisms	 that	 may	 have	
given	 rise	 to	 the	observed	data.	 Explanatory	 inference	provides	 a	
means	for	scientific	 learning,	but	the	accumulation	of	evidence	for	
hypotheses	and	 theories	across	 stand-	alone	 studies	 can	be	 rather	
slow	 (Nichols	 et	 al.,	 2019),	 and	 the	 strict	 focus	 on	 within-	sample	
model	fitting	is	poorly	suited	for	developing	anticipatory	policies	to	
deal	with	ongoing	changes	in	climate,	land	use,	and	hydrology	(i.e.,	
“global	 change”;	 Dietze	 et	 al.,	 2018).	 In	 contrast,	 predictive	 infer-
ence	seeks	to	quantitatively	assess	model	predictions	against	new	
observations	(Schmueli,	2010).	These	out-	of-	sample	validations	are	
the	gold	standard	for	inference	in	disciplines	where	vitally	important	
decisions	 are	 regularly	based	on	 forward-	looking	predictions	 (e.g.,	
meteorology,	climatology,	epidemiology),	but	are	 rarely	conducted	
in	ecology	(Hooten	&	Hobbs,	2015).

As	 global	 change	 threatens	 biodiversity	 on	 pandemic	 levels	
(Cardinale	 et	 al.,	 2012),	 some	 ecologists	 are	 striving	 to	 become	
equally	as	skilled	at	predicting	the	future	as	those	in	the	disciplines	
listed	above	(Luo	et	al.,	2011),	by	the	use	of	either	scenario	projections	
or	probabilistic	forecasts	with	fully	specified	uncertainties	(Caswell,	
2001;	Dietze,	2017).	The	advent	of	 iterative	ecological	 forecasting	
for	guiding	near-	term	decisions	shares	many	similarities	to	adaptive	
resource	management	(ARM),	which	has	been	widely	used	by	applied	
ecologists	(Dietze	et	al.,	2018).	For	example,	temporal	applications	of	
ARM	have	long	accounted	for	multiple	sources	of	uncertainty	when	
evaluating	future	predictions	against	newly	collected	monitoring	data	
as	part	of	a	“learn-	by-	doing”	process	(Holling,	1978;	Walters,	1986),	
with	 the	goal	of	helping	decision-	makers	choose	 the	best	available	
action	given	a	specified	objective	(Williams	&	Hooten,	2016).

In	Section	2	herein,	we	provide	a	brief	overview	of	how	scientific	
learning	can	occur	 through	ARM,	and	argue	 that	benchmarks	 (i.e.,	
points	of	reference)	are	sometimes	needed	to	assess	whether	or	not	
the	process	of	ARM	is	resulting	 in	sufficient	 learning.	Our	focus	 is	
strictly	on	model-	based	learning	about	ecological	processes	through	
ARM,	not	on	the	connection	to	structured	decision	making,	which	
has	been	covered	in	depth	elsewhere	(e.g.,	Runge	et	al.,	2020).	More	
intricate	 than	statistical	null	hypotheses,	we	describe	 in	Section	3	
that	ecological	null	models	are	designed	to	produce	an	expected	pat-
tern	in	the	absence	of	a	hypothesized	mechanism,	thereby	serving	
as	a	benchmark	for	evaluating	whether	or	not	the	focal	mechanism	
plays	an	important	role	in	generating	empirical	data	(Gotelli	&	Ullrich,	
2012).	They	are	commonly	used	by	ecologists	and	evolutionary	bi-
ologists	 to	 learn	about	 the	 importance	of	modeled	mechanisms	 in	
nature	(e.g.,	interspecific	competition	shaping	natural	selection	and	
biodiversity;	Gotelli,	 2001;	Harvey	 et	 al.,	 1983).	We	 contend	 that	
there	is	a	niche	for	using	ecological	null	models	as	benchmarks	for	
learning	in	ARM,	and	in	Section	4,	we	demonstrate	this	utility	using	a	
classic	case	study,	harvest	management	for	mallards	(Anas platyrhyn-
chos)	in	the	North	American	midcontinent.

2  |  LE ARNING THROUGH ARM

A	 fundamental	 principle	 of	 ARM	 involves	 learning	 about	 the	 re-
sponses	 of	 ecological	 systems	 to	 management	 actions,	 and	 then	
using	that	knowledge	to	inform	future	decisions.	As	a	consequence,	
the	practice	of	ARM	should	reduce	uncertainty	over	time,	often	in	
the	form	of	 iterated,	structured	decision	making	that	 is	connected	
to	 model-	based	 representations	 of	 ecological	 processes	 (Groot	
&	 Rossing,	 2011;	Williams,	 2011).	 Management	 actions	 therefore	
resemble	 a	 form	 of	 pseudo-	experiment	 that	 should	 provide	more	
power	 to	 isolate	 key	 mechanisms	 compared	 to	 pure	 observation	
without	 any	 intervention,	 and	 these	 insights	 can	 be	 achieved	 at	
scales	that	are	not	amenable	to	controlled	experiments	or	interven-
tions	 (Underwood,	 1994;	Walters	 &	Holling,	 1990).	 “Active”	 ARM	
can	result	in	dual-	control	decision	policies	(Walters	&	Hilborn,	1978)	
that	attempt	to	balance	the	rate	of	learning	with	attaining	resource	
management	objectives,	and	thus,	managers	might	temporarily	push	
a	 system	away	 from	optimal	 resource	objectives	 to	elicit	 stronger	
mechanistic	 responses	 (e.g.,	 alter	 abundance	 to	 a	 level	 where	
density-	dependent	feedbacks	can	be	elicited).	Such	actions	help	im-
prove	understanding	of	how	an	ecological	system	operates,	reduc-
ing	key	uncertainties	that	should	increase	management	performance	
in	 the	 future.	 In	 contrast,	 learning	 through	 “passive”	ARM	may	be	
slower	because	actions	are	driven	by	resource	management	objec-
tives	and	not	the	reduction	of	uncertainty,	which	can	result	in	con-
founding	 between	 management	 actions	 and	 ecological	 processes	
(Sedinger	&	Herzog,	2012).	Nevertheless,	learning	might	still	occur	
as	a	by-	product	of	 iterated	applications	of	passive	ARM	(Schreiber	
et	al.,	2004;	Williams,	2011).

As	 applied	 ecology	moved	 away	 from	 the	 paradigm	 of	 com-
paring	 single	 hypotheses	 against	 trivial	 null	 hypotheses	 of	 “no	
difference,”	 it	 shifted	 into	 an	 arguably	more	 powerful	 paradigm	
of	multiple	hypothesis	comparison	 (Burnham	&	Anderson,	2002;	
Hilborn	 &	 Mangel,	 1997),	 which	 is	 also	 an	 important	 aspect	 of	
many	ARM	programs	(Nichols	et	al.,	2019).	Other	applications	of	
ARM	use	single	models	and	focus	on	changes	in	the	strength	and	
precision	of	estimated	coefficients	for	mechanisms	hypothesized	
to	affect	a	focal	system	as	management	actions	are	implemented	
(e.g.,	 Eaton	 et	 al.,	 2021).	Unfortunately,	many	 ecological	 studies	
and	applications	of	ARM	have	abandoned	the	use	of	null	hypoth-
eses	altogether,	wherein	 lies	 the	 red	herring	of	 thinking	 that,	on	
their	own,	model	weights,	 rankings,	or	parameter	estimates	por-
tray	strong	evidence	for	hypotheses	(Guthery,	2008).	Inclusion	of	
an	appropriate	null	hypothesis	might	reveal	that	all	models	or	vari-
ables	under	consideration	fail	to	improve	out-	of-	sample	predictive	
inference.	Thus,	a	strict	focus	on	model	comparison	and	parameter	
estimation	can,	in	some	situations,	result	in	inference	being	based	
on	the	“best	of	a	bad	bunch”	of	models	and	errors	of	commission	
(Arnold,	2010).	Such	pitfalls	can	easily	occur	whenever	sufficient	
benchmarks	for	evidence	are	not	considered	(Scheiner,	2004),	or	
when	 the	 ability	 of	 a	model	 to	 adequately	 represent	 the	data	 is	
not	properly	evaluated	(e.g.,	goodness	of	fit;	Conn	et	al.,	2018).	In	
passive	applications	of	ARM	where	 the	 focus	 is	primarily	placed	
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on	meeting	objectives,	the	consequences	of	these	pitfalls	are	that	
practitioners	can	become	overly	confident	in	their	understanding	
of	 system	mechanisms	 (Conn	&	Kendall,	 2004),	 and	 satisfaction	
with	the	restricted	model	framework	becomes	ill-	equipped	to	in-
dicate	when	adjustments	are	needed	to	meet	objectives	once	the	
system	undergoes	 substantial	 change	 (e.g.,	ARM	 in	 an	era	when	
deluge	transitions	to	drought;	Nichols	et	al.,	2011).

3  |  ECOLOGIC AL NULL MODEL S

Traditional	null	statistical	hypotheses	parsimoniously	represent	the	
expectation	that	observed	data	arise	purely	from	random	sampling,	
whereas	ecological	null	models	acknowledge	important	elements	of	
a	system	(e.g.,	equilibria,	process	variance)	and	are	designed	to	eval-
uate	alternative	mechanisms	of	 interest	while	controlling	for	some	
variables	 that	 are	 known	 to	 affect	 the	 system	 (i.e.,	 they	 are	more	
than	 just	 an	 intercept-	only	 model;	 Gotelli	 &	 Graves,	 1996).	 They	
represent	an	intermediate	point	between	null	statistical	hypotheses	
and	mechanistic	models	 by	 imposing	pattern-	based	 constraints	 to	
preserve	important	features	of	observed	systems	(e.g.,	basic	aspects	
of	 presiding	 knowledge),	 but	 are	 devoid	 of	 the	 focal	 mechanisms	
being	tested	(Gotelli	&	Ullrich,	2012).	Failure	to	outperform	an	eco-
logical	null	model	may	indicate	that	a	particular	mechanism	plays	no	
role	in	the	study	system,	that	it	has	been	poorly	parameterized,	that	
samples	size	is	insufficient	for	detecting	its	effect,	or	that	confound-
ing	variables	have	not	been	accounted	for.	Carefully	designed	eco-
logical	null	models	can	therefore	provide	a	guard	against	errors	of	
commission	and	omission	in	observational	studies,	and	are	used	as	
benchmarks	for	evidence	in	some	subdisciplines	of	ecology	(Gotelli	
&	Ullrich,	2012).	Most	notably,	ecological	null	models	are	used	by	
community	ecologists	to	expose	mechanisms	of	species	interactions	
involved	 in	 species	 coexistence	 and	 patterns	 of	 biodiversity	 (e.g.,	
Adler	et	al.,	2010),	and	by	evolutionary	biologists	to	examine	the	role	
of	competition	in	shaping	natural	selection	on	trait	divergence	(e.g.,	
Anderson	&	Weir,	2021).	Though	ecological	null	models	 are	 tradi-
tionally	used	in	explanatory	inference,	the	same	philosophy	can	be	
used	to	increase	the	rigor	of	predictive	ecological	inference	(Dietze	
et	al.,	2018),	and	the	identification	of	null	models	for	specific	types	
of	data	continues	to	be	a	topic	of	inquiry	(Molina	&	Stone,	2020).

Fortunately,	applied	ecologists,	 including	practitioners	of	ARM,	
can	look	to	disciplines	such	as	economics,	meteorology,	climatology,	
and	epidemiology	that	have	ample	experience	developing	null	mod-
els	 to	 improve	 predictive	 inference.	 In	 meteorology,	 for	 example,	
intuitive	measures	 of	 “persistence”	 (e.g.,	 tomorrow's	 temperature,	
wind	speed,	or	precipitation	will	equal	the	long-	term	average	for	the	
day	among	years,	or	 tomorrow's	weather	conditions	will	 resemble	
today's)	serve	as	pattern-	based	null	models	for	gauging	the	improved	
accuracy	of	near-	term	mechanistic	weather	forecasts	(Silver,	2015).	
Mechanistic	forecasting	models	must	beat	models	of	persistence	to	
be	considered	as	skillful	candidates	among	an	ensemble	of	models	
for	real-	world	weather	forecasting	(Hamill	&	Juras,	2006).	 In	other	
words,	 the	null	models	 used	 in	meteorology	 (and	other	predictive	

disciplines)	serve	as	benchmarks	for	gauging	evidence	and	learning	
about	system	mechanisms,	and	can	even	include	sophisticated	pat-
terns	similar	to	the	null	models	used	in	ecology	(e.g.,	cyclic	equilib-
ria,	environmental	stochasticity;	Dietze	et	al.,	2018).	The	use	of	null	
models	 as	 benchmarks	 for	 evidence	 and	 learning	 can	 also	 inspire	
fields	to	improve	anticipatory	predictions,	such	as	iterative	forecast-
ing	 efforts	 that	 have	 resulted	 in	 steady	 improvements	 in	weather	
and	climate	forecasting	skills	over	time	(e.g.,	see	figure	1	in	Luo	et	al.,	
2011).	Learning	 is	defined	as	 the	acquisition	of	new	knowledge	or	
skills	(OED	Online,	2020),	and	below	we	demonstrate	why	ecologi-
cal	null	models	should	be	given	greater	attention	as	benchmarks	for	
evaluating	learning	performance	in	ARM	so	that	better	decisions	can	
be	made	during	an	era	of	rapid	global	change.

4  |  APPLIC ATION TO A CL A SSIC C A SE 
STUDY OF ARM

4.1  |  Background and methodology

Arising	 out	 of	 decades	 of	 contentious	 stakeholder	 disagreements	
about	 the	 impact	 of	 harvest	 mortality	 on	 waterfowl	 populations,	
adaptive	 harvest	 management	 (hereafter	 AHM)	 was	 adopted	 in	
1995	 to	 scientifically	 guide	 the	 process	 of	 setting	 harvest	 regula-
tions	for	mallards	in	the	North	American	midcontinent	(Anas platy-
rhynchos;	Johnson	et	al.,	1993,	1997;	Nichols	et	al.,	1995;	Williams	
et	 al.,	 1996).	 Though	 just	 one	 example,	 the	AHM	of	midcontinent	
mallards	is	widely	regarded	as	an	ARM	success	story	in	the	literature	
(e.g.,	Nichols	et	al.,	2019,	2021	and	citations	therein)	because	of	the	
annual	effort	to	reduce	uncertainty	through	iterated	structured	de-
cision	making	that	is	connected	to	competing	model-	based	hypoth-
eses	of	how	mallard	demography	operates,	which	is	a	process	that	
tends	 to	yield	more	sustainable	management	outcomes	than	reac-
tive	decisions	(Gerber	&	Kendall,	2018).

Learning	 is	 not	 an	 explicit	 objective	 in	 AHM	 (Johnson	 et	 al.,	
2015),	but	the	passive	implementation	of	AHM	is	directed	at	resolv-
ing	 structural	 uncertainty	 in	 the	mechanisms	 that	 govern	mallard	
population	 dynamics.	 It	 does	 so	 by	 considering	 four	 models	 with	
contrasting	hypotheses	about	survival	and	reproduction.	Age-		and	
sex-	specific	annual	survival	probabilities	are	modeled	as	a	function	
of	harvest	rates	according	to	the	additive	(Sa)	versus	compensatory	
(Sc)	mortality	hypotheses	(Anderson	&	Burnham,	1976;	Burnham	&	
Anderson,	1984).	Annual	reproductive	rate	is	modeled	as	a	function	
of	annually	observed	wetland	abundance	and	strong	(Rs)	versus	weak	
(Rw)	density	dependence,	wherein	the	functions	are	based	on	anal-
yses	of	historical	data	collected	prior	to	1995	(see	Table	1;	Johnson	
et	al.,	1997;	U.S.	Fish	&	Wildlife	Service,	2019).	When	combined	in	a	
factorial	manner,	these	alternative	pairs	of	hypotheses	result	in	four	
models	meant	to	encompass	structural	uncertainty	(SaRs,	SaRw,	ScRs,	
ScRw).	As	 such,	 the	AHM	models	 should	be	expected	 to	provide	a	
range	of	under-		and	overprediction	in	any	given	year,	with	the	goal	
of	basing	decisions	more	heavily	on	those	models	that	consistently	
predict	better	than	others	over	time.	In	1995,	initial	weights	of	0.25	
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TA B L E  1 Balance	equation	used	in	AHM	of	mallards	in	the	North	American	midcontinent	that	can	incorporate	one	of	two	mortality	
submodels	(additive	harvest	mortality	Sa,	or	compensatory	harvest	mortality	Sc)	combined	with	one	of	two	reproduction	submodels	(weak	
density	dependence	in	reproductive	rate	Rw,	or	strong	density	dependence	in	reproductive	rate	Rs)

AHM balance equation

Nt+1 = �SNt

(

mSt,am + (1 − m)
(

St,af + �RRt

(

St,jf + St,jm�
sum
f

∕�sum
m

)))

AHM submodels

Model Features

St,age,sex = SA
0,sex

(1 − Kt,age,sex) Deterministic	model	for	age-		and	sex-	specific	additive	harvest	mortality	
(Sa)

St,age,sex =

(

SC
0,sex

if Kt,age,sex≤1−SC
0,sex

1−Kt,age,sex if Kt,age,sex>1−SC
0,sex

)

Deterministic	model	for	age-		and	sex-	specific	compensatory	harvest	
mortality	(Sc)	according	to	a	segmented	threshold,	whereby	harvest	
mortality	becomes	additive	once	it	exceeds	baseline	mortality	in	the	
absence	of	harvest;	neither	of	the	AHM	survival	models	account	for	
possible	effects	of	density	dependence,	habitat	conditions,	etc.

Rt = 0.7166 + 0.1083Wt − 0.0373Nt Weak	density-	dependent	model	for	reproduction	(Rw)	that	also	includes	
an	effect	of	wetland	availability

Rt = 1.1390 + 0.1376Wt − 0.1131Nt Strong	density-	dependent	model	for	reproduction	(Rs);	differences	
between the Rw and Rs	models	were	based	on	the	80%	confidence	
ellipsoid	of	a	best-	fitting	linear	model	to	historical	reproduction	
data,	and	the	two	points	on	this	ellipsoid	with	the	largest	and	
smallest	values	for	the	effect	of	Nt were used to develop the Rw and 
Rs	parameters

Ecological null models

Model Features

Nt+1 = Nt + �t Null	model	of	population	persistence	that	strips	away	the	vital	rate	
mechanisms	in	the	AHM	balance	equation,	and	replaces	them	with	
a	phenomenological	model	of	temporal	process	variance	around	an	
assumed	equilibrium	(i.e.,	� ≈ 1)

Nt+1 =
(

ereq+�⋅Wt+�t
)

Nt
Null	model	with	a	wetlands	predictor	that	incorporates	common	
knowledge	that	duck	populations	ebb	and	flow	with	wetland	
availability,	but	does	so	without	specifying	the	vital	rate	
mechanism(s)	that	may	govern	such	effects,	whereas	AHM	models	
include	such	effects	for	reproduction	but	not	mortality

Parameters Explanation

Nt Currently	observed	abundance

Nt+1 One-	step-	ahead	forecast	of	abundance

m The	proportion	of	males	in	the	breeding	population	treated	as	a	
constant	(0.52)

�S Constant	bias	correction	factor	(0.94)	applied	to	survival	to	improve	
forecasts	of	Nt+1

St,am Adult	male	survival	from	year	t to t +	1,	modeled	as	a	function	of	
harvest rate according to either the Sa or Sc	hypothesis,	but	not	
estimated	directly	from	contemporary	band-	recovery	data

St,af Adult	female	survival	from	year	t to t +	1,	modeled	as	above

St,jm Juvenile	male	survival	from	year	t to t +	1,	modeled	as	above

St,jf Juvenile	female	survival	from	year	t to t +	1,	modeled	as	above

S0 Baseline	survival	in	the	absence	of	harvest,	which	is	assumed	to	be	
different	in	additive	(A)	and	compensatory	(C)	models	above

Kt Harvest	rate	adjusted	for	crippling	loss	(i.e.,	kill	rate)

�sum
f

∕�sum
m

Ratio	of	female	to	male	summer	survival	treated	as	a	constant	(0.90)

�R Constant	bias	correction	factor	(0.86)	applied	to	reproduction	to	
improve	forecasts	of	Nt+1
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were	assigned	to	each	model	(i.e.,	complete	structural	uncertainty,	
conditional	 on	 the	 considered	 models).	 As	 new	 monitoring	 data	
become	 available,	 combinations	 of	 the	 survival	 and	 reproduction	
submodels	are	implemented	into	a	balance	equation	to	forecast	pop-
ulation	abundance	for	the	following	spring	(see	Table	1).	Differences	
between	model	forecasts	and	eventual	observations	of	abundance	
are	implemented	in	Bayes’	theorem	to	iteratively	update	the	model	
weights.	Over	time,	model	weights	have	gravitated	toward	the	SaRw 
model	that	has	performed	best	at	1-	year-	ahead	forecasting	(72%	of	
weight),	ScRw	still	receives	some	support	(28%	of	weight),	and	both	
SaRs and ScRs	received	near	zero	support	in	2019	(U.S.	Fish	&	Wildlife	
Service,	2019).

Models	 can	 nevertheless	 make	 reasonable	 predictions	 even	
when	 the	 governing	 mechanisms	 are	 poorly	 specified	 (Johnson	
et	al.,	2002).	For	example,	because	mallard	harvest	rates	are	highly	
correlated	with	changes	in	population	density,	and	because	density-	
dependent	natural	survival	(i.e.,	survival	in	the	absence	of	hunting)	
is	 not	 explicitly	 considered	 in	 the	 four	 AHM	models,	 support	 for	
the	additive	mortality	hypothesis	may	be	an	artifact	of	not	 includ-
ing	 density	 dependence	 in	 survival	 (i.e.,	 a	 problem	 of	 confound-
ing	 variables;	 Conn	 &	 Kendall,	 2004;	 Sedinger	 &	 Herzog,	 2012;	
Sedinger	&	Rexstad,	1994;	Zhao	et	al.,	2016).	This	and	other	factors	
have	spurred	the	suggestion	that	the	four	models	currently	used	in	
AHM	are	limiting	abilities	to	learn	about	the	system,	which	in	turn	
may	limit	future	management	performance	(Conn	&	Kendall,	2004;	
Johnson	et	al.,	2002).

It	 is	always	healthy	to	question	whether	a	model	 is	adequately	
specified	(Box,	1976).	A	simple	ecological	null	model	for	gauging	the	
predictive	performance	(i.e.,	skill)	of	mechanistic	population	models	
is	that	of	“population	persistence,”	which	is	related	to	the	concepts	
used	in	meteorology	mentioned	earlier,	and	assumes	that	a	popula-
tion	remains	at	equilibrium	where	the	birth	and	death	mechanisms	
strike	a	perfect	balance	(i.e.,	� ≈ 1).	This	would	effectively	cancel	out	
the	vital	 rate	mechanisms	 in	 the	AHM	balance	equation	 (Table	1),	

leaving	a	model	where	the	prediction	of	abundance	at	t +	1	is	equal	
to	 the	 observed	 abundance	 at	 time	 t	 (Nt+1 = 1∙Nt,	 or	Nt+1 = Nt).	
Though	system	persistence	is	rarely	considered	as	a	benchmark	for	
evidence	and	learning	in	ARM,	an	interim	strategy	for	the	AHM	of	
mourning	doves	did	consider	 its	utility	 (Zenaida macroura;	Sanders	
&	Seamans,	2012).	 In	practice,	one	might	want	to	consider	greater	
realism	by	allowing	for	stochastic	variation	around	an	assumed	equi-
librium	with	a	random	walk:

where εt ~ Norm(0,	σ2).	This	simple	null	model	of	population	persistence	
captures	the	intuition	of	a	naturalist	that	waterfowl	populations	do	not	
radically	change	from	one	year	to	the	next	 (i.e.,	� ≈ 1).	Alternatively,	
one	might	consider	an	ecological	null	model	that	adds	an	effect	of	wet-
land	abundance	at	time	t	(Wt)	on	the	population	growth	rate	from	t to 
t +	1,	sans	the	vital	rate	mechanisms,	since	it	has	long	been	known	that	
duck	populations	ebb	and	flow	with	wetland	availability	(Lynch,	1984):

where req	 is	 the	 average	 per	 capita	 growth	 rate	 at	 equilibrium	 that	
equals	0,	Wt	is	standardized	(mean	0,	s.d.	1),	εt ~ Norm(0,	σ2),	and	the	
parameters	(Nt+1,	β,	εt)	are	estimated	recursively	with	data	up	to	time	t.

We	compared	one-	step-	ahead	forecasts	at	t + 1 associated with 
each	of	 the	four	AHM	models	 to	eventually	observed	abundances	
at t +	1	for	midcontinent	mallards	between	1996	and	2019.	We	per-
formed	the	same	out-	of-	sample	predictions	for	a	weighted	average	
of	the	four	AHM	models,	and	for	our	two	ecological	null	models	(the	
population	 persistence	 and	 wetland	 models;	 see	 Supplement	 for	
modeling	details).	We	 scored	each	model's	 forecasting	 skill	 across	
the	 time	 series	 using	 the	 root	 mean	 square	 error	 (RMSE;	 Dietze	

Nt+1 = Nt + �t

Nt+1 = �t ⋅ Nt

log(�t) = req + � ⋅Wt + �t

Parameters Explanation

Rt Predicted	reproduction	in	year	t	(offspring	recruitment	to	fall	flight),	
modeled	as	a	function	of	Nt according to either the Rw or Rs 
hypothesis	and	wetland	abundance	at	t,	Wt,	but	not	estimated	
directly	from	contemporary	reproduction	data

Wt Wetland	abundance	at	t,	which	is	modeled	with	an	autoregressive	
pattern	and	temporal	process	variability	(using	another	
submodel	not	shown	here)	that	facilitates	prediction	at	t + 1

�t Error	term	for	temporal	process	variance	of	population	dynamics	
within	one	of	the	two	null	models

req Average	per	capita	growth	rate	at	equilibrium	that	equals	0

� Estimated	effect	of	wetland	abundance	on	population	growth	rate

Note: See	U.S.	Fish	and	Wildlife	Service	(2019)	for	details.	Briefly,	both	the	survival	and	reproduction	submodels	are	based	primarily	on	data	
collected	prior	to	1995.	In	2002,	both	the	survival	and	reproduction	submodels	were	altered	to	include	bias-	adjustment	terms	to	account	for	severe	
discrepancies	between	model	predictions	and	empirical	data,	but	the	basic	structure	of	each	submodel	remained	unchanged.	These	correction	
factors	were	then	applied	from	1995	onward	to	improve	model	predictions,	though	the	correction	factors	provide	ostensible	explanations	of	the	
data	(Runge	et	al.,	2002).	For	reference,	we	also	provide	the	two	ecological	null	models	presented	as	benchmarks	for	learning	about	the	ability	of	
mechanisms	contained	in	the	AHM	models	to	provide	more	accurate	predictions	of	future	mallard	abundance.

TA B L E  1 (Continued)
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et	al.,	2018).	Specifically,	we	normalized	the	RMSE	by	the	mean	of	
observed	abundances	over	 the	 time	series	 (NRMSE)	 to	help	 facili-
tate	comparison	of	scores	among	models.	The	NRMSE	balances	pre-
diction	bias	with	precision,	but	it	does	not	measure	systematic	bias.	
Systematic	bias	is	a	tell-	tale	sign	of	a	misspecified	model,	which	we	
measured	using	the	normalized	mean	signed	difference	(NMSD).	The	
NRMSE	and	NMSD	can	certainly	be	measured	and	evaluated	in	the	
absence	of	an	ecological	null	model,	but	below	we	demonstrate	how	
comparisons	of	these	scores	with	those	for	a	null	model	can	serve	
as	 benchmarks	 for	 evaluating	model-	based	 evidence	 and	 learning	
about	ecological	processes	in	ARM.

4.2  |  AHM forecasting skill

Our	ecological	null	model	of	population	persistence,	devoid	of	any	
mechanisms,	 yielded	 an	 equivalent	 NRMSE	 as	 that	 for	 the	 SaRw 
model,	 which	 is	 currently	 the	 top-	weighted	 model	 in	 AHM.	 This	
equivalence	 is	 not	 terribly	 surprising	 because	 as	 complexity	 is	
added	to	models,	bias	should	be	 reduced	while	variance	 increases	
(Burnham	&	Anderson,	 2002).	What	 is	more	 insightful	 is	 that	 the	
NMSD	 of	 the	 persistence	 model	 was	 more	 than	 six	 times	 better	
than	that	of	the	SaRw	model,	and	eight	times	better	than	the	AHM	

model-	averaged	predictions.	The	ecological	null	model	with	a	wet-
land	predictor	had	an	even	better	NMSD	than	the	persistence	model	
(Figure	1).	Forecasting	skills	of	all	other	AHM	models	were	notably	
worse	(Appendix	S1).

AHM	has	been	a	success	in	many	regards	because	it	has	gathered	
disparate	 stakeholders	 around	 a	 structured	 decision-	making	 pro-
cess,	and	it	has	opened	people's	minds	to	the	concepts	of	alternative	
models	 (e.g.,	multiple	working	 hypotheses)	 and	 learning	 by	 doing.	
Given	 that	 the	 AHM	 models	 consistently	 underpredict	 observed	
abundance	and	cannot	surpass	the	NMSDs	of	ecological	null	models,	
however,	there	seems	to	be	ample	room	for	improvement	as	a	means	
to	guide	science-	based	decision	making	in	a	changing	world.	Though	
systematic	biases	in	the	AHM	models	have	been	acknowledged	(e.g.,	
U.S.	Fish	&	Wildlife	Service,	2010),	our	ecological	null	models	pro-
vide	the	needed	benchmark	for	gauging	the	severity	of	systematic	
bias	and	inability	to	surpass	null	representations	of	basic	knowledge.	
It	therefore	seems	to	be	an	appropriate	time	for	the	AHM	commu-
nity	 to	embrace	new	model-	based	hypotheses	and	methodologies	
going	forward.

Discrepancies	between	scientific	insight	and	management	prac-
tice	 likely	exist	 in	many	 if	not	all	applications	of	ARM	because	the	
process	of	structured	decision	making	must	also	balance	trade-	offs	
with	stakeholder	desires	(Runge	et	al.,	2020;	Westgate	et	al.,	2013).	

F I G U R E  1 Forecasted	mallard	abundances	(in	millions)	at	time	t + 1 plotted against the observed abundances at t +	1	for	the	SaRw	(a)	and	
weighted	average	AHM	models	(b),	compared	with	the	null	models	of	population	persistence	(c)	and	that	with	an	additional	parameter	for	
an	effect	of	wetlands	(d;	the	other	AHM	models	described	in	the	text	are	not	shown	because	they	currently	receive	little	to	no	weight,	but	
see	Appendix	S1	for	pertinent	results).	The	expected	1:1	relationships	are	shown	with	dashed	lines,	which	are	equivalent	to	the	bullseye	of	
a	forecasting	target.	Also	provided	are	the	normalized	root	mean	square	error	(NRMSE)	and	normalized	mean	signed	difference	(NMSD)	for	
each	model.	Note	that	forecasted	precisions	of	the	null	models	are	scattered	nicely	around	the	targeted	relationship	(c	&	d),	indicative	of	
unbiased	predictions,	whereas	the	tendencies	of	the	AHM	models	(a	&	b)	are	to	underpredict	observed	abundances.	Shading	of	the	green	
circles	becomes	increasingly	darker	over	time;	more	recent	years	have	a	darker	shade
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Ideas	that	have	been	suggested	based	on	scientific	studies,	but	not	
yet	 implemented	 in	midcontinent	mallard	AHM,	 include	 the	 treat-
ment	of	additive	and	compensatory	mortality	as	a	continuum	as	op-
posed	to	a	discrete	model	choice	(e.g.,	Burnham	et	al.,	1984;	Conroy	
&	Krementz,	1990),	the	incorporation	of	ecological	drivers	of	survival	
alongside	effects	of	harvest	(Sedinger	&	Herzog,	2012;	Zhao	et	al.,	
2018;	TVR	pers.	comm.),	flexible	parameterizations	for	the	influence	
of	conspecific	and	wetland	densities	on	fecundity	(Specht	&	Arnold,	
2018;	Zhao,	Arnold,	et	al.,	2019),	cross-	seasonal	environmental	ef-
fects	on	reproduction	(e.g.,	Heitmeyer	&	Fredrickson,	1981;	Osnas	
et	al.,	2016,	BSS	pers.	comm.),	and	 individual	heterogeneity	 in	de-
mographic	performance	and	vulnerability	to	harvest	(Arnold,	2021;	
Cooch	et	al.,	2014;	Johnson	et	al.,	1984;	Lindberg	et	al.,	2013).	As	in	
other	applications	of	ARM,	stakeholder	concerns	can	impede	adap-
tive	considerations	of	new	models	in	AHM.	From	a	data	perspective,	
however,	waterfowl	managers	could	make	better	use	of	the	moni-
toring	systems	already	in	place	and	intended	to	measure	changes	in	
reproductive	success	 (age	ratios	from	the	Parts	Collection	Survey;	
U.S.	 Fish	 and	 Wildlife	 Service),	 survival	 (systematic	 banding	 and	
hunter	recoveries;	USGS	Bird	Banding	Laboratory),	and	abundance	
(Waterfowl	 Breeding	 Population	 and	 Habitat	 Survey;	 U.S.	 Fish	 &	
Wildlife	Service,	2021)	on	an	annual	or	even	seasonal	basis	(Devers	
et	 al.,	 2021).	 Since	1995,	only	 the	 latter	dataset	has	been	used	 in	
AHM	(see	U.S.	Fish	&	Wildlife	Service,	2019),	and	integrated	popula-
tion	models	provide	one	approach	to	utilizing	all	of	these	monitoring	
data	in	iterative	applications	of	AHM	(Arnold	et	al.,	2018).

Serendipitously,	 the	AHM	community	 has	 long	 recognized	 the	
limitations	of	 the	 four	models	 for	midcontinent	mallards	 (Johnson	
et	al.,	2002;	U.S.	Fish	&	Wildlife	Service,	2010),	and	recently	high-
lighted	the	need	to	re-	evaluate	and	update	the	functional	relation-
ships	used	 to	predict	mallard	population	dynamics.	As	part	of	 the	
double-	loop	learning	process	of	ARM	(Williams	&	Brown,	2018),	the	
Mississippi	and	Central	Flyways	along	with	the	U.S.	Fish	and	Wildlife	
Service	 have	 been	 reconsidering	 all	 elements	 of	 the	AHM	 frame-
work,	 including	 deliberations	 of	 appropriate	 harvest	 management	
objectives,	evaluating	alternative	regulatory	options,	and	the	explo-
ration	of	Bayesian	integrated	population	models	to	estimate	import-
ant	population	parameters	that	form	the	basis	for	deriving	harvest	
policies.	Unfortunately,	 the	COVID-	19	 pandemic	 has	 impeded	 the	
aerial	 survey	 of	waterfowl	 abundances	 that	 AHM	decisions	 hinge	
upon	(U.S.	Fish	&	Wildlife	Service,	2021),	and	has	stalled	progress	on	
re-	evaluating	components	of	AHM.	Concurrently,	a	severe	drought	
has	recently	gripped	the	Prairie	Pothole	Region	(see	referenced	CDM	
&	NDMC	drought	monitors),	 the	 core	breeding	 area	 for	midconti-
nent	mallards,	further	emphasizing	the	need	for	AHM	to	be	based	
on	more	accurate	forecasting	models	than	those	used	in	the	past.

5  |  DISCUSSION

The	purpose	of	ARM	is	not	to	seek	truth	with	modeling,	which	is	
impossible	 (Box,	 1976),	 but	 rather	 to	 resolve	 uncertainty	 about	
system	 responses	 to	 actions	 and	 apply	 that	 learning	 to	 future	

decisions	 in	 pursuit	 of	 management	 objectives	 (Nichols	 et	 al.,	
2019).	 Perhaps	 because	 of	 the	 need	 to	 deal	with	 uncertainty	 at	
large	 scales,	 and	 because	models	 are	 often	 cast	within	 the	 con-
text	of	 informing	decisions	as	opposed	to	that	of	testing	hypoth-
eses,	 practices	 of	 ARM	 commonly	 lack	 the	 benchmarks	 used	 in	
evidence-	based	science	(Gillson	et	al.,	2019).	Indeed,	we	searched	
the	literature	and	found	the	use	of	ecological	null	models	or	simi-
lar	benchmarks	for	evidence	and	 learning	 in	ARM	to	be	rare	 (see	
Table	2).	Gillson	et	al.	 (2019)	suggest	that	concepts	used	 in	ARM	
need	 to	be	merged	with	 those	used	 in	 smaller-	scale	practices	of	
evidence-	based	 science	 to	 inform	 the	 decision-	making	 process.	
The	use	of	ecological	null	models	may	very	well	provide	a	seamless	
way	 to	 fuse	 these	philosophies	 for	 spatial	 and	 temporal	 applica-
tions at large scales.

To	 realize	 this	 potential	 in	 a	 rapidly	 changing	 world,	 we	 sug-
gest	 practitioners	 (a)	 consider	 agreed-	upon	 ecological	 null	 mod-
els	 as	 benchmarks	 for	 evaluation	 of	 learning	 in	 their	 applications	
of	 ARM,	 (b)	 iteratively	 track	 improvements	 in	 the	 predictive	 skill	
of	ARM	models	over	time	(e.g.,	figure	1	in	Luo	et	al.,	2011),	and	(c)	
when	necessary,	use	both	(a)	and	(b)	to	inspire	alternative	hypothe-
ses	and	model	structures	(i.e.,	a	more	rapid	trigger	for	double-	loop	
learning;	Johnson	et	al.,	2015).	Other	fields	that	are	experienced	in	
forecasting	 and	 predictive	 inference	 have	 benefitted	 greatly	 from	
each	of	these	practices	(e.g.,	economics,	meteorology,	climatology,	
and	epidemiology).

Though	models	of	population	persistence	and	simple	phenome-
nological	models	commonly	provide	more	accurate	forecasts	of	fish	
and	wildlife	abundance	than	more	complicated	mechanistic	models	
(Adkison,	2009;	Ludwig	&	Walters,	1985;	Ward	et	al.,	2014),	which	
is	also	true	in	other	complex	systems	such	as	economics	(Hyndman,	
2020;	Makridakis	&	Hibon,	2000),	a	reliance	on	ecological	null	mod-
els	will	never	result	in	learning	nor	can	decisions	be	based	on	them	
(because	they	will	typically	exclude	the	parameters	informing	man-
agement	decisions).	Ecological	null	models	simply	provide	a	bench-
mark	to	surpass	 in	the	quest	to	 learn	through	ARM.	Fortunately,	 it	
should	be	relatively	easy	to	overcome	these	hurdles	because	of	the	
rapid	 advancement	 in	 quantitative	methods	 that	 can	 expedite	 the	
scientific	method.	For	example,	Bayesian	hierarchical	models	readily	
allow	for	the	decoupling	of	sampling,	process,	structural,	and	driver	
uncertainties	when	making	model-	based	forecasts	 (Berliner,	1996).	
Programming	 tools	 for	 quickly	 assimilating	 data	 into	model	 fitting	
and	ecological	forecasting	are	also	advancing	rapidly	(Simonis	et	al.,	
2021;	Taylor	&	White,	2020;	White	et	al.,	2019),	which	can	expedite	
learning	about	the	mechanisms	that	yield	sound,	scientific	forecasts	
of	 the	 future	versus	 those	that	do	not	 (Luo	et	al.,	2011;	Niu	et	al.,	
2014).	Multiple	monitoring	datasets	can	also	be	leveraged	(i.e.,	fused	
or	reconciled)	to	improve	inference	at	multiple	scales	(Arnold	et	al.,	
2018;	Maunder	&	Punt,	2013;	Pacifici	et	al.,	2017;	Zhao	et	al.,	2019;	
Zipkin	&	Saunders,	2018),	so	long	as	such	methods	are	used	carefully	
(Riecke	et	al.,	2019).	Finally,	the	careful	construction	of	such	models	
can	allow	for	inference	regarding	the	existing	types	and	magnitudes	
of	 uncertainty	 affecting	 predictions,	 guiding	 future	 research	 and	
ARM	efforts.
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More	 generally,	 learning	 through	 ARM	 could	 be	 enhanced	 by	
encouraging	diverse	ways	of	thinking	about	the	modeling	and	scien-
tific	aspects	of	decision	problems.	New	and	creative	ideas	arise	more	
quickly	from	a	diverse	consortium	of	thinkers	contributing	to	a	com-
mon	topic	of	inquiry	(e.g.,	Hong	&	Page,	2004;	Woolley	et	al.,	2010).	But	
without	inclusion,	institutional	diversity	initiatives	may	not	be	sufficient	
to	 generate	 truly	 diverse	 contributions	 to	 common	 topics	of	 inquiry	
(Puritty	et	al.,	2017).	Alongside	an	array	of	other	strategies,	incentive-	
based	grants	or	competitions	could	overcome	barriers	to	the	inclusion	
of	diverse	groups	contributing	to	ARM,	as	well	as	other	near-	term	fore-
casting	enterprises	in	ecology	(Hyndman,	2020;	Petchey	et	al.,	2015).
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TA B L E  2 Results	from	a	Web	of	Science	literature	search	for	studies	that	may	have	used	ecological	null	models	as	benchmarks	for	
evidence	and	learning	in	ARM	(conducted	April	28,	2021)

Hits Description

Main keywords

Adaptive	Management	AND	(Wildlife	OR	Fish*	
OR	Marine	OR	Terrestrial	OR	Aquatic	OR	
Habitat	OR	Ecosystem)

6768 An	array	of	studies	that	formally	addressed	the	ARM	process	of	monitoring,	
modeling,	and	decision	making	(application)	to	“learn	by	doing,”	many	that	
misapplied	the	term	to	“trial	and	error”	management	of	natural	resources	(see	
Westgate	et	al.,	2013),	and	yet	more	that	did	not	pertain	to	ARM	at	all

Additional keywords

(Null	Model	OR	Null	Hypothesis	OR	Null	
Expectation)

14 Seven	of	the	14	studies	did	not	pertain	to	ARM,	three	referred	to	null	statistical	
models	(i.e.,	random	outcome),	1	study	implemented	an	ecological	null	model	
and	referred	to	ARM	in	the	discussion	but	was	not	an	explicit	study	of	ARM,	
1	used	a	null	expectation	within	the	application	step	of	ARM	(i.e.,	no	action)	
as	opposed	to	a	benchmark	model	for	learning	about	system	mechanisms	or	
structure	per	se	(Ketz	et	al.,	2016),	one	mentioned	the	need	for	ecological	null	
models	in	ARM	but	did	not	actually	implement	them	(Linklater,	2000),	and	1	
fisheries	study	actually	implemented	a	null	model	in	an	ARM	context	that	was	
emblematic	of	a	persistence	model	(Staton	et	al.,	2017).

Persistence	AND	Model	AND	(Predict*	OR	
Forecast*)

36 35	of	36	studies	used	the	term	persistence	as	a	synonym	for	the	viability	of	an	
ecosystem,	community,	population,	or	species,	not	as	a	benchmark	model	for	
gauging	evidence	or	learning,	one	study	implemented	a	persistence	forecasting	
model	but	did	not	pertain	to	ARM	(Page	et	al.,	2018)

Benchmark	AND	Model 24 14	of	24	studies	used	the	term	benchmark	differently	than	as	a	reference	model	
for	learning	about	system	mechanisms	(e.g.,	a	historical	state	of	a	system	for	
gauging	change	in	the	state	variable),	six	studies	implemented	benchmark	
models	for	prediction	but	did	not	pertain	to	ARM,	one	used	a	benchmark	
within	the	application	step	of	ARM	(i.e.,	no	action)	as	opposed	to	a	benchmark	
model	for	learning	about	system	mechanisms	or	structure	per	se	(Hoggart	
et	al.,	2014),	1	theoretical	study	used	benchmark	models	to	assess	the	ability	
of	an	agent	(manager)	to	learn	via	ARM	(Lindkvist	&	Norberg,	2014),	and	1	
fisheries	study	actually	implemented	benchmark	models	in	an	ARM	context	for	
learning	about	system	mechanisms	(Bischi	et	al.,	2013),	as	well	as	1	restoration	
ecology	study	(Parasiewicz	et	al.,	2013)

Note: that	topical	keywords	were	always	included	together	and	that	a	simple	term	such	as	“adaptive	management”	also	hit	the	more	verbose	versions	
such	as	ARM	and	adaptive	harvest	management.	Papers	that	did	not	address	ARM	but	separately	included	the	terms	“adaptive”	and	“management”	
were	also	found	by	the	literature	search.
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DATA AVAIL ABILIT Y S TATEMENT
All	data	are	 in	 the	public	domain	and	are	provided	by	 the	USFWS	
at:	 https://www.fws.gov/birds/	surve	ys-	and-	data/repor	ts-	and-	publi	
catio	ns/popul	ation	-	status.php;	 https://www.fws.gov/birds/	manag	
ement/	adapt	ive-	harve	st-	manag	ement/	publi	catio	ns-	and-	repor	
ts.php;	 https://www.fws.gov/birds/	surve	ys-	and-	data/migra	tory-	
bird- data- center.php
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