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Rapid clonal expansion of antigen-specific T cells is a fundamental
feature of adaptive immune responses. It enables the outgrowth
of an individual T cell into thousands of clonal descendants that
diversify into short-lived effectors and long-lived memory cells.
Clonal expansion is thought to be programmed upon priming of a
single naive T cell and then executed by homogenously fast divi-
sions of all of its descendants. However, the actual speed of cell
divisions in such an emerging “T cell family” has never been mea-
sured with single-cell resolution. Here, we utilize continuous live-
cell imaging in vitro to track the division speed and genealogical
connections of all descendants derived from a single naive CD8* T
cell throughout up to ten divisions of activation-induced prolifera-
tion. This comprehensive mapping of T cell family trees identifies a
short burst phase, in which division speed is homogenously fast
and maintained independent of external cytokine availability or
continued T cell receptor stimulation. Thereafter, however, divi-
sion speed diversifies, and model-based computational analysis
using a Bayesian inference framework for tree-structured data
reveals a segregation into heritably fast- and slow-dividing
branches. This diversification of division speed is preceded already
during the burst phase by variable expression of the interleukin-2
receptor alpha chain. Later it is accompanied by selective expres-
sion of memory marker CD62L in slower dividing branches. Taken
together, these data demonstrate that T cell clonal expansion is
structured into subsequent burst and diversification phases, the
latter of which coincides with specification of memory versus
effector fate.

computational modeling | T cell response | single-cell analysis | continuous
imaging | immunological memory

he smallest unit from which an adaptive immune response

can originate is an individual antigen-specific lymphocyte
(1). For both CD4" and CD8" T cells, it has been shown that
single-cell-derived immune responses in vivo are subject to
immense variation, despite being directed against the same epi-
tope and unfolding within the same host (2-6). Upon vaccina-
tion or infection, even naive T cells harboring identical T cell
receptors (TCRs) will generate “T cell families” (i.e., immune
responses derived from a single T cell) of highly distinct size
and phenotypic composition (2, 3, 6). Interestingly, within a
given T cell family, clonal expansion and T cell differentiation
are interdependent; at the peak of expansion, larger T cell fami-
lies harbor lower percentages of long-lived central memory
precursors (CMPs) and higher percentages of shorter-lived
effector memory precursors (EMPs) and terminal effectors
(TEs) than smaller T cell families (2, 7).

To account for the variation in single-cell-derived expansion
and the interdependency of T cell phenotype and family size,
we have put forward a stochastic developmental framework in
which naive T cells first give rise to slowly dividing CMPs, which
can then differentiate into more quickly dividing but shorter-
lived progeny (2). This framework proved to be efficient in
describing features of single-cell-derived T cell responses
in vivo, such as the relative independence of a T cell family’s

PNAS 2022 Vol. 119 No. 9 2116260119

memory capacity from its acute size of clonal expansion. In
fact, the acute size of clonal expansion is dictated by shorter-
lived EMPs and TEs and does not reflect the underlying preva-
lence of CMPs within a T cell family. This framework is further
supported by direct measurements of division speed in vivo,
showing that, already by day 4 after vaccination, CD62L*
CMPs undergo, on average, one division less per day than their
CD62L" counterparts (8). Moreover, recent work confirmed
the largely unidirectional differentiation of CMPs into non-
CMPs during the expansion phase of a T cell response (9) and
the role of CMPs as the major source of long-lasting CD8* T
cell memory (10-12).

However, certain features of our originally proposed stochas-
tic framework are at odds with observations made during the
very early phase of T cell activation. First, directly after activa-
tion in vivo, CD8" Tcells have been found to divide particularly
fast (13, 14), conflicting with the idea of an initial emergence of
slowly dividing CMPs. Second, elegant in vitro experiments
have shown that division activity is strongly correlated among
the members of a given T or B cell family, arguing against the
emergence of distinct expansion kinetics within the same family
(15-18). However, these latter studies mainly investigated the
first three to four cell divisions executed by an expanding lym-
phocyte family and compared division speed only between close
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Fig. 1. Continuous in vitro imaging reveals that distinct cell cycle speeds emerge within the same T cell family. (4) Blood was taken from an OT-I mouse and
sorted for naive CD8", CD44"" cells. A single naive OT-I cell was sorted into a well that was coated with anti-CD3 and anti-CD28 in the presence of 25 U/mL IL-2.
The cell culture plate was transferred to a live-cell imaging microscope and imaged for the next 3 to 5 d. (B) Pictures, taken at different time points from the
same single cell-derived progeny. The length of each micrograph edge is 250 pm. (C) Snapshot of a single cell-derived progeny at 3 d, 17 h, and 45 min after start
of acquisition. Colored lines represent migration pattern of individual cells. (D) Definitions of family tree-associated data; y axis, time; generation, the number of
cell divisions that have occurred from the naive T cell until the respective cell was created by division of its respective mother cell; mother and daughter cells, the
two cells that originate from the same cell division are daughter cells in respect of the original cell that divided (mother cell); sibling cells, cells that have the same
mother cell; interdivision time, time between the creation of an individual cell due to the division of its mother cell into two daughter cells and the end of the
respective cell due to its own division into two new daughter cells. (E) Time for first and subsequent divisions. Single naive (CD44'*") CD8" T cells were sorted into
separate wells of an anti-CD3/CD28-coated 384-well plate and imaged for 5 d in a live-cell imaging microscope. The fate of each cell was tracked, and the interdi-
vision time for the first division and all subsequent divisions was determined for 43 single-cell-derived progenies (in total, 43 cells for first division and 2,710 cells
for subsequent cell divisions). Red lines indicate the means. (F) Intra- and interclonal variability of interdivision times. The interdivision times from E (first division
excluded) are arranged according to their mean interdivision time; red bars, mean interdivision time within family tree; red dotted line, mean for all cells. Of
note, very little cell death was observed in these experiments. Thus, differences in the number of displayed data points per family are mainly due to differences in
the average division speed and the efficiency of continuous tracking (Materials and Methods). (G) Total variance of interdivision times from further divisions in £
as well as the contribution of intrafamily and interfamily variances are shown. Intrafamily variance is calculated as the weighted mean of the variances of interdi-
vision times within all different families. Interfamily variance is calculated as the weighted variance of the mean interdivision times of different families (S/
Appendix, Supplementary Methods); total variance, 5.57 + 0.15; intrafamily variance, 4.045 + 0.73; interfamily variance, 1.66 + 0.39. The distribution of intrafamily
variance is significantly larger than that of interfamily variance (P < 1 x 1073). (H) Interdivision times from E were plotted against the interdivision times of their
sibling cell (Left, 1,201 pairs) or their direct daughter cells (Right, 2,630 pairs). The correlation coefficients (r) and the P values for Spearman correlations are indi-
cated. (/) A representative family tree was divided into four branches starting from generation 2; loose ends, no further tracking possible for the respective cell. (J)
Interdivision time of cells in the four branches starting from the second generation (as depicted in /) are color coded for all trees in F. In 18 of 43 trees (~42%);
trees highlighted in gray), interdivision times differed significantly between the four branches. For every tree, a P value was calculated based on one-way ANOVA.
We then estimated positive false discovery rates (pFDR) for multiple hypothesis testing based on these P values and used a cutoff of pFDR < 0.05 for significance.
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simulated trees based on model 3 compared to that of the experimental data (gray). The red histogram shows the overall distribution in the simulated data,
while the black, blue, and green histograms show the distribution of “early activated”, “fast-dividing”, and “slow-dividing” subsets, respectively. The results
are shown for one data group; sim, simulation. (H) Total variance of the interdivision times and the contribution of intrafamily and interfamily sources as
observed in the experimental data (gray bars) and simulated data (red boxes). Intrafamily variance is calculated as the weighted mean of the variances of inter-
division times within different families. Interfamily variance is calculated as the weighted variance of the family mean interdivision times (S/ Appendix,
Supplementary Methods). The simulated data consist of 500 datasets of each 44 trees simulated based on model 3. The boxes show the 90% confidence inter-
val of the simulated data. The total variance and intrafamily variance of the experimental data are contained within the 90% confidence interval of the simu-
lated data, while for interfamily variance, the simulated data do not contain the experimental data point. The following are the three variance terms from left
to right for the experimental data: 5.57, 4.05, and 1.66. The 5th percentile, median, and 95th percentile for the three variance terms for simulated data from
left to right are 2.68, 4.23, and 5.93; 2.56, 3.98, and 5.61; and 0.11, 0.27, and 0.61, respectively. The results are shown for one data group. (/) Percentage of the
trees whose four branches (as in Fig. 1/) have significantly distinct interdivision times. The gray line shows the experimental data, and the red histogram shows
the distribution of this percentage in the simulated data, as in H (S/ Appendix, Supplementary Methods). The results are shown for one data group. (J) Model 4
adopts the topology of model 3 and incorporates variability between trees. The mean interdivision times of subsets early activated, slow-dividing, and fast-
dividing are assumed to differ between trees, and this variation is assumed to be log-normally distributed. The inset shows the stack of different trees and a
sample log-normal distribution for the variation of subset-specific mean interdivision times between these trees. (S/ Appendix, Supplementary Methods). (K)
Inferred variation of subset-specific mean interdivision times among different families based on model 4. The black, blue, and green curves show the distribu-
tion for “early activated,” “fast-dividing,” and “slow-dividing” subsets, respectively. The results are shown for one data group. (L) Model evidences for the
models in C and J indicate that model 4 explains the data best. The circles show the mean of the logo of model evidences of eight data groups (S/ Appendix,
Supplementary Methods). The error bars show the SEM. A difference of seven between the mean log;, model evidences for model 4 and model 3 indicates the
significant superiority of model 4. The mean Bayes factor, as well as individual Bayes factors in every data group, show at least strong evidence for choosing
model 4 over model 3 (S/ Appendlix, Figs. S5 and S12). The (Akaike and Bayesian) information criteria confirmed the same model hierarchy presented here. (M
and N) Same as E and F, with parameters inferred based on model 4. (O-Q) Same as G to /, with simulated data based on model 4. (P) The total variance, intra-
family variance, and interfamily variance of the experimental data are all contained within the 90% confidence interval of the simulated data. The three vari-
ance terms from left to right for the experimental data are 5.57, 4.045, and 1.66. The 5th percentile, median, and 95th percentile for the three variance terms
for simulated data from left to right are 3.5, 5.92, and 9.89; 2.86, 4.92, and 8.21; and 0.39, 0.91, and 2.55, respectively.
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relatives within the family tree (i.e., sibling or mother—-daughter
correlations). We reasoned that to investigate the gradual
cross-generational emergence of slower- or faster-dividing
genealogical branches, division speed and T cell kinship must
be tracked across longer genealogical distances than done
before.

Therefore, we performed continuous in vitro imaging of
single-cell-derived clonal expansion for up to 5 d after T cell
activation. In contrast to previous studies, we utilized a culture
system that allowed us to faithfully track the genealogical con-
nections within expanding T cell families for up to ten genera-
tions. We found that after completing their first cell cycle,
CD8" Tecells underwent a burst phase of two to three uniformly
quick divisions. Mean division speed then slowed down in the
absence of continued TCR stimulation and remained high
when TCR stimulation was maintained. However, even upon
continuous TCR stimulation, distinctly proliferating branches
emerged in the later generations of a family tree. To better
quantify the hereditary nature of this process, we developed a
computational framework that enabled a model-based analysis
of the tree-structured data obtained from live-cell imaging. We
combined branching process modeling with a Bayesian infer-
ence approach for models with hidden states. This framework
enabled us to test various hypotheses about the diversification
pattern of proliferating T cells into subsets with distinct interdi-
vision times. These analyses identified a model in which naive
T cells first differentiate into a quickly proliferating early acti-
vated state, which then transits into slowly and quickly dividing
branches that heritably maintain their distinct division activity.
Further investigating the molecular regulation of these pro-
cesses, we found that distinct expression levels of the high-
affinity interleukin-2 (IL-2) receptor alpha chain (CD25),
established during the burst phase, preceded the adoption of
distinct division activities. Moreover, we found that CD62L, as
a marker of CMP differentiation, was preferentially expressed
in slowly dividing T cells that emerged beyond the burst phase.

Taken together, our work shows that after a short burst
phase, the division speed of activated CD8" T cells segregates
into slow- and fast-cycling branches. Moreover, it provides
mathematical methodology suited to test models of heredity
within tree-structured data generated by an expanding T cell
family or any other proliferating and continuously imaged cell

type.

Results

Continuous In Vitro Imaging Reveals That Distinct Division Speeds
Emerge within the Same T Cell Family. To comprehensively map
clonal expansion in vitro starting out from individual naive
CD8" T cells, we utilized a continuous imaging platform (19,
20). Naive CD44'°Y CD8" T cells were individually sorted via
flow cytometry from peripheral blood of C57BL/6 mice, trans-
ferred to culture wells coated with anti-CD3 and anti-CD28
antibodies, and supplemented with IL-2 (Fig. 14). This treat-
ment enabled TCR restimulation throughout the expansion
phase and induced vigorous proliferation that we monitored via
continuous imaging for up to 5 d (Fig. 1B and Movie S1).
Importantly, IL-2 concentrations remained at saturating levels
throughout the whole observation period (SI Appendix, Fig.
S1). Since overcrowding of microwells (20 to 100 pm in diame-
ter) and clustering of T cells can be a problem for tracking the
individual members of an expanding T cell family tree (16, 17),
we sorted single T cells into relatively large wells with a diame-
ter of 1,840 pm and imaged the complete well (Movie S2).
These “macrowells” allowed for freer migration and reduced
overlay phenomena of activated T cells. This enabled reliable
tracking of individual T cells for up to ten cell generations (Fig.
1 C and D and Movie S3). We found that activated T cells
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required, on average, 39 h to complete their first cell division
(Fig. 1E). The average interdivision time for subsequent cell
cycles amounted to 8.6 h but showed strong variation ranging
from 5 to 28 h per cell cycle (Fig. 1F). Interestingly, while some
of this variation could be attributed to differences between the
overall division speed of distinct T cell families (interfamily vari-
ance), most of it was derived from differences in division speed
between individual T cells belonging to the same family (intra-
family variance) (Fig. 1G). To explore whether these differences
arose as random fluctuations or were heritably maintained, we
first investigated correlations of division speed between close
relatives in a family tree. As previously reported (14-17), we
found that T cell siblings shared similar division speeds with
one another and with the mother cell from which they were
derived (Fig. 1 D and H). To then investigate more distant
genealogical relationships, we grouped the progeny of an indi-
vidual T cell into four main branches, emerging from the sec-
ond generation of each family tree (Fig. 17). In more than 40%
of family trees (18 of 43), the average T cell division speed dif-
fered significantly between these branches (Fig. 1J). We also
identified distinct average division speeds in branches derived
from the first generation of T cell family trees, albeit at a lower
incidence (SI Appendix, Fig. S2). These data show that slow-
versus fast-cycling T cells can segregate onto distinct branches
of the same T cell family tree. To more formally explore
whether this segregation could be accounted for by differentia-
tion of proliferating T cells into heritably distinct subsets, we
next performed computational modeling.

Computational Analysis of T Cell Family Trees Identifies a Model in
Which Early Activated T Cells Diverge into Slow- and Fast-Cycling
Subsets. To test whether differentiation of proliferating T cells
into subsets with heritably distinct division speeds indeed
accounted for the variability of interdivision times and the
resulting interior structure of T cell family trees, we used a
branching process framework (21). Since we could not monitor
the underlying differentiation processes directly, we modeled
the differentiation state of each cell as a hidden variable (i.e.,
its belonging to a slow- or fast-cycling subset). To infer the
parameters of the branching process, we then developed a
Bayesian inference framework for tree-structured data com-
prised of a Markov chain Monte Carlo sampling approach with
hidden layers (22, 23). Our inference framework takes as input
the genealogical trees obtained from live-cell imaging movies as
well as a model hypothesis describing the underlying branching
process. As output, it returns the posterior distribution of
model parameters as well as the model evidence for every
assumed model hypothesis. These model evidences and corre-
sponding Bayes factors are then used for model selection (Fig.
24 and SI Appendix, Supplementary Methods). The individual
steps of our iterative scheme are depicted in Fig. 2B (SI
Appendix, Supplementary Methods).

We assumed that the interdivision times of cells belonging to
every subset are distributed according to a log-normal distribu-
tion with a specific mean and coefficient of variation (CV). To
allow for efficient computation, we divided our dataset into
eight groups of five family trees each and for each group
inferred the posterior distribution of model parameters as well
as the model evidences. We then selected the models fitting
best to our data by calculating Bayes factors based on the
model evidences. To further assess how well the best-fitting
model represented our data, we tested whether model-based
simulations recapitulated the statistical characteristics of the
experimental data (SI Appendix, Supplementary Methods).

We first investigated three basic model topologies. In model
1, naive Tcells gave rise to one proliferating subset. In model 2,
naive T cells gave rise to one proliferating subset that could dif-
ferentiate into another subset proliferating at a distinct speed.
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Fig. 3. Diversification of division speed occurs after a homogenous burst phase and is preceded by differences in CD25 expression. (A) Live-cell imaging
with brief TCR stimulation. Blood was taken from an OT-l mouse and sorted for naive CD8"* T cells. Ten thousand cells/well were activated for 24 h with
plate-bound anti-CD3/CD28 and 25 U/mL IL-2. Cells were sorted again for activated (CD44"9") cells, and a single cell was sorted in each well of a 384-well
plate that was coated with ICAM-1 or anti-CD28 to enable attachment. The cells were imaged for 3 to 5 d. (B) Cells were stimulated as described in A.
After the brief stimulation and segregation, 10 ng/mL IL-12 was added to the medium (Middle) or not (Left). Cells were stimulated continuously with
anti-CD3/anti-CD28 as in Fig. 1 (Right). The interdivision times of all cells are plotted for the respective generations. Red lines indicate the median.
Kruskal-Wallis test; ****P < 0.0001. (C) Data points from B were allocated to the different family trees, and the CVs of the interdivision times within the
trees were calculated within each generation. The mean of these CVs is plotted as a bar graph, on average, 15.45 trees per bar (range of 4 to 27). (D) For
all three conditions, it is shown how the individual cells within a tree are distributed over the generations at different time points. The fraction of tree
per generation is calculated by dividing the number of cells in a specific generation at the given time point by the maximum number of cells potentially
present in the respective generation (number of cells in generation X/29¢"r2ton X) £or example, for a potential tree that consists after 48 h of one cell in
generation 2 and six cells in generation 3, the respective fractions of tree per generation are for generation 2, 1/22 = 0.25, and for generation 3, 6/2% =
0.75. For incompletely tracked trees (e.g., when cells died or the identity of cells is unclear), the fractions of tree per generation is corrected so that the
sum of all fractions of tree per generation sum up to 1.0 (corrected fraction of tree per generation = fraction of tree per generation/sum of all fractions
of tree per generation at the same time point). Each square represents the cells of a tree that are in the respective generation at the given time point.
The redder the box is, the higher is the fraction of the tree in the respective generation. Thus, red boxes indicate synchronized cell divisions, whereas
green boxes indicate desynchronization. Samples from the continuous stimulation setting are depicted at the Top. Below that are the short stimulation
samples. The short stimulation + IL-12 samples are depicted at the Bottom. (E) As in A, but anti-CD25-APC was added to the culture. The interdivision
times of all cells from all investigated trees were separated according to their generation, and their interdivision times were plotted against their CD25
expression; blue, brief stimulation without IL-12; red, brief stimulation with IL-12; green, continuous stimulation. Spearman r and P values are as indi-
cated; generation 1, 80 cells; generation 2, 138 cells; generation 3, 232 cells; generation 4, 313 cells; generation 5, 422 cells; generation 6, 583 cells; MFI,
mean fluorescence intensity. (F) Exemplary tree (brief stimulation + IL-12) shown as family tree (Left, loose ends with red X indicate that the cell died)
and heat tree (Right). Each box represents a cell as in the family tree; yellow, low CD25 expression; red, high CD25 expression; blank, no CD25 quantifica-
tion possible.

In model 3, naive T cells gave rise to one proliferating subset  that a proliferating early activated subset differentiates into a

that could differentiate into two others, each proliferating at
distinct speeds (Fig. 2C). As expected, model 1, which assumed
that proliferation of all activated T cells could be described by
one division speed (i.e., one distribution of division speed
learned from the data) was insufficient to account for the spe-
cific structure of T cell family trees (model evidences and Bayes
factors are shown in Fig. 2D and SI Appendix, Figs. S3-S6).
Interestingly, model 2, which relied on the differentiation of
one proliferating subset into another, was also insufficient to
account for the measured data. Only model 3, which assumed
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slowly or a quickly dividing one, provided an adequate fit to the
measured data (Fig. 2D and SI Appendix, Figs. S3-S6). Mean
interdivision times of these subsets were predicted at 8.8 h, 7.
8 h, and 12 h for the early activated, fast-dividing, and slow-
dividing subsets, respectively (Fig. 2E and SI Appendix, Fig.
S7). The learned distribution of division speed for the slow-
dividing subset was relatively wide, while those of the early
activated and fast-dividing subsets showed considerably less
variation (Fig. 2F and SI Appendix, Fig. S7). To rule out the
possibility that model 3 was the preferred model only due to its
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Fig. 4. Adoption of slower division speed coincides with expression of CMP marker CD62L. (A) Cell numbers of single-cell-derived progenies are plotted
against the absolute number of CD62L-expressing cells (Left) or the percentage of CD62L-expressing cells (Right) (determined by flow cytometry) within
the respective T cell family (continuous TCR stimulation). Spearman correlation coefficient, r = —0.7569; P < 0.0001, n = 31 (cells with %CD62L = 0%
excluded from analysis); Abs, absolute. (B) Representative Cell Trace Violet plot of the offspring of 100 OT-I cells that had been stained with Cell Trace
Violet and activated for 24 h. After a further 3 d of cell culture, the cells were stained for CD62L and analyzed by flow cytometry. (C) On the basis of the
vertical lines in the Cell Trace Violet plot in B, the number of cell divisions for each cell in the plot can be estimated. The mean CD62L expression within
each division peak is shown for all cells of the 100 cell-derived progenies. (D) Representative Cell Trace Violet plot as in B but from a single progenitor
cell (Left). Overlay of 30 single-cell Cell Trace Violet plots (Right). Each color represents a different single-cell-derived progeny. (E) CD62L expression in
division peaks as in C but from single-cell-derived progenies. Single-cell-derived progenies distributed across more than one division peak are connected
with a line (Left). Corresponding scatter plot showing the number of recovered cells for each single-cell-derived progeny distributed across more than
one division peak (Right). Single-cell-derived progenies that were present in only one division peak are not displayed in the Right plot (i.e., 13 progenies
containing 1 cell, 1 progeny with 2 cells, 2 progenies with 3 cells, and 1 progeny with 7 cells). (F) Interdivision times in different generations (Left) and
from all generations together (Right) in the “brief” stimulation condition. The two-sided Wilcoxon rank sum test is used to determine if the interdivision
times of CD62L* (green) and CD62L~ (blue) cells are significantly different; ns, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (G) Same as F
for the “brief + IL-12" stimulation condition. (H) Representative pseudocolor plot showing expression of CD25 and CD62L for population-derived
responses in the “brief” stimulation condition and definition of three subpopulations based on their CD25/CD62L profile (Left) and corresponding over-
laid histograms showing intracellular dye dilution profiles for each of these three subpopulations (Right). (/) Same as H for the “brief + IL-12" stimulation
condition. (J) Corresponding bar graph depicting the percentage of cells in each subpopulation defined in H and / under both stimulation conditions. The
unpaired t test is used to determine statistical significance between both stimulation conditions; ns, P > 0.05; **P < 0.01.

increased number of parameters and the resulting additional  parameter (SI Appendix, Supplementary Methods). The model
flexibility, we compared it to a mixture model in which, once  evidence and Bayes factors obtained by our Bayesian frame-
leaving the early activated state, cell cycle speeds are taken  work indicated that solely a correlation in mother—daughter
from two overlaid distributions without considering the topo-  division times could not explain the variability observed in the
logical restraints of the proposed differentiation process, mean-  experimental data, and indeed distinct subsets were required
ing that switching between fast and slow division activities is  (the model evidences and Bayes factors are shown in S/
possible within a given branch (SI Appendix, Supplementary  Appendix, Figs. S3-S6). Thus, the topological diversification of
Methods). The resulting mixture model could not explain the cells into distinct subsets and the maintenance of distinct divi-
experimental data as well as model 3, which accounts for the  sion speeds within every subset, as considered in model 3, were
topological relationships and heritable features within a T cell  crucial for explaining the data. Using the simulation analysis
family tree. Additionally, we opted to test whether the varia- mentioned earlier, we found that the best-fit “early activated to
tions in division times could be explained by a correlation  slow-dividing or fast-dividing” model (model 3), although ade-
between the division times of mother and daughter cells, with-  quately reproducing the overall distribution of interdivision
out any underlying topological subsets. Therefore, we consid-  times (Fig. 2G and SI Appendix, Fig. S8), underestimated the
ered the topology of model 1 and modeled the division time of  contribution of interfamily differences to the overall variation
every cell dependent on the division time of its mother cell, of T cell division speed (Fig. 2H and SI Appendix, Fig. S9). It
with the correlation coefficient being an additional model further overestimated the percentage of trees with branches
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showing significantly distinct division speeds (Fig. 2/ and SI
Appendix, Fig. S10). This indicated that division speed of acti-
vated T cells may not only depend on their current differentia-
tion state (early activated, slow-dividing, or fast-dividing) but
also on an ancestral imprinting received by the starting cell and
passed down to its descendants. To account for this clonal
imprinting of division speed, we allowed for a log-normally dis-
tributed factor in the model formalism that could modify all
subset-specific proliferation rates (for subsets early activated,
slow-dividing, and fast-dividing) of a given T cell family by a
certain value (SI Appendix, Supplementary Methods). Fitting this
extended model (model 4; Fig. 2J) to the data, we quantified
the variation of subset-specific mean interdivision times
between different families (Fig. 2K and SI Appendix, Fig. S11)
and found that this model was best supported by the data. A
difference of seven in the average log;o model evidences indi-
cated that model 4 was significantly better than model 3 in
explaining the data (Fig. 2L). Furthermore, the corresponding
Bayes factors showed that in six of eight data groups, there was
decisive evidence for choosing model 4 over model 3 (log;o
Bayes factors > 2), with the remaining two data groups provid-
ing strong evidence for model 4 (log;y Bayes factors > 1) (S
Appendix, Figs. S3-S5 and S12). Importantly, despite the addi-
tional variation introduced by this factor, the distinct division
speeds of the early activated, fast-dividing, and slow-dividing
subsets were maintained according to the best-fit parameters of
model 4 (Fig. 2 M and N and SI Appendix, Fig. S13). We noted
that the overall distribution of interdivision times in simulated
data based on model 4 (Fig. 20 and SI Appendix, Fig. S14) was
similar to the results of model 3 (Fig. 2G and SI Appendix, Fig.
S8), and this statistical feature alone would not have been
enough to distinguish between the two models. Instead, more
elaborate structural features of the T cell family trees could
demonstrate differences between the two models. Indeed,
model 4 now correctly captured both intra- and interfamily var-
iability (Fig. 2P and SI Appendix, Fig. S15) and generated a
realistic fraction of T cell family trees whose second-generation
branches proliferated at distinct average speeds (Fig. 20 and SI
Appendix, Fig. S16). The inferred model parameters and model
evidences for all models and data groups are depicted in S/
Appendix, Figs. S7, S13, and S17-S20. Interestingly, when tak-
ing into account initial variation of T cell recruitment measured
in vivo (3), simulations based on the topology and parameters
identified for model 4 in vitro also replicated the variation of T
cell family sizes previously found in vivo (2) (SI Appendix, Fig.
S21 and Supplementary Methods).

Taken together, these computational analyses suggested that
T cell clonal expansion is not a homogenous process pro-
grammed exclusively upon T cell priming. Instead, the emer-
gence of multiple T cell subsets proliferating at distinct speeds
appeared necessary to correctly capture the evolution of an
expanding T cell family tree.

Diversification of Division Speed Occurs after a Homogenous Burst
Phase and Is Preceded by Differences in CD25 Expression. The
experimental conditions, under which the above-mentioned
results were gathered, allowed both the starting cell as well as
its descendants to receive TCR stimulation. This raised the
question of whether the emergence of slow- and fast-dividing
branches within the same T cell family tree was the conse-
quence of TCR stimuli incidentally accumulating in one branch
but not the other. Thus, we next asked whether distinct division
speeds would also emerge when TCR stimuli are restricted to
the starting cell. To achieve this, we activated T cells in bulk via
plate-bound anti-CD3 and anti-CD28 antibodies in the pres-
ence of IL-2 and IL-12 and, 24 h later, sorted single undivided
T cells into wells containing no further TCR stimuli. To sustain
proliferation for an extended period of time, wells, were
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supplemented with saturating doses of IL-2 only (“brief”) or
IL-2 and IL-12 (“brief + IL-12”). Since IL-12 induces the
expression of CD25, we were expecting a synergistic effect of
both cytokines jointly added. As before, we tracked T cell pro-
liferation via continuous imaging for up to 5 d (Fig. 34). Upon
brief TCR stimulation, first- and second-generation T cells
divided at the same average speed as those cultured in the sus-
tained presence of TCR stimuli (“sustained”). After this initial
burst phase, the average division speed of briefly stimulated T
cells significantly slowed down, albeit less in the group supple-
mented with IL-2 and IL-12 (Fig. 3 B and C). Importantly, the
variation in division speed of both the “brief” and “brief +
IL-12” groups matched or even exceeded that of T cells receiv-
ing sustained TCR stimuli (Fig. 3 B and C). If this variation
arose due to random fluctuations in division speed, one would
expect that, over time, short and long interdivision times cancel
each other out, and all members of a growing T cell family
occupy the same or adjacent generations. However, we found
that upon acquiring an increasing number of divisions, the gen-
erational range between the most- and least-divided members
of a T cell family constantly widened (increasing length of col-
ored rows from 36 to 96 h), arguing in favor of distinct family
branches heritably maintaining slower and faster cell cycle
activity (Fig. 3D). Our Bayesian model inference on the “brief”
and “brief + IL-12” groups showed a tendency that models 3
and 4 are generally more adequate than models 1 and 2 in
explaining the data (SI Appendix, Fig. S22). However, decisive
model selection on these groups was not possible (S Appendix,
Fig. S23), likely because fewer divisions in these stimulation
conditions than in the continuous stimulation setting do not
allow for observation of diversification events into slow- and
fast-dividing subsets (that are characteristics of models 3 and 4)
often enough. To more closely investigate the mechanistic ori-
gin of these distinct division speeds, we measured the expres-
sion of CD25 during continuous imaging. We achieved this by
addition of very low concentrations of fluorophore-conjugated
anti-CD25 antibody, as described previously (20, 24). We found
that addition of very low antibody concentrations had negligible
effects on proliferative activity of activated T cells (SI Appendix,
Fig. S24) while generating robust and reliable fluorescent sig-
nals (Movie S4). Interestingly, T cells receiving brief versus sus-
tained TCR stimulation showed distinct levels of CD25 surface
expression already within the first and second generation but
still proliferated at the same speed. Only from the fourth gener-
ation onward did lower or higher CD25 expression levels begin
to correlate with lower or higher T cell division speed (Fig. 3E).
In fact, closer inspection of individual T cell family trees showed
that changes in CD25 expression levels can be allocated to spe-
cific branches and can precede changes in division speed that
develop across multiple generations (Fig. 3F and SI Appendix,
Fig. S25). Taken together, these data indicate that during the
first two generations of T cell proliferation, division speed is
largely independent of sustained TCR stimuli, IL-12 availabil-
ity, or CD25 expression levels. Thereafter, however, distinct lev-
els of CD25 surface expression begin to correlate with distinct
division speeds and are heritably maintained within distinct
branches of an expanding family tree.

Adoption of Slower Division Speed Coincides with Expression of
CMP Marker CD62L. Finally, we aimed to investigate whether
these linked changes in IL-2 receptivity and division speed also
correlated with memory versus effector T cell differentiation.
Since CD62L" CMPs have been identified as early as day 4
after immunization in vivo and have been shown to divide
slower than their CD62L"~ counterparts (8), we decided to
investigate expression of this memory marker in our experimen-
tal system. First, we analyzed single-cell-derived T cell
responses via flow cytometry at day 5 after in vitro activation.
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In line with previous observations made in vivo, we found that
T cell family size did not significantly correlate with the absolute
number of CD62L" T cells but inversely correlated with the per-
centage of CD62L" T cells found per family (Fig. 44). More-
over, when tracking T cell responses derived from populations
of 100 T cells via intracellular dye dilution, we found that those
T cells that had undertaken more divisions expressed lower lev-
els of CD62L than their less-divided counterparts (Fig. 4 B and
(). Vice versa, reduction of accumulated divisions due to short-
ened initial TCR signaling reduced the fraction of CD62L" cells
(SI Appendix, Fig. S26). When tracking single-cell-derived T
cell responses in the same manner, we found that T cell families
stretched out across multiple generations and that CD62L"
cells accumulated in the more strongly divided offspring of the
same starting cell (Fig. 4 D and E). While these observations
could indicate that CD62L" T cells divide faster, they could also
mean that differentiation into CD62L"™ T cells happens only
after a certain generation is reached. To resolve this question,
we again turned to continuous imaging. Immediately after T
cell activation, CD62L is enzymatically removed from the sur-
face of activated T cells (25). In line with this shedding of
CD62L, we found virtually no surface expression of this mole-
cule immediately after T cell activation. However, CD62L
surface expression reappeared in subsequent generations and
coincided with a slower division speed relative to CD62L™ T
cells found in the same generation (Fig. 4F). Importantly, divi-
sion speed of CD62L" T cells remained relatively fixed through-
out generations, arguing that the gradual slowdown of T cell
families that we had observed from generations 3 to 6 resulted
from an increasing number of T cells switching into the
CD62L" state. The same differentiation-associated reduction of
cell cycle speed occurred in the presence of IL-12, albeit with
CD62L* T cells maintaining substantially faster division activity
than in the absence of this inflammatory cytokine (Fig. 4G),
which may be due to IL-12 driving increased CD25 expression
among CD62L* T cells (Fig. 4 H-J). Finally, we found that
incorporating the measured differences between division speed
of CD62L* and CD62L" T cells into our Bayesian modeling
scheme described the data as well but with fewer parameters
than the initial model 3 (SI Appendix, Fig. S27). This provides
further evidence that CD62L is indeed an indicator of cell state
as it relates to division speed.

Discussion

It is a hallmark of adaptive immunology that single antigen-
specific T cells can generate progeny that diversifies into both
terminally differentiated effector cells and precursors of long-
lived memory cells (26). This fate diversification occurs in par-
allel to rapid T cell proliferation, and computational modeling
of single-cell-derived T cell responses has suggested that mem-
ory precursors and short-lived effector T cells are set apart by
fundamentally distinct cell cycle speeds (2). Recently, we have
shown that 4 d after initial T cell priming, memory precursors
are characterized by a slower division speed than their effector
counterparts in vivo (8). Early clonal expansion, however, was
found in vitro to occur in a highly synchronized manner
(15-18). Here, we set out to close the gap between these early
in vitro observations and the later diversification of division
speed and T cell fate observed in vivo. Therefore, we utilized
continuous live-cell imaging and tracked the division speed, dif-
ferentiation status, and genealogical connections of all descend-
ants derived from a single naive T cell for up to ten divisions of
activation-induced proliferation in vitro. We find that initial T
cell proliferation indeed occurs in a burst-like manner, with
rapid execution of T cell divisions being largely independent of
further TCR and cytokine stimuli received beyond priming. At
two to three cell divisions, the average duration of this burst is
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similar to that previously described for in vitro settings in which
stimuli were stringently restricted to the starting cell (18, 27,
28). Upon restriction of subsequent stimuli, including blockade
of endogenous IL-2, T cell proliferation abruptly subsides after
completion of this burst (18, 27, 28). This homogenous pro-
gramming of proliferation activity, termed “division destiny”,
has been attributed to a division counter (18, 27) or division
timer (28) set in the starting cell and transmitted to all of its
progeny. Here, we deliberately chose culture conditions that
maintained T cell proliferation beyond the initial burst phase
and closely monitored the evolution of cell cycle speed within
the resulting family trees. Interestingly, we found evidence for a
heredity of cell cycle speed that was in part programmed in the
starting cell but also critically required the emergence of dis-
tinct T cell subsets proliferating at distinct speeds. One of these,
the early activated subset, was of transient nature, and its life-
time coincided with the duration of the initial proliferative
burst. Thereafter, slow- and fast-cycling subsets emerged that
were characterized by distinct CD25 and CD62L expression
levels, two markers that have been found to characterize the
early subdivision of long-lived CMPs (CD62L"CD257) and
non-CMPs (CD62L"CD25%) in vivo (29, 30). In keeping with a
concept of asymmetric cell divisions (31), the segregation of
these subsets has been proposed to occur as early as the first
cell division. While our in vitro data cannot exclude such an
immediate segregation, they rather support a developmental
model in which lineage segregation begins somewhat later after
a burst-like expansion of two to three cell divisions. Thereafter,
we find that individual branches within an expanding T cell fam-
ily tree can maintain slower or faster cell cycle speeds that coin-
cide with differences in expression of CD25 and CDG62L.
Programmed division destiny and subset-specific division speed
may thus act in concert, with the prior dictating cellular behav-
ior throughout the first divisions following TCR engagement
and the latter emerging after this phase and coinciding with lin-
eage segregation of CMPs and non-CMPs. Of note, expression
of CD62L and CD25 is not mutually exclusive. In fact, CD25
coexpression identifies CD62L* cells that show intermediate
division activity between slow-dividing CD62L*CD25™ and fast-
dividing CD62L"CD25" cells. However, rather than constitut-
ing a stable subset, we would currently speculate that these cells
occupy an activation state within the CD62L* CMP lineage
that is transiently induced by IL-12 treatment. Taken together,
our study puts renewed focus on the intertwined nature of cell
cycle activity and T cell differentiation (32, 33). While previ-
ously, this relation has been mainly explored with respect to the
accumulated number of divisions, we now highlight the actual
speed of cell division as a major heritable property that appears
to be regulated in parallel to key lineage decisions of activated
T cells. From a methodological point of view, we provide a com-
putational inference framework optimally suited for analyzing
tree-structured data obtained by live-cell imaging. Due to the
complexity of such tree-structured data, previous studies have
mostly utilized summary statistics from live-cell imaging experi-
ments to infer underlying kinetics (15, 34, 35). Our framework,
however, exploits full structural information from this data
type. As opposed to few other model-based analyses of lineage
trees, where phenotypic measurements were assumed to inform
about cellular differentiation (36-39), our framework does not
rely on phenotypic observations and instead links division speed
to underlying hidden states. Unlike similar studies (38), an
important feature of our computational modeling is the simul-
taneous analysis of complete genealogical trees without
partitioning into smaller “subtrees”; this ensures that no long-
ranged structural information is lost. Our inference framework
allows for investigation of the complex kinetic structure of
expanding T cell family trees and enables hypothesis testing as
to the hereditary nature of cell cycle activity and the topological
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organization of T cell differentiation. It will likely be of similar
utility in deciphering the interdependence of differentiation
and division activity in other rapidly proliferating cell types,
such as hematopoietic stem and progenitor cells or B cells
undergoing activation-induced class switch recombination and
memory development. Moreover, it will be exciting to investi-
gate whether the developmental framework proposed here will
hold true in vivo and to more closely examine how T cell differ-
entiation and cell cycle speed are connected on the molecular
level. Subtle fluctuations in division activity may in fact serve as
the initial spark, triggering the diversification of cellular pheno-
types in the context of T cell immunology and beyond (40).

Materials and Methods

Mice. C57BL/6 wild-type mice were purchased from Envigo. OT-I Rag1~~
matrix donor mice expressing combinations of the congenic markers CD45.1/2
and CD90.1/2 were bred under specific pathogen-free conditions at the mouse
facility of the Institute for Medical Microbiology, Immunology and Hygiene,
Technical University of Munich, Munich, Germany. Animal care and proce-
dures were in accordance with institutional protocols as approved by the rele-
vant local authorities.

Cell Sorting. Cells were isolated from peripheral blood or spleens of C57BL/6
or OT-l Rag1™~ matrix donor mice and sorted for a naive phenotype
(CD8*CD44'°") on a MoFlo Legacy or MoFlo XDP cell sorter. For experiments
with sustained anti-CD3/CD28 stimulation, a single naive CD8" T cell was
sorted per well of an anti-CD3/CD28—coated (10 pg/mL at 4 °C overnight) plate
(384 Well Small Volume LoBase med. Binding pClear microplate) containing
25 pL of Roswell Park Memorial Institute (RPMI) cell culture medium, penicil-
lin/streptomycin (Pen/Strep), 10% heat-inactivated fetal calf serum (FCS), and
25 U/mL recombinant human IL-2. For experiments with limited anti-CD3/
CD28 stimulation, 10,000 naive CD8*CD44'°" T cells were sorted per well of an
anti-CD3/CD28-coated (10 pg/mL at 4 °C overnight) plate (384 Well med. Bind-
ing pClear microplate) containing 100 pL of RPMI cell culture medium, Pen/
Strep, 10% heat-inactivated FCS, 25 U/mL recombinant human IL-2, and
10 ng/mL murine IL-12. After 24 h at 37 °C, 5% CO,, and 95% H,0, the cells
were pooled and sorted again. This time, cells were sorted for activated
(CD8*CDA44M9") T cells, and a single activated cell was sorted per well of an
anti-CD28-coated 384-well plate (384 Well Small Volume LoBase med.
binding pClear microplate) containing 25 pL of RPMI cell culture medium,
Pen/Strep, 10% heat-inactivated FCS, and 25 U/mL recombinant human
IL-2 with or without 10 ng/mL murine IL-12.

Continuous Single-Cell Imaging. Live-cell imaging was performed by the ETH
Zurich, as described by Eilken et al. (20). Briefly, the microplates were imaged
using a Nikon-Ti Eclipse with a linear encoded motorized stage, Orca Flash 4.0
V2 (Hamamatsu), and Spectra X fluorescent light source (Lumencor) and a 10x
chrome free infinity (CFl) Plan Apochromat A objective (numerical aperture of
0.45). White light emitted by Spectra X was collimated and used as a transmit-
ted light for brightfield illumination via a custom-made motorized mirror con-
trolled by Arduino UNO Rev3 (Arduino), and images were taken every 1 to
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3 min. For experiments in which the expression of a surface antigen was
measured, the respective dye-conjugated antibody was added at a very low
concentration to the culture medium (e.g., 1:20,000 for anti-CD25-
allophycocyanin (APC), corresponding to 10 ng/mL), and, in addition to the
brightfield images, the respective fluorescent channel was acquired approxi-
mately once every 45 min using filter sets for phycoerythrin (PE) (546/10;
560LP; 577/25) and APC (620/60; 660LP; 700/75; both from AHF analysentech-
nik AG). The cells were observed for 3to 5 d at 37°C, 5% CO,, and 5% O,. All
images were acquired as a 16-bit lossless .png and linearly transformed using
optimal black

Cell Tracking. Generation of T cell family trees and heat trees was performed
by manually tracking the cells using “The Tracking Tool” and the semiauto-
matic fluorescence intensity measurement software “qTFy” (19). Dead cells
were identified by protracted motionlessness and apoptotic blebbing and des-
ignated with a red cross in the respective family trees. Failure of continuous
tracking of individual T cells, due to overlay phenomena between T cells or
escape of T cells into the imaging shadow of the culture well’s rim, is desig-
nated by a blind end of the respective branch of the family tree that termi-
nates before the end of the imaging period.

Cell Proliferation Dye Staining and Flow Cytometry. Cell proliferation dye
staining was performed using the CellTrace Violet Cell Proliferation kit by
Thermo Fisher Scientific, according to the manufacturer’s instructions. Cells
were sorted, activated for 24 h, and sorted again, as described in Cell Sorting.
After 3 d, the cells were stained with anti-CD62L—fluorescein isothiocyanate
(FITC) (MEL-14) and acquired using a Cytoflex S cytometer.

Enzyme-Linked Immunosorbent Assay (ELISA). The IL-2 ELISA was performed
using the IL-2 Human ELISA kit by Thermo Fisher Scientific, according to the
manufacturer’s instructions.

Antibodies and Cytokines. Anti-murine CD3 (145-2C11), anti-murine CD28
(37.51), and anti-murine CD25-APC (PC61) were purchased from BD Bioscien-
ces, and anti-murine CD8 (53.6.7), anti-murine CD44 (IM7), and anti-murine
CD62L-FITC (MEL-14) were purchased from BioLegend. Recombinant murine
IL-12 was purchased from Peprotech. Recombinant human IL-2 was purchased
from Thermo Fisher Scientific.

Statistical Analysis. All non-in silico experiments were analyzed using Prism 7,
8, and 9 (GraphPad software). P values were assessed using a two-tailed
unpaired Student’s t test, one-way analysis of variance (ANOVA), Spearman
nonparametric test, or Pearson test, as specified in the figure legends.

Data Availability. All study data are included in the article and/or supporting
information or will be made available upon request.
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