
RESEARCH ARTICLE

GRASShopPER—An algorithm for de novo

assembly based on GPU alignments

Aleksandra Swiercz1,2,3*, Wojciech Frohmberg1,3, Michal Kierzynka1,3,4,

Pawel Wojciechowski1,2,3, Piotr Zurkowski1,3, Jan Badura1,3, Artur Laskowski1,3,

Marta Kasprzak1,2,3, Jacek Blazewicz1,2,3

1 Institute of Computing Science, PoznańUniversity of Technology, Poznań, Poland, 2 Institute of Bioorganic

Chemistry, Polish Academy of Sciences, Poznań, Poland, 3 European Centre for Bioinformatics and

Genomics, Poznań, Poland, 4 PoznańSupercomputing and Networking Center, Poznań, Poland

* Aleksandra.Swiercz@cs.put.poznan.pl

Abstract

Next generation sequencers produce billions of short DNA sequences in a massively paral-

lel manner, which causes a great computational challenge in accurately reconstructing a

genome sequence de novo using these short sequences. Here, we propose the GRASS-

hopPER assembler, which follows an approach of overlap-layout-consensus. It uses an effi-

cient GPU implementation for the sequence alignment during the graph construction stage

and a greedy hyper-heuristic algorithm at the fork detection stage. A two-part fork detection

method allows us to identify repeated fragments of a genome and to reconstruct them with-

out misassemblies. The assemblies of data sets of bacteria Candidatus Microthrix, nema-

tode Caenorhabditis elegans, and human chromosome 14 were evaluated with the golden

standard tool QUAST. In comparison with other assemblers, GRASShopPER provided con-

tigs that covered the largest part of the genomes and, at the same time, kept good values of

other metrics, e.g., NG50 and misassembly rate.

Introduction

In the last decade, we have witnessed a dynamic evolution of a next generation sequencing

(NGS). Its availability as well as potential has amplified, making it possible to reveal informa-

tion from yet unknown genomes (e.g., panda [1], turkey [2], fungi [3], and bacteria [4]).

Sequencers are now capable of producing billions of short DNA or RNA sequences, called

reads, in a massively parallel manner. Consequently, sequencing takes no longer than a few

days and costs far less than its precursor—the Sanger technology. However, like before, NGS

reads come from random positions of a target genome sequence, and it is still a computational

challenge to reconstruct the target sequence using only the information from the reads or pairs

of reads in the case of the paired-end/mate-pair sequencing protocol. The process of such a

reconstruction is called de novo assembly. Each de novo assembly method is based on a simple

assumption that the reads cover the examined part of a genome and are overlapping one

another. By utilizing the information from the overlaps, the method is able to reconstruct the

genome sequence, approximately. However, if the reads do not cover the whole target, which

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Swiercz A, Frohmberg W, Kierzynka M,

Wojciechowski P, Zurkowski P, Badura J, et al.

(2018) GRASShopPER—An algorithm for de novo

assembly based on GPU alignments. PLoS ONE 13

(8): e0202355. https://doi.org/10.1371/journal.

pone.0202355

Editor: Ruslan Kalendar, University of Helsinki,

FINLAND

Received: April 16, 2018

Accepted: August 1, 2018

Published: August 16, 2018

Copyright: © 2018 Swiercz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: GRASShopPER is

freely available and can be accessed at: http://

grasshopper.cs.put.poznan.pl/ Data sets used for

the computational experiment are freely accessible.

Data set of Candidatus Microthrix parvicella can be

downloaded at Sequence Read Archive (http://

www.ncbi.nlm.nih.gov/sra, SRA058866, library

accession number is SRX189748). Data set of

Caenorhabditis elegans strain N2 can be

downloaded from the DNA Data Bank of Japan

(http://trace.ddbj.nig.ac.jp/, accession number

DRA000967) The data set of human chromosome

https://doi.org/10.1371/journal.pone.0202355
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202355&domain=pdf&date_stamp=2018-08-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202355&domain=pdf&date_stamp=2018-08-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202355&domain=pdf&date_stamp=2018-08-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202355&domain=pdf&date_stamp=2018-08-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202355&domain=pdf&date_stamp=2018-08-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202355&domain=pdf&date_stamp=2018-08-16
https://doi.org/10.1371/journal.pone.0202355
https://doi.org/10.1371/journal.pone.0202355
http://creativecommons.org/licenses/by/4.0/
http://grasshopper.cs.put.poznan.pl/
http://grasshopper.cs.put.poznan.pl/
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
http://trace.ddbj.nig.ac.jp/

is very likely because of technology limitations, the reconstruction may result in several inde-

pendent sequences called contigs. Yet another problem the assembly method faces is repeti-

tions of genome fragments. This may lead to misassembled genome fragments. From the

computational point of view, the assembly can be seen as a more complicated version of the

Shortest Common Superstring Problem, which is known to be NP-complete [5]. To make

matters worse, the assembly problem has to tackle additional problems like sequencing errors,

hardness in assigning reads to the proper DNA strand, or filtering the input data; for example,

some reads may come from different organisms due to contamination.

Historically, one of the first methods to reconstruct a DNA sequence from shorter frag-

ments was proposed in [6]. The method is related to sequencing by hybridization. This

approach did not stand the test of time, but it initiated the industry of microarrays. The goal of

the method was pretty much the same as in assembly nowadays, namely reconstruction of the

original sequence from a set of its shorter fragments, here called l-mers (l stands for the length

of the fragment). The only difference between l-mers and NGS reads is that the length of the

former is much smaller. Lysov and coauthors modeled the problem as the graph theory prob-

lem of finding a Hamiltonian path. In the graph model, l-mers are associated with vertices and

directed arcs represent their overlapping relations. Another solution of the problem was pro-

vided by Pevzner in [7]. He redefined the graph model to apply the Eulerian path problem,

where l-mers are associated with arcs. Comparison of these two models was addressed ten

years later in [8]. There the properties of labeled graphs, which are directed graphs with labels

in vertices fulfilling special rules of overlapping, were analyzed, with de Bruijn graphs being

one of its natural examples. Lysov graphs and Pevzner graphs are different kinds of subgraphs

of de Bruijn graphs. More relationships between these graphs were explained in [9, 10].

The Pevzner graph model has been exploited in many algorithms for de novo assembly,

which decompose reads into series of l-mers and benefit from such a reduction to the sequenc-

ing by hybridization problem (see e.g., [11–14]). In the literature, such a strategy is called, not

quite justifiably, the de Bruijn graph approach (DBG). Nevertheless, in real world applications

and in contrast to the original Pevzner’s solution, the occurrence of sequencing errors is inevi-

table, and the reconstruction problem becomes computationally harder. Only time- and mem-

ory-efficient heuristic algorithms are capable of dealing with large input data sets within a

reasonable time. The overlap-layout-consensus strategy (OLC), based on the Lysov graph

model, deals with the sequencing errors by allowing overlaps between pairs of reads repre-

sented by arcs to be inexact [15]. This approach has an advantage over the DBG strategy in the

context of quality, as the latter approach partly loses the information about read continuity

after the decomposition to l-mers. In DBG, paths corresponding to reads interweave and a

heuristic algorithm is not able to strictly maintain their initial form. However, the quality

improvement of OLC comes at the cost of memory consumption. OLC graphs (overlap

graphs) need to store the information about overlaps, which is not necessary in DBG where l-
mers themselves imply subsequent l-mers. In some circumstances, the quality of assembly

results is the most crucial factor. For those cases, we find the OLC strategy promising. In fact,

only a few assemblers utilizing this strategy have been developed, probably due to its computa-

tional cost [16–18].

On the other hand, new hardware technologies like graphics processing units (GPUs) offer

much more computational power than CPUs. To focus our solution on producing high quality

results in a reasonable time, we decided to use the OLC approach and parallelize its most time-

demanding steps on GPUs. These ideas are the background of our new algorithm for de novo

assembly GRASShopPER—GPU overlap GRaph ASSembler using Paired End Reads. A high

performance module for overlap graph creation using graphics cards and a novel method for

forks detection in the graph are the main features that differentiate GRASShopPER from other

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 2 / 23

14 is available at GAGE web page (http://gage.cbcb.

umd.edu/data/Hg_chr14/Data.original/frag_1.fastq.

gz and http://gage.cbcb.umd.edu/data/Hg_chr14/

Data.original/frag_2.fastq.gz).

Funding: This research was supported in part by

the European Regional Development Fund (http://

ec.europa.eu/regional_policy/en/funding/erdf/)

grant no. POIR.04.02.00-30-A004/16 (AS, WF, PW,

JBa, AL, MKa, JBl). The computational experiments

were performed within PLGrid Infrastructure

(http://www.plgrid.pl/en). The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202355
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_1.fastq.gz
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_1.fastq.gz
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_1.fastq.gz
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_2.fastq.gz
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_2.fastq.gz
http://ec.europa.eu/regional_policy/en/funding/erdf/
http://ec.europa.eu/regional_policy/en/funding/erdf/
http://www.plgrid.pl/en

assemblers. We compare our algorithm with other top methods for de novo assembly: SOAP-

denovo2 [13], Velvet [12], Platanus [14], Celera [16], String Graph Assembler (SGA, [18]), and

SPAdes [19]. The data set consists of real NGS data for different types of genomes, starting

from a bacterial genome to a repetitive mammalian genome.

Results

Algorithm overview

GRASShopPER is composed of three main stages (Fig 1). At the beginning, an overlap graph is

constructed from all high quality input reads including their reverse complementary counter-

parts (they constitute vertices of the graph). The part of calculating read overlaps is cut down

to a reasonable minimum by a heuristic algorithm, which selects only those pairs of reads that

are likely to overlap, the so-called promising pairs. The selection is based on the similarity of

characteristics of corresponding k-mers (see section Methods for details). To confirm whether

the promising pairs actually overlap, an exact algorithm for sequence alignment running on

GPUs is executed. Later, in the overlap graph, arcs are created only for those pairs of reads hav-

ing the number of misaligned residues on the overlapping section below an adjustable thresh-

old. The graph is expanded by several improvements toward finding further promising pairs.

For the constructed graph, the algorithm continues with a traversal method in order to find

paths. The algorithm detects forks along its way, and unambiguous paths are translated into

contigs. In the next step, the reads are mapped to contigs to find yet undetected forks by utiliz-

ing information from a wider context. This step allows reducing the misassembly rate and at

the same time only slightly decreases the NG50 measure. At the end, the contigs are prepared

for the scaffolding methods, which expect non-overlapping contigs.

Other assemblers

We have compared GRASShopPER with a few assemblers that are well recognized in the scien-

tific community: Velvet [12], SOAPdenovo2 [13], Platanus [14], SPAdes [19], Celera [16], and

SGA [18]. They were used in the GAGE evaluation of assembly algorithms [20] and in the

Assemblathon competitions [21, 22]. The first four assemblers represent the decomposition-

based graph approach (DBG), and the rest are based on the idea of overlap graphs (OLC). Vel-

vet, although developed in 2008 for very short reads, is still updated and works now with lon-

ger reads as well. It is one of the most popular assemblers and is still used in many de novo
assembly projects [23, 24]. SOAPdenovo2 has been designed to be memory efficient and fast

and still produces very high quality results. The origin of the tool lays in sequencing the giant

panda genome [1]. Platanus was created recently to assemble highly heterozygous diploid

genomes. While resolving bubbles in a de Bruijn graph, it distinguishes between repeated

Fig 1. Diagram of the GRASShopPER assembler. The method has three main steps: construction of the overlap graph, its traversal, and correction of contigs.

https://doi.org/10.1371/journal.pone.0202355.g001

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 3 / 23

https://doi.org/10.1371/journal.pone.0202355.g001
https://doi.org/10.1371/journal.pone.0202355

regions and heterozygosity and uses this information in the scaffolding step (a postassembly

step for ordering non-overlapping contigs). The tool produced one of the highest NG50 values

during the Assemblathon 2 contest and was used in several de novo assembly projects (e.g.,

[25]). SPAdes is the continuation of decomposition-based graphs proposed in [26] and paired

de Bruijn graphs [27]. It uses multisized de Bruijn graph with different lengths of k-mers. It

was tested mainly for small size genomes, like bacterial ones.

Methods following the OLC approach seem to be slightly underestimated. Nonetheless, the

model is still developed in laboratories, which put high impact on the quality of the assembly

results, where longer computation times or higher hardware requirements can be accepted.

An example of this approach is the Celera assembler first released in 1999 [16] and then opti-

mized under different names for different types of sequencers: wgs-assembler (Sanger/Applied

Biosystems), CABOG (454/Roche), or PBcR (PacBio/Oxford). Another OLC-driven assembler

under consideration is String Graph Assembler [18]. Here, read overlaps are calculated with

the use of a compressed substring index based on the Burrows-Wheeler transform (FM-

index), which can be effectively searched for the number of locations of a pattern within the

compressed text. Additionally, the method transforms the graph into a so-called string graph

by removing transitive edges. The method itself is memory- and time-efficient and was used in

a few sequencing projects [28, 29]. We performed multiple tests for each algorithm in order to

optimize the input parameter values for a reliable comparison of the methods.

Data sets for tests

To achieve an unbiased comparison, we performed tests on three data sets differing in read

length, coverage depth, and genome repetitiveness. The first data set is the actinobacteria Can-
didatus Microthrix parvicella, which can be commonly found in biological wastewater treat-

ment plants. The draft of the genome consists of 4.2 Mb and is arranged in 13 scaffolds [23].

Raw reads were downloaded from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/

sra, SRA058866, library accession number is SRX189748). The second data set comes from the

nematode Caenorhabditis elegans strain N2 and was downloaded from the DNA Data Bank of

Japan (http://trace.ddbj.nig.ac.jp/, accession number DRA000967). C. elegans provides a good

test case for assembly methods, because of the completeness of its reference genome and rea-

sonable size of 100 Mb. The third data set is one of the libraries provided in the GAGE bench-

mark, human chromosome 14 [20]. The data is available at GAGE web page (http://gage.cbcb.

umd.edu/data/Hg_chr14/Data.original/frag_1.fastq.gz and http://gage.cbcb.umd.edu/data/

Hg_chr14/Data.original/frag_2.fastq.gz). The length of chromosome 14 is estimated to be 107

Mb; however, due to a large gap of unknown nucleotides (N) at the beginning of the sequence,

its effective length is approximately 90 Mb.

All the data sets contain paired-end read libraries of small insert size. The data were prepro-

cessed before the assembly process. Illumina specific adapters were clipped. Reads containing

‘N’ or not mapping to the reference genome were removed from the libraries. Moreover, the

reads were trimmed and filtered out, leaving those of the minimum average quality value of 30

along 60 consecutive nucleotides for C. elegans. Those values for H. sapiens were 20 along 30

nucleotides, and 30 along 60 for C. Microthrix. The summary of the read libraries and the size

of the reference genomes are presented in Table 1.

Evaluation metrics

Assembled sequences cannot be reliably evaluated with a single measure. There are a few com-

plementary measures that need to be taken into account in the process of assembly method

assessment. In the comparison, we chose the golden standard tool QUAST [30], which comes

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 4 / 23

http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
http://trace.ddbj.nig.ac.jp/
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_1.fastq.gz
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_1.fastq.gz
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_2.fastq.gz
http://gage.cbcb.umd.edu/data/Hg_chr14/Data.original/frag_2.fastq.gz
https://doi.org/10.1371/journal.pone.0202355

with a set of well-established metrics for the assembly problem. Genome fraction is one of the

most important metrics here. It reveals the information on how much of the genome is cov-

ered by the provided contigs. The closer this value is to 100%, the greater number of reference

nucleotides can be reconstructed from the contigs. The next relevant metric is the duplication

ratio. It can be perceived, to some extent, as an orthogonal quantity to genome fraction. Dupli-

cation ratio helps to illustrate the redundancy of the information in contigs. Unfortunately, it

does not take into account the repetitiveness of the genome itself, which may lead to an unjus-

tified penalization of longer contigs just because they may cover alternative paths. One can

view the assembly from yet another perspective by comparing the length of the largest align-

ment. Long continuous sequences are valuable in biological analysis. A similar rationale stands

behind the NG50 and NGA50 metrics; however, they provide more comprehensive informa-

tion not only from a single contig but also by being an aggregation from a number of longest

ones. NG50 determines the length c of the longest contig that together with all the other con-

tigs longer than c constitute, cumulatively, at least 50% of the genome length. The same applies

to NGA50. This one, however, takes into account only these contigs that are successfully

mapped to the reference genome. All the above metrics reward the maximization of the contig

lengths. However, if we only try to extend contigs too heavily, we may end up with sequences

too distinct from the target genome. One of the most important metrics exposing such errors

is the misassembled contig length. It counts the length of all reported contigs that cannot be

mapped continuously to the reference genome. In the evaluation of the assembly results we set

the maximum misassembled contig length as 1 percent of the reference genome length. The

methods having greater misassembled length were not considered in the scaffolding phase. It

is noteworthy that QUAST filters out too short contigs, considering them as relatively uninfor-

mative, in our tests, we set the contig limit to 250 bases. The detailed summary of all the used

metrics can be found at QUAST manual page (http://quast.bioinf.spbau.ru/manual.html). The

heatmap presented in Table 2 is derived directly from QUAST.

Assembly of the Microthrix bacteria

Table 2 presents the comparison of assemblies obtained for the three data sets. In the first part

of the table, the results on the Microthrix bacteria data set are shown. The first observation is

that Celera results seem to be inferior with reference to the three collectively relevant metrics:

genome fraction, largest alignment, and NG50. On the other hand, it generates the largest

number of contigs that are longer than 10 kb. One could also notice that SPAdes produces the

longest contigs, which is reflected in both largest alignment and NGA50. However, this payoff

appears to be at the cost of quality—SPAdes has the highest number of misassembled contigs,

Table 1. Characteristics of paired-end data sets of C. Microthrix parvicella strain Bio17-1, C. elegans and Homo sapiens after the preprocessing of raw reads with the

adapter and low-quality trimming. � corresponds to the depth of coverage calculated for the length of the chromosome without a large gap of ‘N’.

genome C. Microthrix

13 scaffolds

C. elegans
7 chromosomes

H. sapiens
chromosome 14

species bacteria nematode mammal

sequence length 4,202,850 bp 100,267,633 bp 107,043,718 bp

sequencer Illumina GA II Illumina GA IIx Illumina HiSeq 2000

avg. read length 97 bp 109 bp 100 bp

no. of read pairs 2,463,704 30,436,661 12,015,343

avg. depth of cov. 113 66 26�

avg. insert size 312 bp 232 bp 159 bp

st. dev. of insert size 36 bp 56 bp 18 bp

https://doi.org/10.1371/journal.pone.0202355.t001

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 5 / 23

http://quast.bioinf.spbau.ru/manual.html
https://doi.org/10.1371/journal.pone.0202355.t001
https://doi.org/10.1371/journal.pone.0202355

Table 2. Assemblies obtained for three data sets: C. Microthrix, C. elegans, and human chromosome 14 (metrics calculated by QUAST).

Genome statistics GRASShopPER Celera Platanus SGA SOAPdenovo2 Velvet SPAdes

Data set of Candidatus Microthrix parvicella strain Bio17-1

Genome fraction (%) 98.73 89.21 98.38 98.82 98.52 97.86 98.96

Duplication ratio 1.006 1.002 1.017 1.002 1.001 1.000 1.001

Largest alignment 126,696 50,960 25,116 101,782 107,154 166,835 740,450

Total aligned length 4,173,839 3,755,338 4,203,934 4,161,932 4,145,584 4,113,131 4,161,980

NG50 33,570 11,255 5,286 32,697 34,653 78,563 156,137

NG75 16,714 5,614 2,889 18,691 17,879 39,191 104,295

NGA50 33,566 11,013 5,281 32,697 34,653 77,856 151,220

NGA75 16,712 5,528 2,886 18,691 17,879 39,191 88,932

misassembled contigs (length) 4 (11 kb) 4 (32 kb) 1 (6 kb) 3 (37 kb) 1 (31 kb) 6 (330 kb) 5 (370 kb)

no. contigs (> 0 bp) 439 493 2,107 668 949 103 1,297

no. contigs (�250 bp) 336 449 1,395 257 267 103 808

no. contigs (� 1 kb) 254 424 966 215 220 103 64

no. contigs (� 5 kb) 159 256 257 161 157 88 49

no. contigs (� 10 kb) 112 127 66 118 115 75 44

no. contigs (� 25 kb) 57 21 1 56 54 51 30

no. contigs (� 50 kb) 19 1 0 20 21 29 23

Data set of Caenorhabditis elegans

Genome fraction (%) 95.47 78.81 88.39 93.92 92.58 85.61 94.81

Duplication ratio 1.019 1.020 1.004 1.008 1.004 1.004 1.004

Largest alignment 96,261 33,627 63,884 80,404 83,885 58,073 180,696

Total aligned length 97,504,793 80,514,782 88,972,062 94,936,888 93,192,365 85,981,341 95,338,850

NG50 7,772 3,982 4,157 6,618 6,364 7,000 20,063

NG75 2,793 1,789 1,402 2,665 2,486 3,018 8,732

NGA50 7,771 3,903 4,088 6,581 6,313 6,736 18,679

NGA75 2,783 1,700 1,277 2,557 2,325 2,576 7,495

misassembled contigs (length) 142 (177 kb) 524 (2402 kb) 5 (47 kb) 55 (215 kb) 12 (58 kb) 337 (2229 kb) 475 (8519 kb)

no. contigs (> 0 bp) 82,283 21,503 233,557 150,360 160,015 17,510 52,752

no. contigs (� 250 bp) 38,336 20,766 42,224 34,185 33,847 17,510 13,779

no. contigs (� 1 kb) 15,971 20,220 20,742 18,911 19,006 17,510 9,320

no. contigs (� 5 kb) 5,108 4,912 4,328 5,246 5,100 5,897 4,915

no. contigs (� 10 kb) 2,247 1,108 1,572 2,122 2,004 2,278 2,866

no. contigs (� 25 kb) 401 17 167 287 307 202 946

no. contigs (� 50 kb) 39 0 6 14 17 5 244

Data set of human chromosome 14

Genome fraction (%) 92.28 75.96 71.80 88.30 88.99 72.33 93.53

Duplication ratio 1.038 1.005 1.005 1.007 1.007 1.007 1.011

Largest alignment 38,022 39,634 13,122 30,294 28,332 41,564 58,597

Total aligned length 86,648,380 69,025,599 65,344,557 80,527,423 81,146,875 65,606,013 85,602,007

NG50 2,500 2,891 782 2,909 2,418 2,628 4,755

NG75 1,020 1,154 - 1,207 1,000 - 2,260

NGA50 2,500 2,891 782 2,909 2,418 2,628 4,755

NGA75 1,014 1,077 - 1,202 997 - 2,204

misassembled contigs (length) 123 (207 kb) 1110 (5039 kb) 0 (0 kb) 51 (171 kb) 17 (92 kb) 358 (1606 kb) 559 (3601 kb)

no. contigs (> 0 bp) 81,314 21,003 574,441 97,520 239,297 21,153 62,461

no. contigs (� 250 bp) 64,638 20,930 72,766 40,353 48,947 21,153 29,935

no. contigs (� 1 kb) 24,310 20,880 21,035 22,930 24,237 21,153 19,521

(Continued)

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 6 / 23

https://doi.org/10.1371/journal.pone.0202355

having significantly larger cumulative length (e.g. 10 times larger than SGA has). Velvet

obtained the second longest aligned contigs and NGA50 value. Similarily to SPAdes, contig

length bloat induced radical increase of observed misassembly rate in comparison to other

methods. Another conclusion can be drawn from Platanus results. Basing on relatively low

NG50 and extremely short largest alignment, one can get the impression that its contigs are

highly shredded. Still, the results of Platanus are interesting, because of a decent genome frac-

tion and high quality results with a very low misassembly rate. SGA, SOAPdenovo2, and

GRASShopPER produce results with quite similar reasonable values on all considered metrics.

They all cover nearly 99% of the reference genome. The largest alignment of these methods

exceeds 100 kb.

Some of these remarks can also be observed in Fig 2A and 2B. The first figure exposes corre-

lation between the distribution of the NG(X) lengths and the genome coverage, while the sec-

ond one is a function of the genome coverage and the length of misassembled contigs for each

assembler. The NG(X) is a length of the contig that combined with all longer contigs covers X

% of the genome. For example, Platanus covers 20% of the genome with contigs of length 10

kb or longer, while for SGA, SOAPdenovo2, and GRASShopPER the contig length is almost

100 kb. Each line drops down to zero on the right side of the graph in the place corresponding

to the aggregated length of all contigs. The rugged lines in this graph are due to the fact that

the longest contigs cover a significant percentage of this short genome, which is expressed as

the steps, more visible on the left side of the graph where larger contigs are placed. The figure

is informative, but one should not evaluate the methods based only on it. Otherwise, one

would give the highest score to SPAdes and the lowest to Platanus. What we observed previ-

ously in Table 2, by looking at the misassembly rate, was the opposite. Also the second figure

(Fig 2B) confirms that misassembled contigs highly impact on the genome coverage. The X

axis stands for the misassembled contig lengths that are taken into account in calculating the

genome coverage. Zero means there no tolerance for misassemblies—this corresponds to the

rigorous situation when each partly valuable information concealed in a contig should not par-

ticipate in the genome coverage. On the right-hand side of the chart we restricted the misas-

sembled contig length to 1 percent of the genome length, assuming that greater values lead to

too low quality results. The observable steps in the chart originate from the length of misas-

sembled contigs, the longer the contig, the longer the step is. On the other hand, the height of

the step depends on the length of the reference genome fragment it covers. For example, the

longest misassembled contig produced by SGA is almost of 0.6% of genome length, that is why

the first step starts around 0.6. Platanus has very low misassembly rate, and its line ends at

approximately 0.15% of the genome length. SPAdes and Velvet output very high misassembly

rate, approximately 8% of the genome length, and the longest misassembled contig exceeds

1%. This is the reason why we observe just the straight lines for the two methods without any

steps. Only three methods: GRASShopPER, SGA and SOAPdenovo2, which are in the middle

of the NG ranking, yet not superior for any measure, provide a balanced trade-off between

contigs/NG lengths and the assembly quality/genome fraction.

Table 2. (Continued)

Genome statistics GRASShopPER Celera Platanus SGA SOAPdenovo2 Velvet SPAdes

no. contigs (� 5 kb) 2,988 3,607 259 3,460 2,830 3,398 4,796

no. contigs (� 10 kb) 468 559 1 525 390 651 1,354

no. contigs (� 25 kb) 7 4 0 12 1 10 105

no. contigs (� 50 kb) 0 0 0 0 0 0 1

https://doi.org/10.1371/journal.pone.0202355.t002

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 7 / 23

https://doi.org/10.1371/journal.pone.0202355.t002
https://doi.org/10.1371/journal.pone.0202355

Fig 2. Values of NG(X) and the genome coverage as a function of the misassembled contigs length. (A) Values of NG(X) for C. Microthrix data set.

(B) Genome coverage and misassemblies for C. Microthrix data set. (C) Values of NG(X) for C. elegans data set. (D) Genome coverage and misassemblies

for C. elegans data set. (E) Values of NG(X) for human data set. (F) Genome coverage and misassemblies for human data set.

https://doi.org/10.1371/journal.pone.0202355.g002

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 8 / 23

https://doi.org/10.1371/journal.pone.0202355.g002
https://doi.org/10.1371/journal.pone.0202355

Assembly of the nematode C. elegans
The genome of Microthrix is relatively small. In this context, the C. elegans data set represents

a more challenging test case (results are presented in the second part of Table 2). It is quite

obvious that a longer genome entails a longer overall length of misassemblies; however, results

of SPAdes, Celera and Velvet in this matter are a bit disturbing. SPAdes obtained misassem-

bled contigs of length over 8.5 Mb, while both, Celera and Velvet, produced bad contigs of

cumulative length exceeding 2 Mb, which for the genome consisting of approximately 100 Mb

is considerably below expectations. Even bigger disappointment comes from the Celera con-

tigs genome fraction, which together with its outlying result on the largest alignment and

NG50 makes Celera inferior on this data set. The same does not apply to Velvet, which,

although also has relatively low genome fraction, provides a satisfactory NG50 value. On con-

trary, SPAdes outputs the largest alignment, the highest NG50 value, and second best genome

fraction. Platanus acts here a bit unexpectedly, as it does not cover the genome to a large degree

(only 88.4%). On the other hand, it has remarkably low misassembled contig length. Again,

it is hard to find the favorite between SGA and SOAPdenovo2. They both cover the genome

well and produce quite long contigs, while SOAPdenovo2 has a bit better quality. This time

GRASShopPER beats all its opponents in the genome fraction, keeping high values of largest

alignment, NG� statistics, and the number of contigs longer than 50 kb. However, the method

results in a little higher rate of duplicated information inside contigs. The distribution of NG

lengths presented in Fig 2C confirms that, although, SPAdes outperforms other assemblers in

NG(X) metrics due to forcing to contig length bloat, it suffers from poor misassemblies metrics

(Fig 2D) and thus provides results of a lower quality. Apart from SPAdes, also Velvet and Cel-

era give a high misassembly rate, which drastically decreases genome coverage when consider-

ing only good quality contigs.

Assembly of human chromosome 14

The last tests were performed to provide reliable quality assessment of all the methods on an

even more challenging data set, the 14th human chromosome. The tests confirmed that Plata-

nus scatters its contigs to a large degree, at the same time yielding an incredible quality result

without a single misassembled contig. The low genome fraction rate might be due to the fact

that only contigs longer than 250 bp are taken into account by QUAST. In the case of Platanus,

only 13% of produced contigs (574 k) are longer than the minimum meaningful length. The

second method that produced a high number of very short contigs was SOAPdenovo2, for

which only 20% of contigs were longer than 250 bp.

The data set of human chromosome 14 has the lowest depth of coverage among the three

tested sets. Most likely, this is the reason for the smallest genome fraction and NG values,

although the lengths of human chromosome 14 and of the C. elegans genome are similar. Nev-

ertheless, SPAdes and GRASShopPER have become a leader, covering 93.5% and 92.3% of the

genome, respecitively, 4-5% more than the SGA and SOAPdenovo2 assemblers, and approxi-

mately 20% more than the other three methods. This can be easily observed in Fig 2E, by the

sudden drop down to zero for NG lengths, much before the GRASShopPER method. Among

the assemblers covering more than 80% of the chromosome, SPAdes and SGA are outstanding

in NG values, although SPAdes achieved this high rank at the cost of a very high misassembled

contig rate (3.4% of the chromosome length). NG75 values could not be computed for Plata-

nus and Velvet, as their genome coverage is below 75%. We can observe that the longest align-

ments, observed for SPAdes, Velvet and Celera, strongly affect the length of misassembled

contigs (Table 2 and Fig 2F). In this context, GRASShopPER is the best assembler that does

not exceed with its misassembled contigs 1% of the chromosome length.

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 9 / 23

https://doi.org/10.1371/journal.pone.0202355

The three data sets provide a wide variety of benchmark test cases. The libraries vary in the

reference genome length and coverage. We could see that the methods which are superior in

one or two metrics are the worst in the others. Some of the methods were working well for one

of the data sets (e.g., Velvet for the high coverage data set of the Microthrix bacteria) but

resulted in much lower genome fraction for other sets. Moreover, none of the methods could

be seen as the worst in terms of one criterion in all tested cases. All of the metrics provided by

QUAST are presented in S1–S3 Tables.

We selected two assemblers that achieved high genome coverage and behaved reasonably

well on other metrics (where misassembled contig length did not exceed 1% of the genome

length) across the tested instances, SGA and SOAPdenovo2. These two methods were further

compared with GRASShopPER in the scaffolding phase.

Scaffolding

In the last phase of the process of reconstructing a genome, scaffolding, contigs may be further

joined on the basis of paired-end reads. We used freely accessible scaffolding tools [31], and

chose two of them that produce the best results for the selected assemblers: SSPACE [32] and

SOAPdenovo2 scaffolding module. SSPACE is a greedy approach. It starts from extending the

longest contig as long as there are some read pairs supporting the extension. Next, it continues

with the remaining largest contig. SOAPdenovo2 is a topology-based approach that establishes

a relationship between the contigs. Heterozygous contigs are detected and only the contigs

with higher depth of coverage remain in the scaffolds, which reduce the impact of heterozygos-

ity on the scaffold lengths.

In Table 3, we provide the results for the best combinations of assembler and scaffolder.

The remaining results are accessible in S4–S6 Tables. While choosing the best scaffolder for

each assembler, we were not taking into account just a single metric. We wanted the scaffolds

to be long and of high quality, i.e., not providing a large amount of misassemblies. Hence, the

selected scaffolder is not always the same for a given assembler for the tested data sets.

In the tests of the scaffolding phase, we were using contigs produced by GRASShopPER

with the postprocessing step switched on, which reduced the redundancy at the ends of con-

tigs. The necessity of this additional step is required, because scaffolders do not take into

account that the ends of contigs might overlap and align them one after another. This produces

Table 3. Scaffolding of the three data sets for the assemblers GRASShopPER, SOAPdenovo2, and SGA with the best combination of scaffolders SSPACE and SOAP-

denovo2 (metrics calculated by QUAST).

Assembler Scaffolder Genome fraction (%) Largest alignment Total aligned length NG50 NG75 Misassembled scaffolds (length)

Data set of Candidatus Microthrix parvicella strain Bio17-1

GRASShopPER SSPACE 98.602 126,696 4,165,836 33,570 16,714 4 (11 kb)

SGA SSPACE 98.819 101,782 4,161,932 32,697 18,691 3 (37 kb)

SOAPdenovo2 SOAPdenovo2 98.522 107,154 4,145,584 34,653 17,879 1 (31 kb)

Data set of Caenorhabditis elegans
GRASShopPER SOAPdenovo2 95.357 126,121 97,363,265 11,352 4306 461 (1,2 Mb)

SGA SOAPdenovo2 94.037 105,248 94,990,734 10,187 4149 443 (1,2 Mb)

SOAPdenovo2 SSPACE 93.549 119,149 93,929,080 12,859 4920 95 (838 kb)

Data set of human chromosome 14

GRASShopPER SSPACE 92.275 38,022 86,645,202 2500 1020 123 (207 kb)

SGA SSPACE 88.586 35,224 81,213,834 3040 1289 114 (268 kb)

SOAPdenovo2 SOAPdenovo2 89.582 33,186 81,612,904 2894 1206 31 (130 kb)

https://doi.org/10.1371/journal.pone.0202355.t003

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 10 / 23

https://doi.org/10.1371/journal.pone.0202355.t003
https://doi.org/10.1371/journal.pone.0202355

an extra few dozen of nucleotides repeated twice inside a scaffold. This issue is explained in

detail in the Methods section.

A few selected metrics for the scaffolding results are presented in Table 3, while the distri-

bution of the number of scaffolds of a given length is presented in Fig 3A, 3B and 3C.

In the first part of Table 3, the summary results of scaffolding for the C. Microthrix data set

are given. Both scaffolders, SOAPdenovo2 and SSPACE, gave similar results (see S4 Table) for

all assembly methods, which, additionally, were not very different from the original contigs.

Genome coverage, NG statistics, and the largest alignment remained the same as for the input

contigs (in the case of GRASShopPER, compare the contigs after the postprocessing step in S4

Table). The only difference was in reducing the number of very small contigs (< 250 bp) in the

case of the combination of the SOAPdenovo2 assembler and a scaffolder. These contigs were

either merged into scaffold sequences, which could not be observed by the generalized statis-

tics, or rejected by the scaffolder. The reason for the invariability of the results before and after

the scaffolding phase might be the rather short genome length, 4 Mbp, and its division into 13

fragments, its low repetitiveness, and high coverage of the input reads. The assemblers have

obtained contigs that were not further elongated by the scaffolders.

The second part of Table 3 and S5 Table provide the results of scaffolding for the C. elegans
data set. In this case, the scaffolders have improved the results for every input contig set. The

best combination of greatest NG values and smallest misassembled scaffold length was

obtained for the SOAPdenovo2 assembler with the SSPACE scaffolder, although, the

Fig 3. Numbers of scaffolds. (A) Number of scaffolds of a given length for C. Microthrix data set. (B) Number of scaffolds of a given length for C. elegans data set. (C)

Number of scaffolds of a given length for human data set.

https://doi.org/10.1371/journal.pone.0202355.g003

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0202355.g003
https://doi.org/10.1371/journal.pone.0202355

misassembly rate is much higher than for the assembly results (838 kb vs. 58 kb). Both GRASS-

hopPER and SGA worked better with the SOAPdenovo2 scaffolder, obtaining NG50 lengths

of 11 kb for GRASShopPER and 10 kb for SGA. The cumulative length of misassembled

scaffold sequences reached the value 1.2 Mb for both methods. The postprocessing step for

GRASShopPER, which cut the overlapping ends of the contigs, allowed reducing significantly

the misassembled length from 3.6 Mb (see S5 Table). GRASShopPER again outperformed all

the methods in the genome coverage and the aligned scaffold lengths.

The last part of Table 3 and S6 Table provide the comparison of scaffolding made for

human chromosome 14. Scaffolders were not able to improve results of GRASShopPER.

However, its highest rate of genome coverage and largest alignment is preserved. The greatest

NG50 was achieved this time by the combination of the SGA assembler and the SSPACE scaf-

folder. It should be noticed that even though the lengths of the C. elegans genome and human

chromosome 14 are similar, their statistics are very different. The NG50 scaffold length for C.
elegans is approximately 11 kb, while for human it is hardly more than 3 kb in the best case.

The human genome is more repetitive, and, in this specific data set, we had a much smaller

depth of coverage than for C. elegans. Thus, there might be many more places with much

lower read coverage, which prevents us from reconstructing longer contiguous sequences.

Test environment

The computational tests were done in the Poznan Supercomputing and Networking Center on

a cluster named moss, which is a part of the Polish Grid Infrastructure (PL-Grid). Moss pro-

vides six highly specialized nodes for heterogeneous computing, each equipped with two gen-

eral purpose graphics processing units (GPGPUs), between 256 and 512 GB RAM, and two

CPUs. Whenever possible, all the methods were run on one node with 16 cores. The parame-

ters of all the methods used in the computational experiment are given in S1 Text.

Resources used in the assembly process of C. Microthrix, C.elegans, and H.sapiens chromo-

some 14 by GRASShopPER were 25 minutes/17 GB RAM in peak, 4579 minutes/335 GB RAM

in peak, and 603 minutes/82 GB RAM in peak, respectively. For other assemblers, the time

and memory requirements were (in peak, either for C. elegans or H. sapiens chr. 14): 2270 min-

utes/422 GB RAM for Celera, 519 minutes/65 GB RAM for SPAdes, 370 minutes/29 GB RAM

for Velvet, 124 minutes/7 GB RAM for SGA, 76 minutes/15 GB RAM for Platanus, and 33

minutes/11 GB RAM for SOAPdenovo2.

Discussion

We are reporting on GRASShopPER, an overlap graph assembler employing GPUs, which

uses information from paired-end reads for resolving repetitions in a genome sequence.

GRASShopPER is based on the OLC approach, which does not lose information by decompos-

ing input reads into k-mers, but, at the same time, is more time and memory demanding than

the DBG approach. We use a very efficient GPU implementation of the reads alignment algo-

rithm for calculating the scores and shifts on the arcs of the graph. We introduce a two-part

fork detection strategy, which highly reduces misassemblies in the resulting contigs. The first

part is carried out during the traversal of the graph. In the second part, a greedy hyper-heuris-

tic finds undetected forks on the basis of paired-end read information.

The assemblies of the data sets of bacteria C. Microthrix, nematode C. elegans, and human

chromosome 14, were evaluated with the golden standard tool QUAST. We observed that

GRASShopPER produced contigs that covered the largest part of the genomes (metric ‘genome

fraction’) and usually had a few percent more coverage than other methods (Table 2). The

largest difference was observed in the case of the data set of human chromosome 14 with the

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 12 / 23

https://doi.org/10.1371/journal.pone.0202355

lowest depth of coverage, for which Platanus obtained even 20% less of the genome fraction

coverage than our method. Among the tested assemblers, Velvet and Celera produced contigs

with the lowest coverage and highest misassembly rate. On the other hand, both methods were

superior on NG(X) length—Velvet for C. Microthrix and Celera for human chromosome 14

data set. SPAdes for all tested data sets output the longest alignments and the highest NG50

and NG75, but at the same time the quality of these contigs was very low—the assembler gives

the greatest misassemblied contig lengths, reaching in total even 8.5% of the genome length.

Platanus, and in some cases also SOAPdenovo2, produced a huge amount of contigs shorter

than 250 bp, which was the minimum length threshold for QUAST, and thus were not consid-

ered in the statistics. This highly influenced the lower genome fraction of Platanus. However,

one may wonder if the information given in 500 thousand contigs (in the case of the human

data set), a little longer than the input reads, is of any value. The two methods, Velvet and Cel-

era, output only (or mostly) contigs longer than 1 kb. This fact could be easily observed in Fig

2, which shows that at NG(X) equal to approximately 1 kb, there is a sudden drop of the line

toward zero. The other three methods, GRASShopPER, SOAPdenovo2, and SGA, behave rea-

sonably well for all considered statistics and for all tested data sets, providing high quality and

long contigs that covered the largest part of the considered genomes.

The further step of scaffolding with the use of external tools SSPACE and SOAPdenovo2

revealed that only for the C. elegans data set the scaffolding tools were able to markedly

improve the results by merging and lengthening the contigs. In the case of this data set, the

SOAPdenovo2 assembler worked better with the SSPACE scaffolder, while GRASShopPER

and SGA gave better results with the SOAPdenovo2 scaffolder. For the other data sets, with

less depth of coverage, it was the opposite—GRASShopPER and SGA worked better with

SSPACE scaffolder and SOAPdenovo2 assembler with its original scaffolder. Results obtained

for all combinations of the tools are listed in S4–S6 Tables.

Among the three best performing assemblers, SGA, SOAPdenovo2, and GRASShopPER,

the latter one achieved the highest rates in the context of genome coverage and alignment

length for C. elegans and human chromosome 14, with a moderate misassembly rate. For C.

Microthrix, it keeps its position regarding the largest alignment, with the lowest misassembly

rate, and shares the leadership on other metrics.

Although the new method presented in the article is not the most efficient among the tested

assemblers with respect to memory and time usage, it represents the overlap-layout-consensus

strategy, which is considered to be more accurate. Due to its precision, the OLC strategy

requires more time and memory resources. It is especially noticeable in the graph construction

step, where the method needs to remember reads on vertices and calculate the alignment of

the pairs of reads to decide to what extent the reads overlap one another. Moreover, the

method does not lose the information about reads continuity caused by the decomposition

into shorter k-mers, as entire reads are stored in the graph vertices. This is particularly impor-

tant in the case of repetitions of short DNA fragments. We find the OLC strategy to be the

future of the assembly of long read data sets produced by third generation sequencers, such as,

for example, Pacific Biosiences or Oxford Nanopore.

Methods

Overlap graph construction

In the overlap graph, every read and its reverse complementary counterpart are represented

by a double vertex. To differentiate a read with distinct paired-end reads, even if the read

sequences are identical, they are considered separately. The goal of the graph construction is

to connect vertices by arcs when corresponding reads overlap. The problem is not only in

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0202355

erroneous reads, which impose the need for inexact comparison, but also in their number.

Because of the latter, it is not feasible in practice to compare every sequence with each other.

Therefore, a method is needed for an efficient preselection of overlapping reads. The most

important step of the preselection adopts the k-mer characteristic as an indicator of the simi-

larity between reads. To be more precise, given the length l of a read, the maximum number

of extracted k-mers is equal to l − k + 1. However, if a k-mer occurs multiple times within a

sequence, it appears only once in its characteristic—but with an increased counter. After

extracting k-mers from a sequence, they are sorted internally (within each characteristic) in

descending order according to their numbers of occurrence. Next, all the k-mer characteristics

are sorted alphabetically, just like words in a dictionary. As the most distinguishing k-mers

were put in front, a chance that neighboring characteristics refer to overlapping sequences is

very high. We observed that if two sequences overlap on at least half of their length, then their

k-mer characteristics are very close to each other once sorted. On the other hand, the charac-

teristics tend to drift apart for those sequences that overlap on a relatively short segment only.

To address this issue, we introduced partial characteristics in which k-mers are extracted only

from selected parts of a sequence, i.e, the beginning, center, or the end of a read. The sorting

procedures and further steps are the same as in the first scenario.

Pairs of reads laying within a given neighborhood are called promising pairs. The size of the

neighborhood on the sorted lists is a parameter of the method. To verify the overlapping prop-

erty of the promising pairs, we align the corresponding pairs of reads using a semi-global ver-

sion of the Needleman-Wunsch algorithm (NW), which finds optimal alignments. This is a

relatively time-consuming method, but it is applicable since we use a very efficient implemen-

tation on the GPU platform, the G-DNA library [33]. At the output of the method, we get

the alignment score and the so-called shift value for each pair of tested reads. Those pairs, for

which the overlap is sufficiently long and the number of alignment errors is below a given

threshold, are connected by an arc in the graph model.

As already mentioned, the k-mer characteristic-based selection is only one of the steps to

preselect pairs of reads that are likely to overlap. A sketch of the entire method is presented in

Fig 4. One of the next steps is the smallest lexicographical index method. It selects two descrip-

tors for each read, one for the first half and the other for the second half of a read. The descrip-

tor is defined here as the lexicographically smallest subsequence of a fixed length, usually

between 12 and 20 nucleotides. Reads having the same descriptors are marked as promising

pairs and their overlapping is verified with the G-DNA library. The next step takes into

account the information given in paired-end reads. Assume we have two paired-end reads: A
paired with A0 and B paired with B0. If A and B overlap, then A0 and B0 may overlap as well.

Therefore, all such pairs (A0, B0) become promising and the algorithm verifies their alignment.

The next step compares direct successors of vertices. Let A, B and C denote reads. If A overlaps

B and A overlaps C, then B and C are marked as a promising pair and the GPU-based algo-

rithm verifies the quality of the alignment. The last step verifies the reverse complementary

sequence alignment. Let A and B denote sequences, and let �A and �B be their reverse comple-

mentary counterparts, respectively. If A and B do overlap, then �A and �B must overlap too.

In this case, alignment-based verification is needed only to check a shift between reads to dis-

cover an exact number of errors inside the alignment (without the expensive procedure of

backtracing).

Graph traversal

When the overlap graph is created, the GRASShopPER algorithm can start the traversal phase

in search of unambiguous paths. In case of graphs for complicated genomes (containing many

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 14 / 23

https://doi.org/10.1371/journal.pone.0202355

Fig 4. Graph construction algorithm.

https://doi.org/10.1371/journal.pone.0202355.g004

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 15 / 23

https://doi.org/10.1371/journal.pone.0202355.g004
https://doi.org/10.1371/journal.pone.0202355

repetitive regions) constructed on erroneous sequence sets, we may encounter a number of

difficulties to detect ambiguities. Those fragments of the graph usually form fork-like struc-

tures, where at one point of the search phase one must choose between two or more paths that

are equally possible. The forks being a result of sequencing errors must be ignored or carefully

handled.

The traversal algorithm selects multiple random starting points for contigs and extends

them in both directions. Instead of a single vertex, we operate on a set of vertices, called the

state, which were recently added to the path. Vertices from the state vote for candidates for

extension, being their direct successors, and a weighted sum of the votes determines the score

of a candidate. Therefore, it is not likely that a single wrongly chosen vertex affects the whole

path. Every iteration of the traversal algorithm ends with the selection of the candidate with

the highest score and adds it to the state.

Let S = s1, s2, . . ., sr be a state, which is a list of r most recently added vertices si to the currently

traversed contig and let C be a list of candidates considered as successors. C ¼ [r
i¼1

outðsiÞ,

where out(si) is the set of vertices being successors of si in the graph. The size r of the state is

dynamically adjusted based on the graph density and the level of overlaps of vertices being con-

sidered as a premise to form an arc. Whenever the overlap between s1 and sr is smaller than the

required sequence overlap between vertices from the state, the oldest vertex in the state (s1) is

removed. This way the state contains all and only the meaningful vertices—the ones that can

contribute to the selection.

The candidate successor is chosen on the basis of the scoring function, which weights the

votes of the predecessors of candidates by the level of similarities concealed in arcs. The scor-

ing function sums the overlaps of all the supporting arcs and, therefore, promotes candidates

supported by newest vertices in the state.

Fork detection

The main source of forks in DNA overlap graphs is the occurence of errors in the sequenced

reads, single nucleotide polymorphisms (SNPs), and repeated regions of a genome. All

three cases result in similar graph structures, but it is possible to differentiate among them.

Sequencing errors are the easiest to detect and resolve, because they most often have a very

low confirmation in the neighboring sequences, e.g., one of the branches ends up shortly

after the fork, while in case of repetitions it does not. SNP branches join back together

right after the fork, so it is possible to detect them too. When it comes to repetitive frag-

ments, one needs to be very cautious, because both paths may appear to be equally accurate.

Unfortunately, looking from the whole genome perspective, further traversal might lead

to incorrect contigs. Therefore, the algorithm must stop traversing the path each time an

unsolvable fork is detected. Following a random path on consecutive forks most often results

in a misassembly. In the rest of the section, we focus mainly on branches that come from

repetitive fragments.

The algorithm detects two types of forks: forward and backward. A forward fork occurs

when graph traversal along one path creates a possibility of going to two or more different

paths. A backward fork occurs when two (or more) paths merge into one in the graph.

While approaching a forward fork, C contains vertices from two (or more) paths (Fig 5A).

At this point, we are not aware of the existence of a fork ahead of us, the fork is detected once

the whole state is placed entirely on one of the paths after crossing the branch and there is no

candidate on the other paths. When the first candidate from one of the distinct paths is chosen

(Fig 5B), the scores on all branches are modified and higher scores are assigned to candidates

on the selected branch. Hence, they are more likely to be selected as a subsequent contig

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 16 / 23

https://doi.org/10.1371/journal.pone.0202355

vertices. When the last vertex that has successors in more than one branch is removed from

the state, a group of candidates that belong to the other path (or paths) is also removed (Fig

5C). This confirms the existence of a fork and suggests a cut of the path directly before the

state. However, if not all arcs are detected during the graph construction phase and dropped

vertices have connections to the vertices from S, we may mistakenly detect a fork while the

dropped vertices should be included in the current path. Thus, it is necessary to countercheck

that there is no arc between vertices from the removed group to the state, otherwise we may

mistakenly detect a ‘jump’ over skipped vertices.

Fig 5. An example of the fork detection made by the algorithm. The ordered vertices are already in a path (A). Vertices from the

state are in the path and they vote for the candidates, which could extend the current path (A, B). When all the vertices from the state

are moved toward one branch of the fork, and many candidates from the other branch are lost, the algorithm cuts the current path at

the beginning of the fork (C).

https://doi.org/10.1371/journal.pone.0202355.g005

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0202355.g005
https://doi.org/10.1371/journal.pone.0202355

Detection of the backward fork follows similar rules as for the forward fork. Compared to

forward forks, which expect the removal of candidates—backward forks expect the addition of

candidates in the situation when the state enters the vertex common for both branches of the

backward fork. To confirm the fork—for the same reason as above—we have to verify the non-

existence of arcs in the other direction. The number of dropped candidates from one branch,

which is a threshold that allows detecting a fork, is adjusted dynamically, based on genome

coverage in a given region of the graph and on the overall distribution of coverage in the whole

data set.

As mentioned earlier, forks in the graph occur not only due to repetitive regions, but also

due to errors and SNPs. Therefore, some additional checks have to be introduced to recognize

the second type of forks. To ignore the second type of forks, which usually make contigs short,

the algorithm compares the candidate sets from all branches. If they have a significant number

of similar candidates, the fork is discarded.

Contig correction

Although the fork detection step already identifies most of the alternative paths of the overlap

graph, it operates only on the local context of reads, i.e., overlaps, and does not apply the infor-

mation from paired-end sequencing. The contig correction step improves the quality of the

contigs by cutting them at the point where the paired-end data suggest anomalies in overlaps.

There are two main types of anomalies that can be detected:

(i). incoherence in paired-end reads continuity (Fig 6),

(ii). excessive density of paired-end reads pointing to different contigs or to distant parts of

the same contig (Fig 7).

To find both types of anomalies, we developed a hyper-heuristic-driven algorithm. A

hyper-heuristic method does not operate on the solution directly but uses simple procedures,

called low-level heuristics, which modify a solution and are evaluated by a function. The algo-

rithm can learn during the search process, whose procedure is better for a particular instance

Fig 6. Contigs correction. Visualization of breaks in the continuity of paired-end information (shown as arches) on a real data set, mapped to a contig created by the

traversal step.

https://doi.org/10.1371/journal.pone.0202355.g006

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 18 / 23

https://doi.org/10.1371/journal.pone.0202355.g006
https://doi.org/10.1371/journal.pone.0202355

or at a particular time (more on hyper-heuristics can be found in [34–36]). Hyper-heuristics

have already been successfully applied to some bioinformatics problems (e.g., [37–39]).

In our approach, a hyper-heuristic is a greedy algorithm, which operates on two low-level

procedures. The first one detects the gap between paired-end reads that are consecutively

mapped to a contig (anomaly (i)). The second one searches for pairs of reads, which are

mapped within a far distance (anomaly (ii)).

The method is parameterized to adjust to different properties of the input data (e.g., low

coverage or high insert size). Parameters allow defining the minimal continuity break width to

be considered as an anomaly, set the threshold on the number of pairs of reads matched to dif-

ferent contigs to be considered as significant, or declare the minimum and maximum insert

size in the data (see S1 Text for the reference to the complete list of the algorithm parameters).

As the output of the hyper-heuristic method, we get a set of contig cuts that potentially reduce

the misassembly rate.

Contig trimming

When contigs are ready, the next step is to compose them into scaffolds. In contrast to the

stage of contig correction, paired-end information is used here to merge contigs together

instead of splitting them apart. To perform the scaffolding, we use external tools. The main

assumption of the available scaffolding methods is that the input contigs do not overlap.

GRASShopPER does not provide non-overlapping contigs out of the box. This is caused by the

specific data abstraction of the OLC strategy. OLC does not operate on the nucleotide level,

but instead wraps the reads in an additional layer of indirection. They become vertices with

Fig 7. Contigs correction. Histogram visualizing the number of reads mapped to a given contig region and having the other read

from the pair mapped to a different contig or a distant part of the same contig.

https://doi.org/10.1371/journal.pone.0202355.g007

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 19 / 23

https://doi.org/10.1371/journal.pone.0202355.g007
https://doi.org/10.1371/journal.pone.0202355

arcs representing overlaps. At this stage, one does not even need to load nucleic acid sequences

of reads. However, there is a drawback—the exact position of the fork in the consensus align-

ment cannot be precisely indicated. Therefore, GRASShopPER contigs may not fulfill the

expectations of the scaffolding methods. This is why there was a need to provide yet another

step, contig trimming.

As overlaps in contigs produced by GRASShopPER are placed very close to the ends of the

contigs, they are relatively easy to locate. However, one has to be extra cautious, because simply

cutting them off from the contigs may bring undesirable consequences on the genome fraction

metric. The problem is with possibly nearly located forks. It would lead to excessive scatter of

contigs and loss of information from the shortest ones (see Fig 8). This is due to the fact that

most of the scaffolding methods never take short contigs into account. Our approach attempts

to minimize this effect.

The contig trimming method uses reads-to-contigs mapping to find repeated regions in

the contigs. When it finds one, it performs the analysis whether a potential cutoff can cause

genome fraction loss. If removing the region from one of the contigs shortens it too much, the

method tries to cut the region off from the other considered contig. If also this one is not long

enough, the contigs are left untouched to protect the valuable information.

Supporting information

S1 Table. Assemblies obtained for the data set Candidatus Microthrix parvicella strain

Bio17-1.

(DOCX)

S2 Table. Assemblies obtained for the data set Caenorhabditis elegans strain N2.

(DOCX)

S3 Table. Assemblies obtained for the data set Homo sapiens chromosome 14.

(DOCX)

S4 Table. Scaffolding of the data set Candidatus Microthrix parvicella strain Bio17-1 for

the assemblers GRASShopPER, SOAPdenovo2 and SGA with the combination of

Fig 8. Visualization of the problem caused by closely located forks.

https://doi.org/10.1371/journal.pone.0202355.g008

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 20 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202355.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202355.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202355.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202355.s004
https://doi.org/10.1371/journal.pone.0202355.g008
https://doi.org/10.1371/journal.pone.0202355

scaffolders SSPACE and SOAPdenovo2.

(DOCX)

S5 Table. Scaffolding of the data set Caenorhabditis elegans strain N2 for the assemblers

GRASShopPER, SOAPdenovo2 and SGA with the combination of scaffolders SSPACE and

SOAPdenovo2.

(DOCX)

S6 Table. Scaffolding of the data set Homo sapiens chromosome 14 for the assemblers

GRASShopPER, SOAPdenovo2 and SGA with the combination of scaffolders SSPACE and

SOAPdenovo2.

(DOCX)

S1 Text. Algorithm parameters. The list of GRASShopPER parameters. Description of how

to run GRASShopPER. Parameters of all the methods used throughout computational experi-

ment.

(DOCX)

Author Contributions

Conceptualization: Aleksandra Swiercz, Wojciech Frohmberg, Michal Kierzynka, Pawel Woj-

ciechowski, Marta Kasprzak, Jacek Blazewicz.

Data curation: Aleksandra Swiercz, Michal Kierzynka.

Funding acquisition: Jacek Blazewicz.

Methodology: Aleksandra Swiercz, Pawel Wojciechowski.

Resources: Pawel Wojciechowski.

Software: Wojciech Frohmberg, Michal Kierzynka, Piotr Zurkowski.

Supervision: Aleksandra Swiercz, Marta Kasprzak.

Validation: Wojciech Frohmberg, Jan Badura, Artur Laskowski.

Visualization: Aleksandra Swiercz, Wojciech Frohmberg, Jan Badura, Artur Laskowski.

Writing – original draft: Aleksandra Swiercz, Wojciech Frohmberg.

Writing – review & editing: Aleksandra Swiercz, Wojciech Frohmberg, Michal Kierzynka,

Pawel Wojciechowski, Piotr Zurkowski, Jan Badura, Artur Laskowski, Marta Kasprzak,

Jacek Blazewicz.

References
1. Li R, Tan W, Tian G, Zhu H, He L, Cai J, et al. The sequence and de novo assembly of giant panda

genome. Nature. 2010; 463:311–317. https://doi.org/10.1038/nature08696 PMID: 20010809

2. Dalloul R, Long J, Zimin A, Aslam L, Beal K, Blomberg LA, et al. Multi-platform next-generation

sequencing of domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol.

2010; 8(9):e1000475. https://doi.org/10.1371/journal.pbio.1000475 PMID: 20838655

3. Nowrousian M, Stajich J, Chu M, Engh I, Espagne E, Halliday K, et al. De novo assembly of a 40 Mb

eukaryotic genome from short sequence seads: Sordaria macrospora, a model organism for fungal

morphogenesis. PLoS Genet. 2010; 6(4):e1000891. https://doi.org/10.1371/journal.pgen.1000891

PMID: 20386741

4. Kappler U, Davenport K, Beatson S, Lucas S, Lapidus A, Copeland A, et al. Complete genome

sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Star-

keya novella type strain (ATCC 8093T). Standards in Genomic Sciences. 2012; 7:7010044. https://doi.

org/10.4056/sigs.3006378

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 21 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202355.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202355.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202355.s007
https://doi.org/10.1038/nature08696
http://www.ncbi.nlm.nih.gov/pubmed/20010809
https://doi.org/10.1371/journal.pbio.1000475
http://www.ncbi.nlm.nih.gov/pubmed/20838655
https://doi.org/10.1371/journal.pgen.1000891
http://www.ncbi.nlm.nih.gov/pubmed/20386741
https://doi.org/10.4056/sigs.3006378
https://doi.org/10.4056/sigs.3006378
https://doi.org/10.1371/journal.pone.0202355

5. Maier D, Storer J. A note on the complexity of the superstring problem. Computer Science Laboratory:

Princeton University; 1977. Report No. 233.

6. Lysov Y, Florentiev V, Khorlin A, Khrapko K, Shik V, Mirzabekov A. Determination of the nucleotide

sequence of DNA using hybridization with oligonucleotides. A new method. Dokl Akad Nauk SSSR.

1988; 303:1508–1511. PMID: 3250844

7. Pevzner P. l-Tuple DNA sequencing: Computer analysis. J Biomol Struct Dyn. 1989; 7:63–73. https://

doi.org/10.1080/07391102.1989.10507752 PMID: 2684223

8. Blazewicz J, Hertz A, Kobler D, de Werra D. On some properties of DNA graphs. Discrete Appl Math.

1999; 98:1–19. https://doi.org/10.1016/S0166-218X(99)00109-2

9. Blazewicz J, Kasprzak M. Complexity issues in computational biology. Fundamenta Informaticae.

2012; 118:385–401.

10. Blazewicz J, Kasprzak M, Kierzynka M, Frohmberg W, Swiercz A, Wojciechowski P, et al. Graph algo-

rithms for DNA sequencing—origins, current models and the future. Eur J Oper Res. 2018; 264:799–

812. https://doi.org/10.1016/j.ejor.2016.06.043

11. Blazewicz J, Formanowicz P, Guinand F, Kasprzak M. A heuristic managing errors for DNA sequenc-

ing. Bioinformatics. 2002; 18:652–660. https://doi.org/10.1093/bioinformatics/18.5.652 PMID:

12050060

12. Zerbino D, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs.

Genome Res. 2008; 18:821–829. https://doi.org/10.1101/gr.074492.107 PMID: 18349386

13. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: An empirically improved memory-eff-

cient short-read de novo assembler. GigaScience. 2012; 1:18. https://doi.org/10.1186/2047-217X-1-18

PMID: 23587118

14. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al. Effcient de novo assembly of

highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014; 24:1384–

1395. https://doi.org/10.1101/gr.170720.113 PMID: 24755901

15. Blazewicz J, Formanowicz P, Kasprzak M, Markiewicz WT, Weglarz J. DNA sequencing with positive

and negative errors. J Comput Biol. 1999; 6:113–123. https://doi.org/10.1089/cmb.1999.6.113 PMID:

10223668

16. Myers E, Sutton G, Delcher A, Dew I, Fasulo D, Flanigan M, et al. Whole-genome assembly of

Drosophila. Science. 2000; 287:2196–2204. https://doi.org/10.1126/science.287.5461.2196 PMID:

10731133

17. Blazewicz J, Bryja M, Figlerowicz M, Gawron P, Kasprzak M, Kirton E, et al. Whole genome assembly

from 454 sequencing output via modified DNA graph concept. Comput Biol Chem. 2009; 33(3):224–

230. https://doi.org/10.1016/j.compbiolchem.2009.04.005 PMID: 19477687

18. Simpson J, Durbin R. Efficient de novo assembly of large genomes using compressed data structures.

Genome Res. 2012; 22:549–556. https://doi.org/10.1101/gr.126953.111 PMID: 22156294

19. Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov A, et al. SPAdes: A new genome

assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455–477.

https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599

20. Salzberg S, Phillippy A, Zimin A, Puiu D, Magoc T, Koren S, et al. GAGE: A critical evaluation of

genome assemblies and assembly algorithms. Genome Res. 2012; 22:557–567. https://doi.org/10.

1101/gr.131383.111 PMID: 22147368

21. Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, et al. Assemblathon 1: A competitive assess-

ment of de novo short read assembly methods. Genome Res. 2011; 12:2224–2241. https://doi.org/10.

1101/gr.126599.111

22. Bradnam K, Fass J, Alexandrov A, Baranay P, Bechner M, Birol I, et al. Assemblathon 2: Evaluating de

novo methods of genome assembly in three vertebrate species. GigaScience. 2013; 2:10. https://doi.

org/10.1186/2047-217X-2-10 PMID: 23870653

23. Muller E, Pinel N, Gillece J, Schupp J, Price L, Engelthaler D, et al. Genome sequence of “Candidatus

Microthrix parvicella” Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a

biological wastewater treatment plant. J Bacteriol. 2012; 194:6670–6671. https://doi.org/10.1128/JB.

01765-12 PMID: 23144412

24. Meena S, Kumar S, Rao D, Dwivedi V, Shilpashree H, Rastogi S, et al. De novo sequencing and analy-

sis of lemongrass transcriptome provide first insights into the essential oil biosynthesis of aromatic

grasses. Front Plant Sci. 2016; 7:1129. https://doi.org/10.3389/fpls.2016.01129 PMID: 27516768

25. Greninger A, Messacar K, Dunnebacke T, Naccache S, Federman S, Bouquet J, et al. Clinical metage-

nomic identification of Balamuthia mandrillaris encephalitis and assembly of the draft genome: The con-

tinuing case for reference genome sequencing. Genome Med. 2015; 7:113. https://doi.org/10.1186/

s13073-015-0235-2 PMID: 26620704

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 22 / 23

http://www.ncbi.nlm.nih.gov/pubmed/3250844
https://doi.org/10.1080/07391102.1989.10507752
https://doi.org/10.1080/07391102.1989.10507752
http://www.ncbi.nlm.nih.gov/pubmed/2684223
https://doi.org/10.1016/S0166-218X(99)00109-2
https://doi.org/10.1016/j.ejor.2016.06.043
https://doi.org/10.1093/bioinformatics/18.5.652
http://www.ncbi.nlm.nih.gov/pubmed/12050060
https://doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pubmed/18349386
https://doi.org/10.1186/2047-217X-1-18
http://www.ncbi.nlm.nih.gov/pubmed/23587118
https://doi.org/10.1101/gr.170720.113
http://www.ncbi.nlm.nih.gov/pubmed/24755901
https://doi.org/10.1089/cmb.1999.6.113
http://www.ncbi.nlm.nih.gov/pubmed/10223668
https://doi.org/10.1126/science.287.5461.2196
http://www.ncbi.nlm.nih.gov/pubmed/10731133
https://doi.org/10.1016/j.compbiolchem.2009.04.005
http://www.ncbi.nlm.nih.gov/pubmed/19477687
https://doi.org/10.1101/gr.126953.111
http://www.ncbi.nlm.nih.gov/pubmed/22156294
https://doi.org/10.1089/cmb.2012.0021
http://www.ncbi.nlm.nih.gov/pubmed/22506599
https://doi.org/10.1101/gr.131383.111
https://doi.org/10.1101/gr.131383.111
http://www.ncbi.nlm.nih.gov/pubmed/22147368
https://doi.org/10.1101/gr.126599.111
https://doi.org/10.1101/gr.126599.111
https://doi.org/10.1186/2047-217X-2-10
https://doi.org/10.1186/2047-217X-2-10
http://www.ncbi.nlm.nih.gov/pubmed/23870653
https://doi.org/10.1128/JB.01765-12
https://doi.org/10.1128/JB.01765-12
http://www.ncbi.nlm.nih.gov/pubmed/23144412
https://doi.org/10.3389/fpls.2016.01129
http://www.ncbi.nlm.nih.gov/pubmed/27516768
https://doi.org/10.1186/s13073-015-0235-2
https://doi.org/10.1186/s13073-015-0235-2
http://www.ncbi.nlm.nih.gov/pubmed/26620704
https://doi.org/10.1371/journal.pone.0202355

26. Pevzner P, Tang H, Tesler G. De novo repeat classification and fragment assembly. Genome Res.

2004; 14(9):1786–96. https://doi.org/10.1101/gr.2395204 PMID: 15342561

27. Medvedev P, Pham S, Chaisson M, Tesler G, Pevzner P. Paired de Bruijn graphs: A novel approach for

incorporating mate pair information into genome assemblers. J Comput Biol. 2011; 18(11):1625–1634.

https://doi.org/10.1089/cmb.2011.0151 PMID: 21999285

28. Kremera F, Eslabãoa M, Provisora M, Woloskia R, Ramiresa O, Morenob L, et al. Draft genome

sequences of Leptospira santarosai strains U160, U164, and U233, isolated from asymptomatic cattle.

Genome Announc. 2015; 3(4):e00910–15.

29. Seim I, Jeffery P, Thomas P, Nelson C, Chopin L. Whole-genome sequence of the metastatic PC3 and

LNCaP human prostate cancer cell lines. G3:Genes Genom Genet. 2017; 7(6):1731–1741.

30. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies.

Bioinformatics. 2013; 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086 PMID: 23422339

31. Hunt M, Newbold C, Berriman M, Otto T. A comprehensive evaluation of assembly scaffolding tools.

Genome Biol. 2014; 15:R42. https://doi.org/10.1186/gb-2014-15-3-r42 PMID: 24581555

32. Boetzer M, Henkel C, Jansen H, Butler D, Pirovano W. Scaffolding pre-assembled contigs using

SSPACE. Bioinformatics. 2011; 27:578–579. https://doi.org/10.1093/bioinformatics/btq683 PMID:

21149342

33. Frohmberg W, Kierzynka M, Blazewicz J, Gawron P, Wojciechowski P. G-DNA—a highly efficient multi-

GPU/MPI tool for aligning nucleotide reads. Bull Pol Acad Sci:Tech. 2013; 61:989–992.

34. Burke E, Hyde M, Kendall G, Ochoa G, Özcan E, J W. A Classification of Hyper-heuristic Approaches.

In: Gendreau M, Potvin J, editors. Handbook of Metaheuristics. International Series in Operations

Research & Management Science. vol. 146. Boston, MA: Springer; 2010. p. 449–468.

35. Burke E, Gendreau M, Hyde M, Kendall G, Ochoa G, Ozcan E, et al. Hyper-heuristics: A survey of the

state of the art. J Oper Res Soc. 2013; 64:1695–1724. https://doi.org/10.1057/jors.2013.71

36. Swiercz A. Hyper-heuristics and metaheuristics for selected bio-inspired combinatorial optimization

problems. In: Lorente JDS, editor. Heuristics and Hyper-Heuristics—Principles and Applications.

Rijeka: InTech; 2017. p. 3–20.

37. Tabataba F, Mousavi S. A hyper-heuristic for the longest common subsequence problem. Comput Biol

Chem. 2012; 36:42–54. https://doi.org/10.1016/j.compbiolchem.2011.12.004 PMID: 22286085

38. Blazewicz J, Burke E, Kendall G, Mruczkiewicz W, Oguz C, Swiercz A. A hyper-heuristic approach to

sequencing by hybridization of DNA sequences. Ann Oper Res. 2013; 207:27–41. https://doi.org/10.

1007/s10479-011-0927-y

39. Swiercz A, Burke E, Cichenski M, Pawlak G, Petrovic S, Zurkowski T, et al. Unified encoding for hyper-

heuristics with application to bioinformatics. Cent Eur J Oper Res. 2014; 22:567–589. https://doi.org/10.

1007/s10100-013-0321-8

GRASShopPER—de novo assembler

PLOS ONE | https://doi.org/10.1371/journal.pone.0202355 August 16, 2018 23 / 23

https://doi.org/10.1101/gr.2395204
http://www.ncbi.nlm.nih.gov/pubmed/15342561
https://doi.org/10.1089/cmb.2011.0151
http://www.ncbi.nlm.nih.gov/pubmed/21999285
https://doi.org/10.1093/bioinformatics/btt086
http://www.ncbi.nlm.nih.gov/pubmed/23422339
https://doi.org/10.1186/gb-2014-15-3-r42
http://www.ncbi.nlm.nih.gov/pubmed/24581555
https://doi.org/10.1093/bioinformatics/btq683
http://www.ncbi.nlm.nih.gov/pubmed/21149342
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1016/j.compbiolchem.2011.12.004
http://www.ncbi.nlm.nih.gov/pubmed/22286085
https://doi.org/10.1007/s10479-011-0927-y
https://doi.org/10.1007/s10479-011-0927-y
https://doi.org/10.1007/s10100-013-0321-8
https://doi.org/10.1007/s10100-013-0321-8
https://doi.org/10.1371/journal.pone.0202355

