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Conductive Paper with Antibody-
Like Film for Electrical Readings of 
Biomolecules
Ana P. M. Tavares, Nádia S. Ferreira, Liliana A. A. N. A. Truta & M. Goreti F. Sales

This work reports a novel way of producing an inexpensive substrate support to assemble a sensing 
film, designed for the electrical transduction of an intended biomolecule. The support uses cellulose 
paper as substrate, made hydrophobic with solid wax and covered by a home-made conductive ink 
having graphite as core material. The hydrophobicity of the paper was confirmed by contact angle 
measurements and the conductive ink composition was optimized with regard to its adhesion, 
conductivity, and thermal stability. This support was further modified targeting its application in 
quantitative analysis. Carnitine (CRT) was selected as target compound, a cancer biomarker. The 
recognition material consisted of an antibody-like receptor film for CRT, tailored on the support 
and prepared by electrically-sustained polymerization of 3,4-ethylenedioxythiophene (EDOT) or 
dodecylbenzenesulfonic acid (DBS). Fourier transform infrared spectroscopy (FTIR) and Raman 
spectroscopy analysis confirmed the presence of the polymeric film on the support, and the 
performance of the devices was extensively evaluated with regard to linear response ranges, selectivity, 
applicability, and reusability. Overall, the paper-based sensors offer simplicity of fabrication, low cost 
and excellent reusability features. The design could also be extended to other applications in electrical-
based approaches to be used in point-of-care (POC).

A medical decision is often supported by laboratorial tests. With the exception of pregnancy and glucose meas-
urements, these tests are performed at hospital or independent laboratories (including large reference laborato-
ries). This procedure takes time and may be at the borderline between life and death, while requiring significant 
economic/human resources. Point-of-care (POC) analysis is therefore considered an important tool in clinical 
context. POC testing can also be more accurate by avoiding analyte changes during sample transport/storage, 
caused by delayed release of analytes (e.g., release of K+ from red blood cells during refrigerated storage), by con-
tinued metabolism (e.g., decrease in glucose/pH and increase in lactate from active red blood cells under hypoxic 
conditions), and by protein/peptide degradation in whole blood1,2.

The devices involved in POC testing should be portable, small, easy to use and carry, and inexpensive3,4. The 
combination of immunoreactions with compact apparatus (for signal reading) and microfluidic units (for sam-
ple handling) is today the closer approach meeting POC requirements. Immunological-based methods such as 
enzyme-linked immune sorbent assays (ELISAs) can detect low concentrations of several chemical and biological 
analytes in biological samples5,6. The experimental tests may take however longer than desired and require quali-
fied personnel. In addition, these methods may not be sensitive enough to screen a wide range of proteins in low 
concentrations7–9.

In alternative of these systems, biosensors have emerged several years ago to reproduce immunoreactions (or 
other biological reactions) on a flat receptor support, becoming more sensitive and simpler. This approach also 
follows the advances made in glucose readings, this time making use of enzymatic reactions. In general, a biosen-
sor is a self-contained integrated device that uses biological molecules as recognition element, in direct contact 
with a transducer of optical, mass, magnetic or electrical nature10.

Accounting the emerging advances in nanotechnology, biosensors also offer the possibility of easy min-
iaturization. In this regard, electrical biosensors (also known as electrochemical devices) have shown impor-
tant developments, mostly related to the concomitant advances in screen-printing technology11. The resulting 
screen-printed electrodes (SPEs) combine in a single support all electrodes required for electrochemical readings: 
work, auxiliary and reference electrodes. Although many advantages have been achieved in this course, several 
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requirements need to be met at their mass production12, and their commercialization is still expensive. In addi-
tion, their specific use in POC diagnosis should be linked to a disposable device of little environmental impact. 
Yet, printed supports are mostly plastics, such as PET or PVC. Thus, a worldwide application of such devices 
requires replacing such synthetic materials. Paper is one of several possibilities in this context, offering the advan-
tages of being readily available.

In addition to the support, the recognition element is a fundamental component to reach the desired sen-
sitivity and selectivity. So far, commercially available devices employ recognition elements of biological origin. 
But receptors like enzymes and antibodies have limited stability and cannot be used under harsh conditions. The 
search for more stable synthetic materials mimicking highly selective and sensitive recognition processes occur-
ring in nature is therefore of interest to the biomedical field. Nature’s selectivity and sensitivity have not yet been 
matched, but steady progresses are being made in creating synthetic systems for molecular recognition.

The design of plastic antibodies by molecular imprinting (MI) technology is one possible approach to replace 
biological receptors. These biomimetic materials may be assembled in the laboratory, with several monomeric 
pieces, targeting almost any compound of interest. This can be done by bulk imprinting, where the target com-
pound is mixed with the monomers, or by surface imprinting13, where the target compound is attached to a 
support by covalent bonding14 or adsorption15. Electropolymerization may also be employed, where the polymer-
ization is initiated by an electrical stimulus15. All these are suitable routes for a successful production of synthetic 
receptors, mimicking natural antibodies.

These combined approaches have been tried out herein for carnitine (CRT). CRT, 3-hydroxy-4-N,N,
N-trimethylaminobutyric acid, is a biogenic quaternary amine, playing an essential role in the mitochondrial 
β -oxidation of long-chain fatty acids16. Besides its important role in cellular metabolism and energy production, 
CRT also displays antioxidant properties, protecting cells from oxidative stress conditions related to several dis-
eases17–19. In addition, CRT is a potential biomarker of ovarian cancer, because it was identified as a metabolite 
in the normal ovary and transformed in primary and metastatic ovarian cancer20,21. This is particularly relevant 
because ovarian cancer is the seventh most common cancer in women worldwide and causes more deaths than 
any other gynecologic malignancy, being diagnosed mostly at an advanced stage21,22. There are several analytical 
methods to determine CRT in several samples, suitably reviewed23–25. Few of these methods offer portability fea-
tures and the ones nearing it do not combine disposable supports with stable biorecognition materials, which are 
essential conditions to promote worldwide POC applications in early screening of ovarian cancer.

Thus, the construction of a novel, disposable, stable and low cost device, with an antibody-like film assembled 
on paper-based conductive supports is presented herein. For this purpose, a regular paper is made hydrophobic 
and covered by a conductive ink. The doctor Blade technique was used for this purpose. The conductive ink 
proved good thermal/electrical stability, good conductivity and reusing feasibility, not easily removed after subse-
quent washing. The antibody-like film was assembled by polymerizing EDOT or DBS on the conductive support 
and in the presence of CRT. The biomimetic surfaces so-obtained were evaluated by electrochemical techniques 
and surface analysis, displaying successful features to be applied to the analysis of biological samples.

Results and Discussion
The production of a conductive paper involved two different stages (Fig. 1). The first one considered a 
pre-treatment of the paper to turn cellulose supports hydrophobic and the second one producing a suitable home-
made conductive ink to cover such hydrophobic support. Only after this stage the antibody-like film was assem-
bled on the material, as described later.

Paper pre-treatment. Cellulose is a biodegradable and renewable resource of well-known hydrophilic fea-
tures26, absorbing rapidly any drop of an aqueous solution placed on its surface (as shown in Fig. 2A). But the use 

Figure 1. Schematic representation of the production of the conductive paper and its sensitization by an 
antibody-like material. 
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of paper as support for electrical readings does not allow the existence of interactions between water molecules 
and the β -(1→ 4)-glucose polymeric structure, because these interactions interfere with the electrical properties 
of the resulting surface. To avoid such interactions, the paper was made hydrophobic by covering the cellulose 
fibres with a fat compound. Wax was selected for this purpose, because it becomes liquid after moderate heating 
and may interpenetrate all cellulose fibres with high efficiency. Once cooled to room temperature, the oily com-
pound became solid and remained on its position, covering all cellulose fibres and yielding a paper/wax matrix.

In this work, each piece of paper was placed individually inside an oven, with specific amounts of wax on top 
of it, and heated for specific periods of time and temperature ranges. The best condition was found by monitor-
ing the water-resistant properties of the final conductive paper inside the measuring buffer solution. Overall, an 
amount of 55 g wax per 56 mm3 piece of paper gave rise to a paper/wax matrix that repelled water, as observed on 
Fig. 2B. The aqueous solution was no longer absorbed on the paper and remained at the surface.

The hydrophobic pattern and the wettability of the wax paper were evaluated by contact angle measure-
ments27. Contact angles reflected how strongly the liquid and the solid molecules interact with each other; when 
the molecules of an aqueous solution are weakly attached to the molecules at a solid surface, a drop of that solu-
tion will remain on its surface and the contact angle formed by it will depend on the extension of such attractive/
repealing forces28. In general, angle values above 90° confirm the hydrophobic character of a given surface, with 
poor wetting properties and poor adhesiveness to liquid substances. In the present study, the water drop on the 
paper/wax presented a contact angle of 98° (Fig. 2C), thereby confirming its hydrophobic character and its possi-
ble application in electrical transduction systems.

The presence of wax within the cellulose fibers was also confirmed by FTIR studies (Fig. 3). As expected, the 
cellulose paper showed a broad band centered at 3342.41 cm−1, corresponding to the O–H stretch, and a peak at 
1161.18 cm−1, characteristic of the C–O stretch, both bonds intensely present at the glucose sub-units of cellulose. 
The wax spectra evidenced the C–H stretch typical of alkane compounds at 2849.18 and 2917.09 cm−1 and a small 
intensity peak at 721.79 cm−1, corresponding to consecutive –CH2– groups characteristically present in paraffin. 
The FTIR spectra combined all the previous peaks, thereby confirming the successful inclusion of wax among the 
cellulose fibers.

Turning the paper conductive. A carbon-based ink made of graphite was prepared to confer electron 
conduction properties to the wax/paper support. Graphite has good electrical features, being readily available at 
a low cost.

Figure 2. Picture of hydrophilic (A) and hydrophobic paper (B) with a drop of a colored aqueous solution on 
top for 0 (A1/B1) and 1 minute (A2/B2), and the subsequent contact angle of the hydrophobic paper (C).

Figure 3. FTIR spectra of several materials at different stages of the production of conductive paper. 



www.nature.com/scientificreports/

4Scientific RepoRts | 6:26132 | DOI: 10.1038/srep26132

It can also improve the accumulation of a target molecule at the electrode surface by electrochemical adsorp-
tion from any solution29. PVC-COOH was selected as polymeric support of the graphitic structures dispersed 
through the final ink. Thus, co-dissolution of graphite and PVC-COOH was tried out with different solvents. 
The best compromise between the viscosity of the ink solution and stability/conductivity of the final material was 
obtained by using DMF solutions. Since PVC-COOH is a non-conductive material, it is expected to increase the 
Ohmic resistance of the final ink and therefore its quantity should be set to a minimum value. On the contrary, the 
adhesion of the ink to the wax-paper support would be improved by increasing the concentration of PVC-COOH. 
Thus, ink solutions were prepared with varying amounts of PVC-COOH: 5, 15, 20, 25 and 30%. The correspond-
ing solutions were applied by following the doctor Blade technique and the papers let dry in an oven for 1 hour.

The resulting ink-paper resistance ranged 1.0–1.7; 0.9–1.5; 0.8–2.0; 7–11; and 2.0–28 KΩ, respectively. These 
values were obtained by measuring the final resistance at several spots within each paper and in different papers 
produced in the same way. In general, and as expected, the conductivity values increased with the decreasing 
amount of PVC-COOH. Ink solutions with 5% polymer gave rise to conductive wax papers of low conductivity 
values, but the final surface was heterogeneous and the graphitic structures pealed out easily from the surface by 
physical contact. Above 20% PVC-COOH, the dry ink was very stable against external damage, but displayed 
poor conductivity.

So, the final ink was prepared with 85% graphite and 15% PVC-COOH, co-dissolved in DMF. The ther-
mal stability features of this ink (after drying) were evaluated by measuring mass loss curves (TG) and their 
first derivatives (DTG and DTA) compared to control materials, up to 1000 °C. The resulting thermogram is 
shown in Fig. 4A. It displays the behaviour of single graphite and PVC-COOH under thermal decomposition and 
their combined action when mixed to produce a conductive ink. The most significant decomposition observed 
accounted mostly the presence of PVC-COOH, starting at 218.6 °C, and ending at 519.5 °C. Ink mass losses up 
to 488.6 °C (Fig. 4B) were in good agreement with the % of PCV-COOH present in the ink. The total % ink mass 
loss was 12.73%, which corresponded to 85% of its initial mass (15%), while pure PVC-COOH had mass losses of 
88%, up to 520 °C (Fig. 4C). These results suggested that no chemical interaction was established between the two 
ink ingredients. An additional ink mass loss of 3.37% was observed before 1000 °C, which corresponded to mass 
losses occurring similarly in pure graphite. The results also showed that the ink was thermally stable up to 200 °C. 
Additional discussion regarding thermal analysis data is presented in the supplementary section.

The morphology of the final carbon ink was examined by SEM (Fig. 5), comparing the morphologic changes 
occurring from the original graphite material. The images have shown that graphite powder (Fig. 5A) is clearly 
different from the conductive ink. In greater magnification, it was possible to see that the particles of graphite 
(A2) had several compact layers of graphene sheets, in contrast to the carbon ink, where these sheets were exten-
sively separated, suggesting an effective exfoliation of the graphene. EDS analysis also indicated an increasing in 
the oxygen content when the ink was prepared (compared to the original graphite material), thereby confirming 
the existence of an oxidative process along the ink preparation.

Chemical/physical features of the conductive paper. The conductive paper was resistant to mechan-
ical pressure by finger scratching after ink dry. No leaching of graphite particles was evidenced. The resulting 
electrodes were also left in water with a coloured hydrophilic dye, remaining stable for several days.

The FTIR spectra confirmed the presence of graphite at the outer surface of the conductive paper (Fig. 6) and 
its subsequent blocking effect to the FTIR incident light source. Cellulose stretching was not evidenced in this, 
because the graphitic carbon did not allow incident radiation to permeate deeply into the paper. The increased 
intensity of C–H stretching bands evidenced the presence of the PVC polymer within the graphite-matrix.

Figure 4. Thermogravimetric plot of conductive ink, pure graphite and pure PVC-COOH (A), with the 
corresponding differential data, DTG/DTA (Carbon in (B) and PVC-COOH in (C).
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The Raman spectra of the conductive paper evidenced the three peaks occurring typically in graphite-based 
materials. These are known as G, D and 2D peaks30. The G peak expressed the C–C stretching of the first order 
scattering of sp2 carbon hybridization and corresponded to the in-plane vibrational mode at E2 g phonons at 
Brillouin zone centre; the D band originated from a hybridized vibrational mode associated to the double reso-
nance excitation of phonons close to the K point in the Brillouin zone, ~1330 cm−1, containing a certain fraction 
of sp3 hybridized carbons that indicated the presence of disorder or defect in the carbon material; the 2D peak31 
originated from a second-order process, involving two inter-valley phonons near the K point, and was of higher 
intensity than in graphite. The exact Raman shift and intensity values are indicated in Table 1. Compared to 
graphite powder, the D band of the conductive paper was of higher intensity, revealing greater disorder in the 
conductive ink structure. The 2D in the Raman spectra of graphite was represented by two components 2D1 and 
2D2

30, both more intense than D peak. In contrast, the conductive ink had a single, sharp 2D peak and it was less 
intense than D peak; according to similarities found in the Raman spectra available in the literature32, the main 
component of such ink may be reduced exfoliated graphene oxide (Fig. 6).

The formation of sp3 C–H bonds as well as the breaking of the translational symmetric of sp2 C =  C, lead to 
defect in hydrogenated carbon material31,33. The D band is often referred to as the disorder band or the defect 
band, which may be used as a measure of the quality of the carbon structures after their modification, through the 
analysis of the intensity ratio between the D and G bands (ID/IG), i.e., it is used for quantifying the defect density 
in the carbon material. The intensity ratio extracted from Table 1 indicated significant disorder, arising from 
structural defects. The ID/IG ratios of the graphite powder and ink were respectively 0.057 and 0.319 cps, reflecting 

Figure 5. SEM images of graphite (1) and carbon ink (2) of increasing magnifications (A–C).
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the increase in structural disorder and the occurrence of the evolution of the graphite to graphene. Consequently, 
this graphene presented more defects than graphite powder. Overall, the obtained Raman spectra indicated that 
the ink become a graphene-based material, after being submitted to the previously mentioned conditions.

The electrochemical features of the carbon-ink/paper were evaluated by electrochemical impedance spec-
troscopy (EIS) measurements, making use of [Fe(CN)6]3−/[Fe(CN)6]

4− solutions with different concentrations 
prepared in 1.0 ×  10−2 mol/L PBS buffer.

The obtained data was shown as Nyquist plots (Fig. S1), where the resistance to charge transfer (Rct) cor-
responded to the diameter of the observed semicircle. In general, lower Rct indicated quicker electron trans-
fer rates with decreasing Ohmic resistance at the receptor surface. As expected, increasing concentrations of 
the redox probe yielded lower Rct values. According to the obtained results, an intermediate concentration of 
2.5 ×  10−3 mol/L of iron probe was selected to proceed with the subsequent electrochemical measurements. This 
concentration ensured sensitive readings of EIS, thereby favouring the sensitive detection of opposite events, such 
as electrical blocking or increased conductivity.

Assembly of the antibody-like material. The antibody-like surfaces were assembled on conductive 
paper as shown in Fig. 1. First, the conductive ink was oxidized with H2SO4 to remove unwanted-species hinder-
ing the electron transfer rate of the working electrode. This procedure yielded an increased number of hydroxyl 
(-OH), epoxide (-O-) and carboxyl groups (-COOH), thus leading to an increased negative polarity at the elec-
trode surface that could improve the subsequent electrochemical polymerization processes34. The imprinting 
stage consisted of the electrochemical polymerization of a suitable monomer, in an aqueous solution containing 
supporting electrolyte (KCl, 0.10 mol/L) and the molecule to be imprinted (CRT). And finally, the imprinted sites 
were obtained once the template was removed, and these sites should be able to rebind again to another molecule 
of CRT. The imprinting effect upon the response of the paper-based electrodes was assessed by control materials, 
prepared similarly but without CRT.

EDOT and DBS were selected as monomers. The electrochemical polymerization of EDOT is well-known, 
yielding conductive, biocompatible and stable polymers35. On the contrary, the electrochemical polymerization 
of DBS has not been reported yet. DBS is typically employed as an anionic surfactant along with other mono-
mers36,37, but its structure includes an aromatic ring strongly active towards electrophilic reagents, making its 

Figure 6. FTIR (A) and Raman (B) spectra of graphite powder and conductive paper.

Material Monomer CRT* mol/L

Raman intensity Raman Shift Peak ratio

2D Peak G Peak D Peak 2D Peak G Peak D Peak ID/IG I2D/IG

Graphite powder — — 19.68 91.64 5.22 2693.58 1565.83 1337.93 0.057 0.215

Conductive paper — — 780.59 3184.93 1017.78 2697.00 1572.84 1347.05 0.320 0.245

Antibody-like EDOT — 258.09 780.70 256.31 2696.58 1574.52 1347.65 0.328 0.331

Antibody-like EDOT 5 ×  10−3 1062.73 3862.63 1493.69 2698.72 1575.73 1347.91 0.387 0.275

Antibody-like DBS — 1528.25 4085.84 1034.29 2711.64 1579.64 1349.25 0.253 0.374

Antibody-like DBS 5 ×  10−3 940.13 2606.84 722.85 2710.73 1578.40 1348.64 0.277 0.361

Table 1.  Analytical data extracted from the collected Raman spectra of the several materials. *Calibration 
of the material with CRT, up to a concentration of 5.0 ×  10−3 mol/L.
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cationic polymerization possible under suitable electrical stimulus. Thus, the possibility of using DBS as regular 
monomer in electropolymerization to produce a polymeric film was tested herein.

The D/G peak ratio of the conductive paper (0.320) increased up to 0.328 in EDOT-based films but decreased 
to 0.253 in DBS films, whereas the 2D/G peak ratio (0.245) increased both in EDOT (0.331) and DBS based films 
(0.374). The Raman shifts were also displaced in all peaks for both EDOT and DBS films; the larger Raman shift 
differences were observed for DBS films, with stronger evidence for 2D and G peaks.

After polymerizing EDOT or DBS on the conductive ink, the peak intensity ratio ID/IG changed in both 
imprinted materials (EDOT films increased to 0.328 cps, and DBS ones decreased to 0.253 cps), thereby con-
firming the occurrence of the electrically-induced polymerization. The Raman shifts of D, G and 2D peaks also 
increased (+ 9.12, + 7.01, and + 3.42 cm−1, respectively), thereby confirming the polymer formation. These overall 
changes may also point out that the imprinted DBS polymer showed less disordered structural organization.

Rebinding to the antibody-like material. The chemical modifications of the surface morphology occur-
ring after the imprinting stage were characterized by Raman spectroscopy. The corresponding data is indicated 
in Table 1. As expected, the obtained spectra presented the typical G, D and 2D peaks observed in the conductive 
paper (Fig. 7), regardless the monomer employed. But relative intensities of D/G and 2D/G peaks varied.

The adsorption of CRT to the antibody-like films was confirmed by Raman analysis of the films that had 
been calibrated with CRT standard solutions, with a concentration up to 5.0 ×  10−3 mol/L. In the calibrated 
antibody-like EDOT film, all peaks shifted to higher values (D, + 0.26 cm−1; G, + 1.21 cm−1; and 2D, + 2.14 cm−1). 
Although the absolute Raman intensity increased significantly in the overall spectra, the peak intensity ratio ID/
IG increased by 0.059 cps and the ratio I2D/IG decreased by − 0.056. The calibrated antibody-like DBS film showed 
an opposite behaviour. The presence of CRT within the DBS-polymer matrix yielded Raman negative shifts in D 
(− 0.61 cm−1), G (− 1.24 cm−1) and 2D (− 0.91 cm−1) peaks. The overall Raman spectra showed lower intensity, 
but the changes in peak ratio were consistent with the EDOT-observed behaviour: ID/IG increased by 0.024 cps 
and I2D/IG decreased by − 0.013.

Overall, these results suggested that CRT remained within the imprinted material after calibration, both in 
EDOT and DBS polymers. A higher amount of CRT was expected to be present in EDOT-based material due to 
the higher changes in Raman peak intensity ratio observed for this polymer.

Optimization of the antibody-like assembly. The effect of the relevant variables at the assembly of an 
antibody-like film was checked by electrochemical impedance spectroscopy (EIS). The electrical resistance was 
analyzed by Nyquist plots, showing the frequency of the response of the electrode when in contact with any elec-
trolyte. It also indicates the charge transfer resistance (Rct) at the electrode surface which is given by the semicircle 
diameter38.

When the sensing layer at the electrodes was chemically modified, the typical charge transfer behaviour of 
the overall surface changed, thereby confirming the existence of such modifications. The typical charge transfer 
behaviour is evaluated with a well-known redox probe, such as [Fe(CN)6]3−/4−.

CRT concentration at the imprinting stage. The number of effective rebinding positions for CRT 
depends of the number of CRT molecules entrapped within the imprinted polymer, but such number cannot 
be as high as to interfere with the polymer growth. This makes the concentration of CRT at the imprinting stage 
a critical variable. In this work, the imprinted layer was produced by using two different CRT concentrations: 

Figure 7. Raman spectra of the antibody-like film on conductive paper (A); and a direct comparison before and 
after calibration of the MI material of EDOT (B) or DBS (C).
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1.0 ×  10−3 and 1.0 ×  10−2 mol/L. Lower concentrations were not tested as the number of template molecules to be 
imprinted would decrease a lot when compared to the number of monomeric species present.

The results obtained for EDOT monomer are shown in Fig. S2, plotting normalized values for the carbon-ink 
stage. The correction factor used for this purpose was calculated against the Rct value of the conductive ink. In 
both concentrations of CRT tested, it was clear that the presence of polymeric EDOT (PEDOT) contributed to 
decrease the Rct value of the sensing layer. This was attributed to the fact that PEDOT holds conductive properties, 
thereby increasing the conductivity features of the surface. This effect was less evident for higher concentrations 
of CRT because the presence of a high number of these species hindered the polymerization of EDOT, yielding a 
more resistive material. The removal of CRT molecules located at the surface of the polymer was made by oxalic 
acid (for 1 h), yielding a slight increase of the overall Rct. Overall, considering that a biosensor of low resistivity 
is expected to lead to a higher sensitivity, the concentration of 1.0 ×  10−3 mol /L of CRT was selected for further 
experiments.

Effect of monomer. The electrical features of the sensory surface changed significantly with the selected 
monomer (EDOT or DBS). It is important to highlight at this point that the CPE in the electrical circuit is the 
constant phase element, which can behave as resistance if n =  0, capacitance when n =  1 or Warburg impedance if 
n =  0.539. In the case of an imprinted DBS polymeric layer, the CPE value changed between 109.25 and 390.09 μ F  
and in EDOT polymer changed from 114.52 to 215.79 μ F. Thus, in both cases this element behaved as capacitance, 
because n ~ 1. The equivalent circuit shown in Fig. 8 was used to analyze the Nyquist plots after each surface mod-
ification step at the biosensor fabrication with DBS (Fig. 8A) or EDOT (Fig. 8B).

In both cases, the electrolyte resistance corresponded to 2.5 ×  10−3 mol/L of [Fe(CN)6]3−/4−. The Rs values 
ranged 0.976–1.82 kΩ  in DBS sensing layers and 1.11–1.37 kΩ  in EDOT sensing materials. Overall, EIS measure-
ments showed that both polymers displayed conductive features, because the original impedance decreased after 
electrochemical polymerization of EDOT or DBS by chronoamperometry. In addition, and comparing to EDOT 
sensing films, the DBS-imprinted film yielded higher decrease in resistance (meaning better electrical features) 
and the subsequent CRT removal promoted a higher resistance change (meaning that a higher number of rebind-
ing positions for CRT are available, and thus better analytical features may be expected).

Overall electrical performance. The sensors were calibrated by incubating the antibody-like surface in 
solutions of increasing concentrations of CRT, for 30 minutes, and reading subsequently the EIS electrical fea-
tures of the resulting surface. The corresponding EIS spectra are shown in Fig. S3, obtained in 2.5 ×  10−3 mol/L 
[Fe(CN)6]3−/4− redox probe, and at a standard potential of 0.238 V for imprinted EDOT and 0.222 V for imprinted 
DBS, with a number of frequencies equal to 50 and an amplitude of 0.01 V in both cases. The frequency range was 
0.01–1000 Hz.

Overall, the Rct values decreased with increasing concentration of CRT. This suggested that the negative redox 
probe was attracted to the sensory layer when CRT was present, due to their opposite charges. In turn, this also 
evidenced that CRT was bound to the sensing polymeric films. Figure 9 also shows at the inset the calibration 
curves plotting Rct against log CRT concentration, for both active and control materials. In general, polymeric 
films tailored with imprinted positions displayed a linear behaviour for increasing CRT amounts, in contrast to 
the response of control materials that was mostly random.

Figure 8. EIS data of the assembly of the antibody-like material. (A) sensory layer of DBS; (B) sensory layer 
of EDOT.
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In buffer solutions, the imprinted DBS material responded with a linear trend from 1.0 ×  10−8 mol/L to 
1.0 ×  10−3 mol/L, as Rct =  − 450.12 ×  log [CRT] +  3943.4, with a regression correlation coefficient of 0.9984 
(Fig. 9A). The imprinted EDOT responded similarly, having an Rct =  − 302.59 ×  log [CRT] +  2602.5, and a regres-
sion correlation coefficient of 0.9979; the limit of detection was 2.15 ×  10−10 mol/L and the linear response was up 
to 1.0 ×  10−4 mol/L. All control materials displayed random and uncontrolled behaviour.

The selectivity of the sensory layers for CRT was tested by calibrating the paper-based sensors in real urine samples 
from healthy volunteer, diluted 10×  in HEPES buffer. In general, the resulting EIS calibration curves for DBS (Fig. 9C) 
and EDOT (Fig. 9D) sensing materials showed good analytical features. The calibration curve of imprinted DBS 
(Fig. 9C) showed a linear dependence on log [CRT] from 1.0 ×  10−8 to 5.0 ×  10−4 mol /L, with a slope of − 376.01 Ω/
decade. The calibrations of imprinted EDOT layer displayed linear behaviour from 1.0 ×  10−7 to 1.0 ×  10−3 mol/L, 
with a slope of − 452.4 Ω/decade. Control materials showed once again a random behaviour, thereby confirming 
that the response was mainly controlled by the rebinding of CRT to its imprinted positions on the polymeric matrix.

Overall, no interference from co-existing species present in real urine is expected to exist in the analysis of real 
samples, suggesting that these sensors would be capable of providing selective and specific readings of CRT in real 
samples. Moreover, a calibration using the imprinted DBS films was performed in synthetic urine (without CRT, to 
compare its performance to that made in real urine (Fig. S6). BSA was also included is this assay, in order to have a 

Figure 9. Calibration curve of the imprinted paper-based devices. Imprinted DBS (A,C) and EDOT  
(B,D) based materials in HEPES buffer (A,B) and urine samples (C,D). Insets display the corresponding  
typical calibrations, including also the response of the control materials.
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protein in the calibration matrix and evaluate its possible interference. The resulting calibrations showed the sensor 
under synthetic urine displayed similar behaviour to that of the real urine. In this regard, it seems that all com-
ponents present in the synthetic urine are not capable of promoting significant changes in the calibration output.

Application and reusability. Spiked urine samples were analyzed by the previously described sensors. For 
this purpose, a urine sample from health individual was collected and spiked in several levels of CRT. The errors 
linked to the known amount of CRT found in the system ranged from 3.9 to 6.5% in the case of the imprinted DBS 
film, with an average relative standard derivation of 1.1%. In the case of the imprinted EDOT material, the relative 
error ranged from 9.1 to 15.4%, with an average relative standard deviation of 3.3%. These results indicated that 
both materials displayed good accuracy and precision, being DBS-based paper sensors the ones providing better 
relative errors.

Real urine analysis was conducted by multiple standard addition and subsequent use of the Gran’s method 
to estimate the original concentration of the CRT in the urine sample40 (Fig. S5). In this, the linear plot of 10Rct/S 
versus known carnitine concentration (added) crossed the x axis at the unknown CRT concentration (present in 
the sample). The CRT concentration in the original sample was estimated in 0.06 μ mol/L (or 9.67 ng/mL), which 
is compatible with the levels of a healthy individual.

The reason for such good analytical performance is perhaps a consequence of the very similar EIS data 
obtained in consecutive calibrations of the same sensor (Fig. S4). The fact that consecutive calibrations yielded 
very similar features, pointed out the possibility of reusing such sensors. But not many calibrations could be 
made consecutively. This meant that CRT was standing on the surface and hindering the possibility of recovering 
the original signal. So, the CRT sensory layers were tested for an electrochemical cleaning, carried out by per-
forming consecutive CV assays in HEPES buffer. These assays were made between − 0.2 V and + 1 V, at a poten-
tial scan-rate of 0.05 V/s with a number of crossings 10 (5 successive CV cycles). The efficiency of this cleaning 
process was tested by EIS, in the same redox couple [Fe(CN)6]3−/4−, at a standard potential of 0.22 V, and using 
a number of frequencies equal to 50 scans and a sinusoidal potential peak-to-peak with amplitude 0.01 V, in the 
0.01–1000 Hz frequency range.

It was very interesting to observe that the results showed that both antibody-like films had better features 
in terms Rct after electrochemical cleaning. The DBS based sensor presented a slope increase of ~70 Ω/decade 
(~20%) and the limit detection was 1.93 ×  10−9 mol/L; the most surprising results were those obtained with 
EDOT films, yielding slopes of ~450 Ω/decade (80% higher), for a limit of detection of 2.25 ×  10−8 mol/L, saturat-
ing the electrical response by 5.0 ×  10−3 mol/L CRT.

In general, the electrochemical cleaning ensured not only reusability but also improved the observed analyti-
cal features. These features remained stable after 3 consecutive procedures of alternated calibration and cleaning 
and valid for more than a month.

Conclusions
The use of low cost wax to make the paper hydrophobic was simple and effective, regarding the electrical require-
ments behind electrochemical sensing. The conductive ink proposed was prepared by quick and low cost pro-
cedures, displaying excellent conductivity, thermal stability and good adhesion to the cellulose support. The 
tailoring of an antibody-like film for CRT was successfully achieved by simple electrochemical procedures and 
the film displayed high sensitivity/selectivity for rebinding CRT, even in complex matrix composition such as 
urine samples.

The limit of detection obtained also allows its practical application to the analysis of biological fluids. 
Moreover, detection limits of these biosensors are better, when compared to other commercial methods. For 
instance, the coupled enzyme assays in L-carnitine assay kits (from Sigma-Aldrich) have typical sensitivities of 
1612 ng/mL (colorimetric) or 161 ng/mL (fluorimetric) of carnitine, while ELISA KITs display common sensi-
tivities of 78 ng/mL. Herein, MIP EDOT and MIP NaDBS sensors showed limits of detection of 3.63 ng/mL and 
0.31 ng/mL, respectively, also over a wide concentration of linear response range. Considering that a healthy indi-
vidual may have < 161.2 ng/mL of CRT in urine, the described sensors may be applied to real samples of healthy 
or diseased individuals. In addition, despite the low cost and simplicity of preparation, the paper-based electrodes 
can be reused by several times before discard.

Overall, the simple construction, low cost and reusability suggest that these electrodes could have commercial 
viability for screening CRT or other molecules in POC. In addition, the application of the conductive ink pro-
posed herein for the first time may be extended to prepare conductive films on different supports (such as glass, 
ceramics, or PET). Also, the present methodology is versatile considering that its application to different fields of 
research and knowledge may be anticipated. Plastic antibodies may be tailored for a wide range of target biomol-
ecules or the homemade carbon ink may be applied to the screen-printing technology making use of different 
support materials, including paper.

Methods and Materials. Apparatus. Polymeric film assemblies and electrochemical measurements were 
made in a potentiostat/galvanostat equipment from Metrohm, Autolab, PGSTAT302N, computer controlled by 
NOVA software. A cellulose paper support (3.3 ×  1.0 cm) made conductive with conductive ink was used as work-
ing electrode; a platinum wire as counter electrode; and a double-junction Ag/AgCl electrode as reference.

The thermal behaviour of conductive ink was evaluated in the thermogravimetry (TG)/differential thermal 
analyzer (DTA) Exstar TG/DTA 7200. The resistivity of the ink was measured by Fluke 175 True RMS multimeter. 
A Sonorex digitec sonicater, Bandelin, was used to promote the dissolution of the solids and homogeneity of the 
reacting solutions.

FTIR surface analysis of solid materials was made in a Nicolet iS10 spectrometer from Thermo Scientific cou-
pled to a smart attenuated total reflectance (ATR) sampling accessory of germanium contact crystal, also from 
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Nicolet. Raman analysis was performed using Thermo Scientific DXR Raman equipment coupled to confocal 
microscopy with 50×  lenses (dark field/bright field) and 532 nm laser. The digital image of the contact angle was 
acquired by a digital camera Samsung PL150.

Reagents. All chemicals were of analytical grade and ultrapure Milli-Q laboratory grade water (conductiv-
ity <  0.1 μ S.cm−1) was employed. Cellulose paper was obtained from Fanoia. Graphite powder, phosphate buff-
ered saline (PBS) tablets, 3,4-ethylenedioxythiophene (EDOT), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES) and oxalic acid dehydrate (OAc) were purchased to Sigma-Aldrich; dodecylbenzenesulfonic acid 
sodium salt 88% (DBS ) to Acros Organics; N,N-dimethylformamide (DMF) to VWR; poly(vinylchloride) car-
boxylated (PVC-COOH) to Fluka; potassium hexacyanoferrate III (K3[Fe(CN)6]) and potassium hexacyanofer-
rate II trihydrate (K4[Fe(CN)6]·3H2O) to Riedel-de-Haën; CRT hydrochloride, and potassium chloride (KCl) to 
Merck; and sulphuric Acid (H2SO4) to Scharlau. Urea was obtained from Fagron, creatinine to Fluka, magnesium 
chloride to Riedel-de-Haën, calcium chloride to Purified, sodium dihydrogen phosphate to Scharlau, potassium 
sulphate and sodium chloride to Panreac, ammonium chloride to Merck and bovine serum albumin to Sigma.

Solutions. Stock standard solutions of CRT were prepared with a concentration of 1.0 ×  10−3 mol/L, prepared 
in 1.0 ×  10−2 mol/L HEPES buffer, pH 7.0. Less concentrated solutions (calibrating standards) were prepared 
by accurate dilution of the previous solution in the same buffer. Potentiostatic electropolymerization was 
made in solutions of 0.01 mol/L EDOT or 0.1 mol/L DBS, prepared in 0.1 mol/L KCl as supporting electrolyte 
in water. Electrochemical assays were performed in a solution containing 2.5 ×  10−3 mol/L K3[Fe(CN)6] and 
2.5 ×  10−3 mol/L K4[Fe(CN)6], prepared in PBS buffer, pH 7.0.

Production of the conductive paper. The working electrode was constructed by cutting small pieces 
of cellulose paper (1.5 ×  1.0 mm). Each piece was hydrophobized with wax, by heating up to 95 °C, for 3 hours. 
The paper was cooled to room temperature (~20 min). The external surface of the waxed paper was then made 
conductive by applying the conductive ink by the doctor Blade technique. The ink was prepared simply by mixing 
graphite powder doped with 15% PVC-COOH in DMF. The ink casted on the paper was dried at 55 °C, for 1 h.

The thermal behavior of conductive ink was monitored by TG analysis in the temperature range 35–1000 °C, 
for a heating rate of 5 °C/min, in a nitrogen atmosphere of 200 mL/min. Similar experiments were made with 
control materials, graphite powder and PVC-COOH, making use of the same experimental conditions.

Surface analysis of the conductive paper. The contact angle of the resulting conductive paper was meas-
ured for a drop of a pink dye solution placed on it. A digital image captured by a camera allowed measuring the 
interior angle formed on the surface, making use of the tangent line to the drop interface at the apparent intersec-
tion of all three interfaces. The PowerPoint program of Windows was used for to obtain the contact line and also 
find the corresponding interior angle.

FTIR analysis of the conductive paper was made directly on the ATR accessory. All spectra were collected 
under room temperature/humidity control after background correction. The number of scans was 32 for each 
samples and background. X-axis represented wavenumber, ranging 4000–600 cm−1, and Y-axis % transmittance. 
Raman analysis was conducted after focusing the material on the optical microscope with a 50×  lens. The spectra 
were collected with 8 mW power and 50 μ m pinhole aperture. Automatic fluorescence and photoblishing correc-
tions were made.

Assembly of the antibody-like film. Before use, the carbon surface of the conductive paper was sub-
jected to an electrochemical oxidation, by imposing 5 successive cycles, in 0.5 mol/L of H2SO4, from − 0.2 to + 
1.5 V, at a scan-rate of 50 mV/s. Antibody-like films were prepared by eletropolymerization of EDOT or DBS, 
made by chronoamperometry (+ 0.9 V for 240 s), in a solution containing 1.0 ×  10−3 mol/L CRT (template), 
1.0 ×  10−1 mol/L KCl (supporting electrolyte) and 1.0 ×  10−2 mol/L EDOT or 1.0 ×  10−1 mol/L mol/L DBS . After 
polymerization, the template was removed by incubation of the films (on the conductive paper) in 0.50 mol/L 
oxalic acid, for 1 h. Control materials were prepared in parallel, by excluding the template from the procedure.

Electrochemical assays. Cyclic voltammetry (CV) experiments were conducted in HEPES buffer, pH 7.0, 
in 2.5 ×  10−3 mol/L K3[Fe(CN)6]/K4[Fe(CN)6]. The potential was scanned from − 1.0 and + 1.0 V at a scan rate of 
50 mV/s, and with 10 crossing points (5 successive CV cycles). EIS measurements were conducted in the same 
redox couple [Fe(CN)6]3−/4− at a standard potential of 0.22 V, for 50 frequency values from 0.01–1000 Hz and a 
sinusoidal potential peak-to-peak amplitude of 0.010 V. The impedance data was fitted to a suitable electrochem-
ical circuit using the ANOVA software.

The response of each working electrode to increasing concentrations of CRT was evaluated by incubating the 
electrode for a fixed period of time, in concentration values ranging from 1.0 ×  10−8 to 5.0 ×  10−3 mol/L. These 
solutions were prepared in 1.0 ×  10−2 mol/L of HEPES, pH 7.0. This incubation period was followed by CV and/or 
EIS readings made in the previously indicated conditions. Selectivity studies were performed by electrochemical 
assays with K3[Fe(CN)6] and K4[Fe(CN)6] in the same buffer, after incubating the sensing layer in spiked urine 
samples. The initial urine sample solution was adjusted to 1.0 ×  10−8 mol/L, and then this concentration was 
increased up to a maximum value of 5.0 ×  10−3 mol/L.

The analytical application was tested in real samples (urine, diluted 1:10 in HEPES buffer). This was done by 
calibrating the electrodes in solutions with blank urine and analyzed after real samples spiked with known amounts 
of CRT. Different electrodes were used for the calibration and sample analysis procedure, for which the electrical 
output signal was always considered relative to blank (buffer signal prior to the incubation with the first standard).
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