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ABSTRACT: Hydrogen abstraction from ethanol by atomic hydrogen in aqueous solution is
studied using two theoretical approaches: the multipath variational transition state theory (MP-
VTST) and a path-integral formalism in combination with free-energy perturbation and
umbrella sampling (PI-FEP/UM). The performance of the models is compared to experimental
values of H kinetic isotope effects (KIE). Solvation models used in this study ranged from
purely implicit, via mixed−microsolvation treated quantum mechanically via the density
functional theory (DFT) to fully explicit representation of the solvent, which was incorporated
using a combined quantum mechanical-molecular mechanical (QM/MM) potential. The
effects of the transition state conformation and the position of microsolvating water molecules
interacting with the solute on the KIE are discussed. The KIEs are in good agreement with
experiment when MP-VTST is used together with a model that includes microsolvation of the
polar part of ethanol by five or six water molecules, emphasizing the importance of explicit
solvation in KIE calculations. Both, MP-VTST and PI-FEP/UM enable detailed character-
ization of nuclear quantum effects accompanying the hydrogen atom transfer reaction in
aqueous solution.

1. INTRODUCTION

Hydrogen abstraction from ethanol by atomic hydrogen is a
well-known reaction which is one of the most important steps
in ethanol decomposition.1−5 This type of hydrogen
abstraction reaction is used as competition kinetic standards
to determine relative reaction rate constants for different
solutes where hydrogen is not released during the reactions.2−5

Depending on temperature, this reaction can proceed via three
different channels arising from the hydrogen atom abstracted
from different positions within the ethanol molecule (methyl
or methylene or the hydroxyl group).6,7 However, at room
temperature the reaction involving the abstraction from the
closest carbon atom to the hydroxyl group (α-carbon) is much
faster than the H abstraction from the hydroxyl or methyl
groups. Therefore, only this channel needs to be considered for
the reaction occurring in aqueous solution (reaction R1).

CH CH OH H CH CHOH H3 2 3 2+ ̇ → ̇ + (R1)

Ethanol presents three distinguishable minima with the methyl
group in various positions with respect to the hydrogen atom
of the hydroxyl group. In two of the structures the methyl
group is in the gauche configuration (g+ and g−), whereas in
the other one it is in the alternate or trans (t) configuration.
These three structures interconvert easily by internal rotations

about the C−O bond.8 One would expect also three transition
state structures, but there are only two, with the methyl group
in g (g+, or g−), depending on the hydrogen abstracted and in
t configurations with respect to the OH group (Figure 1).
Since the hydrogen abstraction generates an asymmetric
carbon at the transition state in the α position, there are two
additional transition states when the hydrogen is abstracted
from the other hydrogen atom of the α-carbon. The two
transition states resulting from the H abstraction of one of the
hydrogen atoms are configurational enantiomers of the
transition states obtained from the abstraction of the other
hydrogen. Therefore, the total rate constant for the process is
twice the one obtained from the one that only considers the
abstraction of one hydrogen atom (Figure 1).
In chemical and biological reactions, kinetic isotope effects

(KIEs) act as an important tool for explaining reaction
mechanisms.9−15 Comparison of KIEs originating from
measurements with those determined computationally plays
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a crucial role in understanding, validating, or rejecting
mechanisms of chemical or biological reactions.16−19 KIEs
are defined as the ratio of rate constants for two reactions
which only differ in their isotopic composition. Three different
isotopic substitutions along with the contribution of each
conformer to the total rate constant and accompanying
isotopic fractionation were studied (reactions R2, R3, and R4).

CD CD OH H CD CDOH HD3 2 3+ ̇ → ̇ + (R2)

CH CH OD D CH CHOD DH3 2 3+ ̇ → ̇ + (R3)

CD CD OD D CD CDOD D3 2 3 2+ ̇ → ̇ + (R4)

Among the existing theories for calculating biomolecular rates,
the transition state theory (TST) is one of the most widely
used.9,20,21 The main advantage of the TST over other theories
is that it is easy to use and most suitable for analogizing the
trends of a chemical reaction in terms of quantities which can
be easily interpreted.20,21 In the past few decades, there has
been extensive research going on for exploring the parameters
that control the chemical reaction rates.1,22−25 Hydrogen
abstraction reaction is a subject of intense theoretical research
focused on seeking the most adequate treatment of quantum
effects which constitute the origin of KIEs and are necessary to
describe the behavior of light elements like hydrogen and its
isotopes. One of the theoretical approaches is the variational
transition state theory (VTST)22,24,26,27 and its recent
developments, such as, e.g., multipath VTST (MP-
VTST),8,28−30 which allows for taking care of reactions with
multiple conformers. This methodology also enables the
incorporation of zero-point energy and multidimensional
tunneling variational effects as well as multiple conformations
in the determination of thermal rate constants. All these
corrections can be used to make more accurate predictions of
KIEs.1,8 It is well-known that zero-point energy and nuclear
quantum mechanical effects are essential when studying H
transfer reactions.32,33

When dealing with solvent effects it is more common to
model them using a continuum solvent methodology, so
explicit solvation is typically not investigated within VTST
calculations1,8,31 (however, the so-called ensemble averaged

VTST with multidimensional tunneling, EA-VTST/MT, which
allows for incorporation of explicit environment, was regularly
used a few years ago to study numerous enzymatic
reactions32−43). This implicit solvent assumption may lead to
severe simplification, in particular in cases where specific
solute−solvent interactions play an important role. Free radical
kinetics in solution can be a good example of such cases as
even more sophisticated treatment of solvation (by including
equilibrium and nonequilibrium effects) is not always sufficient
for reproducing all kinetic isotope effects measured on a
studied reaction.44,45

Among available methods which conveniently allow for the
presence of explicit solvent molecules in bulk we consider
Feynman path integrals (PI). In particular, using a combined
quantum mechanical and molecular mechanical (QM/MM)
potential in conjunction with PI is a powerful tool for
determining KIEs.46,47 The integrated discretized PI method
and free-energy perturbation/umbrella sampling (PI-FEP/
UM) approach in molecular dynamics simulations (MD)
have been found useful for a variety of applications including H
transfer reaction in solution and biological systems.48−52 It is
important to notice that both chosen theories, MP-VTST and
PI-FEP/UM, have their limitations. For instance, PI-FEP/UM
calculations provide total nuclear quantum effect (NQE) but
do not easily allow dissection of tunneling contributions, while
MP-VTST calculations naturally provide tunneling contribu-
tions. Within the PI-FEP calculations it is straightforward to
take into account a large number of solvent molecules (treated
classically), while in MP-VTST specific solvent molecules must
be manually placed around the solute, possibly within a
continuum solvent medium. This makes both theories
complementary and allows this approach to provide a deeper
description of the reaction under study.
In this work, we used both VTST and PI-FEP to predict

hydrogen KIEs on H atom abstraction from an ethanol
molecule in aqueous solution. A very recent computational
study on this reaction by some of us, using a continuum model
of solvation,8 provided results very close to the experimental
values in the case of R2 substitution. However, in the case of
R3, no isotope effect as opposed to an inverse kinetic isotope
effect was predicted, and R4 substitution resulted in values
slightly lower than experimental ones. Hence, these earlier
results leave room for improvement,7,8 for instance, by
including explicit solvation effects.
The goal of this work is to evaluate and understand the

influence of explicit solvation in the calculation of KIEs in the
H-abstraction in ethanol. Using MP-VTST we investigate the
number of specific microsolvating water molecules required,
within a continuum environment, to reach converged KIE
values. These values are compared with those obtained from
PI-FEP/UM simulations, which include fully explicit solvent
treatment. Such a study using VTST and PI allows a careful
comparison of two widely used complementary theories and
the role of solvation.

2. THEORY

Path-Integral Free Energy Perturbation/Umbrella
Sampling (PI-FEP/UM). In a system where the entire
environment is treated explicitly the rate constant of reaction
can be determined using the path-integral quantum transition
state theory (QTST)53,54

Figure 1. Ethanol (top panel) and transition state (bottom panel)
conformations. H[1] and H[2] indicate the hydrogen atom being
abstracted and the abstracting hydrogen atom, respectively.
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where h is Planck’s constant, β = 1/kBT where kB is
Boltzmann’s constant, and T is the temperature. ΔFqm‡ is the
free energy of activation which can be obtained from the
quantum mechanical potential of mean force (PMF, wqm(z)̅)

F w z w z( ) ( )qm qm qm
RΔ = ̅ − ̅

‡ ‡
(2)

where z ̅ is the centroid reaction coordinate, and z ̅‡ specifies its
value at which wqm(z)̅ has its maximum value, and z ̅R denotes
the coordinate at the reactant state. Feynman path-integral
simulations allow for determining wqm(z)̅, on the one hand,
and incorporating nuclear quantum effects, on the other
hand.55 Many practical methods have been developed over the
years to determine the quantum mechanical reaction rate
constant. Those procedures include centroid molecular
dynamics56 or ring-polymer molecular dynamics.57 The
methodology that is used in this work is an alternative
approach within which the quantum mechanical PMF
(wqm(z)̅) is determined through a double averaging procedure
and is called quantized classical path (QCP).58,59,72−75

Using this methodology KIE can be calculated as the ratio of
two rate constants58
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where L and H denote light and heavy isotopologues.
According to this equation, KIE is predicted based on the
PMFs computed separately for each isotope. However, this
approach has been shown to provide large statistical
fluctuations leading to inaccurate results. By expressing KIE
in terms of the partial partition functions, the Qqm ratio, which
can be determined directly through the free energy
perturbation (FEP) theory by perturbing the mass from one
isotope into the other, one can obtain KIE from a single path-
integral simulation:58
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Since no modifications to the original methodology are
provided in this work, the more interested reader is referred
to the original papers as well as two recent articles in which the
entire approach has been reviewed.46,60 The FEP theory was
also applied by others,61 for instance in the SC-FEP scheme by
Markland and Ceriotti.62 Approaches based on FEP are
successors of related alchemical transformation - thermody-
namic integration (TI).63,64 TI has problems of its own like
integration error coming from the fact that the mass is
discretized. One of the very recent approaches allowing to
either reduce or remove that error was introduced by
Karandashev and Vanicek65 to accelerate the calculation of
equilibrium isotope effects.
Multi-Path Variational Transition State Theory (MP-

VTST). The canonical version (CVT)66 of MP-VTST
including small-curvature (SCT) multidimensional corrections
for tunneling67 can be written as

k T T k T( ) ( ) ( )MP CVT/SCT MP CVT/SCT MS TSTγ= ⟨ ⟩‐ ‐ ‐
(5)

where kMS‑TST(T) is the multistructural transition state theory
rate constant, which is given by

k T B T
Q T
Q T

( ) ( )
( )
( )

MS TST
MS HO,

Et
MS HO=‐

‐ ‡

‐
(6)

where QMS‑HO,‡(T) and QEt
MS‑HO(T) are the multistructural

rovibrational rigid-rotor harmonic-oscillator partition functions
that incorporate all transition state and ethanol minima
(conformations), respectively; B(T) includes the electronic
and translational partition functions for reactants and the
transition state, respectively. Notice that for the cases in which
ethanol is microsolvated the reactants and transition state
partition functions include also the surrounding water
molecules. In the case of ethanol, microsolvation affects the
stability of the three minima of ethanol, because the
distribution of the water molecules makes the g+ and g−
configurations slightly unequal.
The factor ⟨γMP‑CVT/SCT(T)⟩ is an average of the canonical

variational (Γ) and small-curvature tunneling (κ) corrections
calculated with information obtained from each of the reaction
paths that start at each of the transition state conformers. For a
reaction with n‡ transition states, which are conformational
isomers

T
T Q T

Q T
( )

( ) ( )

( )
i
n

i iMP CVT/SCT 1
CVT/SCT RR HO,

MS HO,γ
γ

⟨ ⟩ =
∑− =

‐ ‡

‐ ‡

‡

(7)

where Qi
RR‑HO,‡ is the rigid-rotor harmonic-oscillator partition

function of the i-th transition state structure, Qrv
MS‑HO,‡(T) is

the multistructural rovibrational partition function, and

T T T( ) ( ) ( )i i i
CVT/SCT CVT CVT/SCTγ κ= Γ (8)

The rate constant for the passage through a given transition
state is

k T T k T T k T

T T k T

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i i i i i

i i i

CVT/SCT CVT/SCT TST CVT/SCT CVT

CVT/SCT CVT TST

γ κ

κ

= =

= Γ (9)

The variational Γi
CVT(T) coefficient of eq 8 accounts for

recrossing effects. It is given by the ratio between the canonical
variational theory (CVT),66 ki

CVT(T), and the transition state
theory (TST), ki

TST(T), thermal rate constants

T
k T
k T

( )
( )
( )i

i

i

CVT
CVT

TSTΓ =
(10)

The tunneling contribution κi
CVT/SCT(T) was calculated using

the small-curvature approximation.67

Notice that ki
CVT/SCT(T), ki

CVT(T), and ki
TST(T) include not

only the partition function of the i-th transition state but also
the MS-HO partition function of reactants. This is because the
barrier heights for interconversion between conformers are
much lower than the barrier height of reaction. Thus, the sum
over ki

CVT/SCT(T) is the MP-CVT/SCT rate constant, whereas
the sum over ki

TST(T) leads to the MS-TST rate constant.
The total KIE, η̃, is given as the ratio between the MP-CVT/

SCT rate constants for the root (H) and the isotopically
substituted species (D), i.e., by

k
k

H
MP CVT/SCT

D
MP CVT/SCTη ̃ =

‐

‐
(11)
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where we have dropped the temperature dependence. The
total KIE can be expressed as a sum of individual contributions
of each transition state conformer:

i

n

i
1

∑η η̃ = ̃
=

‡

(12)

where

Pi i i,Dη η̃ = (13)

can be considered a weighted contribution of the i-th transition
state to the KIE. The weighting factor is given by

P
Q

Q
i
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i
n

i i

,D
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,D
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(14)

and ηi is the individual transition state contribution to the KIE,
which is given by the ratio of the individual CVT/SCT thermal
rate constants

k

ki
i

i

,H
CVT/SCT

,D
CVT/SCTη =

(15)

The individual transition state KIEs can be decomposed into
the translational, ηtrans, rovibrational, ηrv,i

‡ , and variational and
tunneling contributions, ηvtun,i:

i i itrans rv, vtun,η η η η= ‡
(16)

The individual rovibrational contribution includes the MS-HO
partition function of reactants

Q

Q

Q
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i
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whereas the variational and tunneling contributions are simply
given by

i
i

i
vtun,

,H
CVT/SCT

,D
CVT/SCTη

γ

γ
=

(18)

Anharmonic effects due to the hindered rotors can be also
included, but we have encountered from a previous work8 that
in this case its contribution to the KIE is negligible.

3. COMPUTATIONAL DETAILS
PI-FEP/UM Simulations. In the case of PI-FEP/UM

simulations, the QM atoms (ethanol molecule and hydrogen
atom) were modeled using the AM1 Hamiltonian68 and the
Minnesota DFT MPWB1K functional69 along with the 6-
31+G(d,p)70−74 split valence-ζ basis set. This functional has
been recommended for thermochemistry and thermochemical
kinetics75,76 and has been shown to perform well for hydrogen
transfer reactions.28,77,78 However, in order to justify its use for
the current system, we have performed some tests with other
methods, and the results are presented in the SI. Among tested
electronic structure methods two functionals MPWB1K and
M05-2X76 resulted in the closest agreement with the electronic
barrier of 7.6 kcal mol−1 derived from the experimental
activation energies and the ab initio calculations reported by
Lossack et al.7 (Table S1). Furthermore, the MPWB1K
functional provided KIEs for the bare model, using the MP-
CVT/SCT calculation described in detail below, that better

reproduced the experimental magnitudes (Table S2). The
solvent region was represented explicitly by 1080 TIP3P79

water molecules. Stochastic boundary conditions (SBC)80

were employed (Figure 2). The solvated system was heated up

to 298 K for 20 ps and then equilibrated for 30 ps. The
reaction coordinate (z) was defined as the difference between
the C−H1 bond cleavage and the H1−H2 bond formation.
Such a simple choice of the reaction coordinate has been
shown to be equally effective in describing the reaction where
hydrogen species is transferred between two heavy atom
centers as other more sophisticated reaction coordinate
definitions.81,82 In order to obtain the Potential of Mean
Force (PMF), umbrella sampling83,84 simulations were used. A
total of 17 regions (windows) were needed to cover the entire
reaction range of interest. Each individual window was
equilibrated for 100 ps, and data collection was performed
for subsequent 200 ps. The trajectories resulting from umbrella
sampling simulations were later introduced to path-integral
calculations leading to direct evaluation of the path-integral
quantities using the QCP approach. Isotopic substitution was
introduced by a free energy perturbation method,85 and KIEs
were calculated using eq 4.
In order to perform PI calculations, the three key atoms

(namely the C, H1, and H2 atoms) were quantized with various
numbers of beads (P = 8, 16, 32, 64, and 128). Around 10 000
classical configurations were used to perform path-integral
simulations for which each isotope was combined with 10
path-integral steps per classical step. To estimate the quantum
contributions, an enhanced form of QCP86−88 known as the
bisection sampling (BQCP)89,90 and staging sampling methods
(SQCP)91−93 were used. All PI simulations were carried out
using the CHARMM software.94 In the case of QM(DFT)/
MM simulations, CHARMM interfaced with Q-Chem95 was
used.

MP-VTST Calculations. VTST calculations were per-
formed using the same combination of the density functional
and basis set as in the case of PI-FEP/UM QM(DFT)/MM
calculations (i.e., MPWB1K/6-31+G(d,p)). In this work we
enlarged the previously studied bare model by explicitly adding
1, 2, 5, and 6 water molecules to study the effect of solvation.
To this end a potential energy surface (PES) scan was
performed using the Gaussian G09 software96 to locate the
feasible positions of water molecules near the ethanol
molecule. Solvation models containing 5 and 6 water

Figure 2. QM/MM model of H abstraction from ethanol. Water
molecules are shown in wire representation; the QM region is shown
as a ball-and-stick model.
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molecules were constructed from clusters of 6 and 7 water
molecules, respectively, taken from the Cambridge Cluster
Database.97 The IEFPCM continuum solvent model98 along
with its default options was also used to include additional
solvent effects. All geometry optimizations were carried out
using very tight convergence criteria and ultrafine grid
integration. The Gaussian 09 software was used to obtain
the optimized geometries, energies, and Hessians. Harmonic
normal-mode frequencies were scaled by a factor of 0.964.99

The minimum energy path (MEP) was followed starting at
each of the n‡ transition states with the objective of calculating
the variational and tunneling effect contributions to the MP-
CVT/SCT thermal rate constant. The MEP was obtained
using the Page-McIver algorithm100 in mass-scaled coordinates
(scaling mass of 1 amu), with a step size of 0.005 au, and
Hessians were calculated every 10 steps. The frequencies along
the reaction path were projected using redundant internal
coordinates.101 The Pilgrim102 software package interfaced
with Gaussian 09 was used for calculation of the multipath
canonical variational transition state rate constants with small
curvature multidimensional tunneling corrections (MP-CVT/
SCT).103

4. RESULTS AND DISCUSSION
Full Explicit Solvation Model. The classical potential of

mean force obtained for the reaction between an ethanol
molecule and a hydrogen atom using the AM1 Hamiltonian for
the QM region along the defined reaction coordinate, z, is
presented in Figure 3. The free energy barrier was around 3

kcal mol−1, which is much lower than the electronic barrier
height of 7.6 kcal mol−1 estimated based on the measurement
of activation energy and theoretical prediction reported by
Lossack et al.7 The resulted KIEs obtained from the
subsequent PI-FEP/UM calculations for a different number
of beads and two different sampling schemes are shown in
Table 1. Both sampling schemes give similar results. The
trends of normal KIEs for reactions R2 and R4 were preserved
in all the calculations and all methods that were used to
calculate the KIEs. In the case of R3 substitution, almost all
calculations provided normal KIEs which do not agree with the

experimental data. However, the magnitudes for the R4
substitution were significantly smaller for AM1 than the
experimental ones. Since the results have converged at 32
beads, using a higher number of beads did not seem necessary.
Since the barrier height from the QM(AM1)/MM simulations,
as well as the predicted KIEs, was not satisfactory, we also used
a DFT level for the QM part. Hence, we performed again
umbrella sampling simulations using QM(DFT)/MM. Each
individual window was equilibrated for 5 ps, and data
collection was carried out for the subsequent 27 ps. The free
energy barrier height increased to 10 kcal mol−1 as shown in
Figure 3. The trajectories from each window were
subsequently used in the PI quantities evaluation. To obtain
quantum PMF in this case, only bisection sampling was used.
However, the number of classical configurations used was
limited to 2,500 due to the huge computational expense of the
QM(DFT)/MM simulations and the additional cost of PI
sampling (i.e., number of beads and MC steps).
Based on the convergence behavior using AM1, we

concluded that it is sufficient to use 32 beads with
MPWB1K. The calculated KIEs using MPWB1K reproduced
the experimental trends, although the deviation from
experimental values is uneven. The best agreement was
obtained for R2 (only deviates by 5%), a bit worse for R3
(22%), and the poorest for R4 (26%) (Table 2). Another
important observation is that with the increasing number of
beads, the predicted KIEs for R2 and R4 tend to increase and
for R3 tend to decrease in most of the cases. Unfortunately, full
convergence for this system is not attainable due to the high

Figure 3. Classical potential of mean force obtained using the AM1
and MPWB1K methods to treat the QM region within the QM/MM
simulations as a function of the reaction coordinate (z).

Table 1. Hydrogen Kinetic Isotope Effects Obtained Using
the PI-FEP/UM Method, Different Number of Beads,
Different Sampling Algorithms, and the AM1 Hamiltonian
for the QM Region Treatment

PI-FEP/UM

no. of
beads R1/R2 R1/R3 R1/R4

bisection
sampling

8 4.56 ± 0.42 1.27 ± 0.05 2.60 ± 0.15
16 5.47 ± 0.45 1.23 ± 0.04 2.88 ± 0.13
32 6.06 ± 0.32 1.19 ± 0.06 3.25 ± 0.18
64 6.00 ± 0.46 1.19 ± 0.05 3.17 ± 0.21
128 6.01 ± 0.34 1.11 ± 0.06 3.20 ± 0.23

staging
sampling

8 4.96 ± 0.41 1.26 ± 0.03 2.69 ± 0.50
16 5.33 ± 0.20 1.26 ± 0.03 2.94 ± 0.24
32 5.52 ± 0.70 1.21 ± 0.04 2.95 ± 0.20
64 5.87 ± 0.53 1.25 ± 0.03 2.96 ± 0.21

experimentala 7.38−0.85
+0.94 0.73−0.05

+0.06 6.80−0.98
+1.28

aReference 7.

Table 2. Hydrogen Kinetic Isotope Effects Obtained Using
the PI-FEP/UM Method, a Different Number of Beads, and
the MPWB1K Functional for the QM Region

PI-FEP/UM

no. of beads R1/R2 R1/R3 R1/R4

8 6.79 ± 0.71 1.00 ± 0.05 3.62 ± 0.22
16 5.86 ± 0.47 0.99 ± 0.07 3.51 ± 0.37
32 6.97 ± 0.64 0.89 ± 0.10 5.01 ± 0.29

experimentala 7.38−0.85
+0.94 0.73−0.05

+0.06 6.80−0.98
+1.28

aReference 7.
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cost of these simulations, although the variations in the results

are within the statistical errors.

The nuclear quantum mechanical free energy corrections
such as the free energy difference and individual free energy
contribution for different isotopic substitutions are provided in

Figure 4. Classical and PI-FEP quantum free energy of activation for H abstraction from ethanol obtained using QM(MPWB1K)/MM simulations
as a function of the reaction coordinate (z). Numbers indicate the values of free energies of activation.

Figure 5. Snapshots of reactants (R), transition state (TS), and products (P) geometry resulting from the QM(MPWB1K)/MM model (only water
molecules within a 4 Å distance from the ethanol molecule are shown for clarity).
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Figures S1 and S2. Estimated free energy profiles for all studied
reactions are shown in Figure 4. The decrease of free energy of
activation (total quantum effects, ΔΔGqm

‡ ) is −2.5, −1.6, −2.2,
and −1.8 kcal/mol in the case of reactions R1, R2, R3, and R4,
respectively.
Detailed structural analysis of specific interactions between

the solute species and the surrounding water molecules at the
transition state structures resulting from the simulations
revealed that in the nearest neighborhood of the ethanol
molecule, in particular its hydroxyl group, there are three water
molecules out of which one is the hydroxyl proton acceptor
and two (sometimes more) other water molecules donate their
protons to the hydroxyl oxygen. Examples of such interaction
patterns are shown in Figure 5.
QM Microsolvation Models. Ethanol is an amphiphilic

molecule with a polar or hydrophilic part corresponding to the
OH group and a hydrophobic part involving the hydrocarbon
chain. In principle, one would expect that if the reaction occurs
in the hydrophobic part, the continuum model would account
for most of the effects due to the solvent. However, our
previous results that used this representation of the reaction
were not completely satisfactory. In light of the PI calculations,
which show a solvation shell around the hydroxyl group, some
models were built to mimic the solvation of this polar group.
Figure 5 shows that at least three water molecules are

needed to microsolvate the hydroxyl group: two of them acting
as hydrogen bond donors and one of them acting as a
hydrogen bond acceptor. The smallest clusters with these
characteristics, and at the same time including stabilization of
the water cluster by additional hydrogen bonds, involve five
(5W model) or six (6W model) water molecules.
To analyze the effect of a single water acting as donor or

acceptor, we also included models with one water, named
1W_d and 1W_a, in which the water molecule acts as a

hydrogen bond donor and acceptor, respectively. Finally, we
also added a model that was simply named as 2W, which is a
combination of the 1W_d and 1W_a models.
The transition state structures in the alternate configuration

of the models and some of the reaction and intermolecular
distances obtained at the MPWB1K/6-31+G(d,p) level are
shown in Figure 6. Notice that the intermolecular distances
between the water molecules and the OH group in the largest
clusters are in good agreement with the PI-FEP calculations.
The agreement is less satisfactory for the three atoms involved
in the reaction. The QM(DFT)/MM model resulted in
transition state geometries with C−H1 and H1−H2 distances
which are too short and too large, respectively, when compared
with the QM cluster calculations. The C−H1−H2 bond angle
is almost linear in the QM cluster (about 177 degrees) in all
cases, whereas in the QM(DFT)/MM simulations this bond
angle is reduced by almost 20 degrees. This may be the
consequence of having all solvent molecules treated only
classically in the QM(DFT)/MM model whereas in the
microsolvated QM model they were computed at the same
level of theory as the solute species or the result of thermal
effects in the QM(DFT)/MM molecular dynamics simu-
lations.
Hereafter, the discussion is centered on the alternate

configuration of the transition states (the one with the lowest
energy), although the same arguments are also valid for the
gauche configuration.
The bond distances displayed in Figure 6 differ substantially

in the 1W_a and 1W_d models. Both models show that the
type of hydrogen bonding between the water molecule and the
hydroxyl group has an important effect on the reaction site.
The progress in the hydrogen abstraction coordinate at the
transition state is greater in the 1W_d model. In fact, the
reaction proceeds with lower barrier if the water molecule acts

Figure 6. Transition state structures of the alternate configuration resulting from all microsolvation models and key interatomic distances (in Å).
Values for the gauche configuration are shown in brackets. QM/MM distances are provided in the gray rectangular.
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as a hydrogen bond acceptor (6.37 vs 5.35 kcal·mol−1 for the
bare and 1W_a models, respectively). The opposite effect is
observed when the water molecule acts as a hydrogen bond
donor (6.37 vs 7.24 kcal·mol−1 for the bare and 1W_d models,
respectively, Table S4). The hydrogen bond distances in the
1W_a and 1W_d models for the trans reactants are 1.865 and
1.848 Å, respectively, whereas they are 1.800 and 1.900 Å at
the corresponding transition states. Consequently, for the
1W_a model, the hydrogen bond is strengthened, which is in
accord with the reduction of the reaction barrier.
These two models and the 2W models are useful to look for

trends but are inadequate to mimic the network of hydrogen
bonds between the water molecules and the OH group. A good
representation of this hydrogen bonding network can be
achieved either with the 5W model or with the 6W model.
With respect to the progress of the reaction coordinate at the
transition state, these two models resemble the 1W_d model.
In general, they present very similar geometric features, and the
barrier heights for hydrogen transfer are almost the same (6.92
and 6.98 kcal·mol−1 for the 5W and 6W models, respectively,
Table S4). Therefore, it is expected to obtain similar thermal
rate constants and KIEs for both clusters.
Thermal rate constants and KIEs were calculated for all

models using MP-CVT/SCT. Notice that the calculated MP-
VTST rate constants make use of the equilibrium solvation
path (ESP)72 approximation, as in ref 8. The variational and
quantum effects due to the hydrogen abstraction reaction are
plotted in Figure 7. The KIEs of Table 3 were factorized as
indicated in eq 5. A full account of the results is given in the
Supporting Information (Table S5).
The calculated MP-CVT/SCT thermal rate constants

(Table S3) are somewhat lower than the experimental values,
being that the largest discrepancy between both sets is about a
factor of 5. The agreement is not perfect, but in this work we
concentrate on KIEs, which to a certain extent are independent
of the barrier height (usually the main reason for disagreement

between theory and experiment), rather than pursuing a
perfect match between rate constants.
An important issue that arises when calculating thermal rate

constants using VTST is the choice of coordinates when
evaluating certain quantities along the MEP. It has been
pointed out that the frequencies calculated along the MEP in
curvilinear internal coordinates provide more physical results
than Cartesian coordinates.69 This is because the projected
frequencies influence the free energy profile, which is used to
calculate the variational effects. Additionally, they are also used
to evaluate the ground-state vibrationally adiabatic potential,
which in turn is used to evaluate the SCT tunneling
transmission coefficient. Therefore, in this work we used
redundant internal coordinates. The effect of the choice of
coordinates over the variational and tunneling effects can be
seen in Tables S9 and S10 for the 5W model. Cartesian
coordinates led to a huge underestimation of KIEs on the R2
and R4 substitutions, whereas they produced a more
pronounced (more inverse) KIE for R3.
The contribution of each of the transition state config-

urations to the total KIE η̃i is given by eq 13, where the sum
extends over the alternate and gauche configurations; Pi,D (eq
14) is the weight of each transition state, with the condition
∑iPi,D = 1. This weight is almost preserved for the bare model
and the 5W and 6W models (especially between the bare and
the 6W models). Therefore, discrepancies in the KIEs should
be attributed to one or several terms in which the total KIE
was factorized rather than to the contribution of each
configuration.
In this case, the slight increase in the R1/R2 and R1/R4

ratios in the clusters is mainly due to the increment of the
rovibrational contribution to the KIE. The rovibrational
contribution to the KIEs largely depends on the frequency
differences between the C−H and C−D breaking bonds. At
reactants, this difference translates into a large value for the
ratio between partition functions (being that the one for the
deuterated bond is the largest). This mass effect also influences
the transition state partition functions in the opposite direction
but to a lesser extent, so the rovibrational KIE is normal. In the
case of R1/R3, the transferred atom is the same, and the
aforementioned effect does not influence the partition function
of reactants. However, the formation of a H−H bond vs the
formation of a H−D bond at the transition states leads to an
inverse rovibrational KIE.
One of the main failures of the bare model was its inability

to reproduce the observed inverse KIE for reaction R3, despite
the strong inverse rovibrational contribution. However, both
5W and 6W models overcome this limitation. In this case, the
discrepancy can be traced to the term that accounts for
deviations from the transition state theory (variational effects

Figure 7. Plots of the κCVT/SCT and ΓCVT coefficients calculated for the alternate configuration of each microsolvation model of each reaction.

Table 3. Total MP-CVT/SCT KIEs Obtained at 298 K

reaction

model R1/R2 R1/R3 R1/R4

bare model 7.00 1.02 4.85
1W_d model 8.48 0.93 5.24
1W_a model 6.31 1.48 5.18
2W model 6.61 1.01 4.85
5W model 7.78 0.86 5.29
6W model 7.69 0.85 5.22
experimentala 7.38−0.85

+0.94 0.73−0.05
+0.06 6.80−0.98

+1.28

aReference 7.
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and tunneling). An inspection of Figure 7 shows that the
tunneling factor remains practically the same, but variational
effects (recrossing) are less pronounced in the cluster models,
leading to the inverse total KIE.
These results indicate that to reproduce all the experimental

KIEs it is necessary, on the one hand, to explicitly solvate the
polar part of the molecule by forming a network of hydrogen
bonds. An incomplete solvation (1W_a and 2W models) is not
effective and leads to inferior results compared to the bare
model. The 1W_d model, although still insufficient, provided
better results. On the other hand, the methodology should
incorporate recrossing and quantum effects, as is the case in
MP-CVT/SCT. For instance, if the microsolvation model is
incorporated within the conventional transition state theory
framework, then the calculated KIEs on reactions R3 and R4
provide poor results, i.e., KIEs are overestimated in the former
case and underestimated in the latter (Table S3). When
applying MP-CVT/SCT, tunneling effects dominate over the
recrossing, so reactions R1 and R3 are sped up with respect to
R2 and R4, and the KIEs progress in the right direction
(Tables S5, S6, and S7).
Within the QM/MM simulations it is possible to estimate

the overall energetic barrier reduction (so-called total quantum
effect, ΔΔGqm

‡ ) caused by the quantum nature of either
protium (H) or deuterium (D) transfer in all isotopic
scenarios. The largest effect was observed for reaction R1
(2.5 kcal·mol−1), then for R3 (reduction by 2.2 kcal·mol−1),
and less than 2 kcal·mol−1 for R2 and R4 (1.6 and 1.8,
respectively). As the extent of lowering the free energy of
activation is not necessarily correlated with the magnitude of
tunneling transmission coefficients, in VTST this decrease in
value can be approximately estimated by the factor

G G G ZPEqm
MP CVT/SCT MS TSTΔΔ ≈ Δ − Δ + Δ‡ ‐ ‐

(19)

The first two terms of the rhs of eq 19 take into account the
variation of free energy due to the variational and quantum
effects (Table S11), and the last term includes the variation in
the zero-point energy. The results are 2.35 and 2.78 kcal·mol−1

for R1 and R3, respectively, and 1.15 and 1.74 kcal·mol−1 for
R2 and R4, respectively. There is a qualitative agreement
between the PI-FEP and VTST results, pointing toward the
importance of quantum effects in this hydrogen abstraction
reaction. This dual approach allowed for prediction of the KIEs
for the reaction without losing much accuracy. By comparing
H-KIEs obtained using 5W and 6W models and the MP-VTST
approach with a full QM(DFT)/MM model and PI-FEP/UM
approach, we conclude that both methods provide very good
agreement with experiment, likely within the accuracy of the
applied DFT method.
Interesting alternatives to the MP-VTST and PI-FEP/UM

calculations to account for microsolvation effects, usually
performed at much lower temperatures than 298 K, are the ab
initio molecular dynamics (AIMD) and the ab initio path-
integral (AIPI) simulations.104 The latter treats the atomic
nuclei as quantum degrees of freedom, and it has been, for
instance, applied to the study of microsolvated HCl by water
clusters105 or to the microsolvation of protonated methane by
molecular hydrogen.106 In both research works, the authors
stressed the importance of including quantum effects in the
calculations, an aspect of the dynamics which is also of
relevance to this study. However, dynamics quantum effects
due to the solvent were not included in our study. This may be

one of the reasons, together with the uncertainties in the
electronic structure calculations, that prevents our models from
providing a better match with experimental KIEs.
MP-VTST is computationally cheaper than PI-FEP/UM for

the current system, which has a small solute, which we
surrounded by a few, selected water molecules, embedded in a
continuum solvent. For reactions in which to locate all solvent
configurations (as it may be the case in some enzyme or
solution phase reactions) is computationally challenging, PI
offers a good alternative to MP-VTST. However, in such cases
semiempirical methods used to treat the QM region should
rather be reparametrized107−109 in order to describe the
reaction under study at a higher accuracy.

5. CONCLUSIONS

In the present study 2H KIEs were calculated for four different
substitution scenarios using two theoretical approaches: a path-
integral formalism in the form of centroid path integral and
free-energy perturbation-umbrella sampling (PI-FEP/UM) and
the multipath variational transition state theory (MP-VTST).
The former method enabled us to treat the solvent explicitly

by using a QM/MM protocol and provided an educated guess
for the construction of the water cluster models. It was
observed that an incomplete solvation of the OH group did
not improve the predictions compared to a continuum
solvation approach. Rather, a complete solvation shell is
required to reach converged KIE results. The latter method
incorporated variational and quantum effects, such as
tunneling, for multiple reaction paths in the evaluation of the
KIEs. It was shown that both microsolvation and VTST
corrections are needed in order to achieve a satisfactory
comparison with experimental KIEs. Both PI-FEP/UM and
microsolvation MP-VTST approaches provide results in good
agreement with experiments.
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