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A B S T R A C T   

COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research 
analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has 
initiated potent therapeutic strategy development in coherence with computational biology validation focusing 
on the characterized viral drug targets signified by proteomic and genomic data. Spike glycoprotein is one of 
such potential drug target that promotes viral attachment to the host cellular membrane by binding to its re-
ceptor ACE-2 via its Receptor-Binding Domain (RBD). Multiple Sequence alignment and relative phylogenetic 
analysis revealed significant sequential disparities of SARS-CoV-2 as compared to previously encountered SARS- 
CoV and MERS-CoV strains. We implemented a drug re-purposing approach wherein the inhibitory efficacy of a 
cluster of thirty known drug candidates comprising of antivirals, antibiotics and phytochemicals (selection 
contingent on their present developmental status in underway clinical trials) was elucidated by subjecting them 
to molecular docking analyses against the spike protein RBD model (developed using homology modelling and 
validated using SAVES server 5.0) and the composite trimeric structures of spike glycoprotein of SARS-CoV-2. 
Our results indicated that Camostat, Favipiravir, Tenofovir, Raltegravir and Stavudine showed significant in-
teractions with spike RBD of SARS-CoV-2. Proficient bioavailability coupled with no predicted in silico toxicity 
rendered them as prospective alternatives for designing and development of novel combinatorial therapy for-
mulations for improving existing treatment regimes to combat COVID-19.   

1. Introduction 

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), a 
member of the beta-coronavirus genus, which includes SARS-CoV (Se-
vere Acute Respiratory Syndrome Coronavirus), MERS-CoV (Middle 
East Respiratory Syndrome Coronavirus) and other coronaviruses, is a 
novel discovered virus that causes COVID-19 (A Chronicle on the SARS 
Epidemic, 2003). The occurrence of SARS-CoV-2 was first epidemio-
logically linked in December 2019 to patients suffering from pneumonia 
of an unknown cause who were linked to a seafood market in Wuhan, 
Hubei province, China. On January 30, 2020, WHO (World Health 
Organisation) declared SARS-CoV-2 as a “Public Health Emergency of 
International Concern” and officially named it as Corona Virus Disease 

2019(COVID-19/2019-nCoV) (Wu et al., 2020; Li et al., 2020). As of 
July 27, 2020, Global statistics reported by WHO regarding this inten-
sifying pandemic indicate 16,114,449 confirmed COVID-19 cases, 
including 6,46,641 deaths collectively in the 216 affected countries 
(https://www.who.int/emergencies/diseases/novel-coronavir 
us-2019). 

Pathological diagnoses of SARS-CoV-2 infections designate severe 
acute respiratory distress syndrome along with secondary ailments like 
sore throat, high fever, muscle weakness, encephalitis and diarrhoea in 
infected patients (Zhu et al., 2020). It primarily targets the lower res-
piratory system by invading the pulmonary epithelial cells, releasing the 
nucleocapsid component and arrogating the host’s cellular machinery 
for cytoplasmic replication (Shah et al., 2020). 
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Comprehensive structural genomics analyses exemplify that the 
SARS- CoV-2 genome codes for a variety of structural and non-structural 
proteins which constitute potential drug targets for scientific experi-
mental investigations to impede the COVID-19 epidemic (Prajapat et al., 
2020). The spike glycoprotein (S protein) is a prospective drug target as 
it initiates the first crucial step in SARS-CoV-2 attachment to the host 
cell. It is a homotrimeric protein (each chain containing 1273 amino 
acids) which recognizes and binds to its receptor Angiotensin Convert-
ing Enzyme-2 (ACE-2) with a greater affinity attributed to the mutations 
at L455, F486, Q493, S494, N501 and Y505 residues (Yan et al., 2020). 
Microbiological digital resources data insinuate a comprehensive sche-
matic of the spike glycoprotein (Figs. 1 and 2). 

1.1. Alternative strategies targeting SARS-CoV-2 spike glycoprotein 

Several potential therapeutic strategies are being explored to combat 
SARS-CoV-2 targeting the spike glycoprotein as depicted in Fig. 3 (Wu 
et al., 2020). Of these strategies, ‘Drugs Re-purposing’ has emerged as a 
strong pharmaceutical rationale due to its reduced perils of drug 
development costs and shortening of the time gap between identification 
of prospective drug candidates and designing of treatment regimes for 
patients. This is due to the availability of extensive data regarding its 
pharmacokinetics, pharmacodynamics, toxicity, clinical trial results, etc 
(Zhou et al., 2020; Ciliberto, 2020). 

Drug-spike protein molecular docking studies were executed to 
elucidate their inhibitory competence to counteract SARS-CoV-2 in-
fections targeting spike glycoprotein receptor-binding domain. 
Computational pharmacokinetic analyses coupled with in silico toxicity 
prediction studies were used to evaluate the therapeutic proficiency of 
the selected drug candidates for futuristic COVID-19 treatment regimes. 

2. Materials and methods 

2.1. Workstation 

The entire study was executed on a Dell Laptop having an i5-6200U 
Intel core (2.30 GHz) processor, 8 GB RAM, 1 TB hard disk and a 64-bit 
operating system. All softwares utilized for the present study were open- 
source tools and freely downloadable. 

2.2. Sequence retrieval 

The protein sequences, structures and other relevant data regarding 
the surface spike glycoprotein from SARS-CoV-2 and the whole genome 
sequence of SARS-CoV-2 Wuhan-Hu-1 isolate were downloaded from 
digital resources such as NCBI (National Centre for Biotechnology In-
formation) (https://www.ncbi.nlm.nih.gov/), Universal Protein 
Knowledgebase (UniProtKB) and RCSB-PDB (Research Collaboratory for 
Structural Bioinformatics-Protein Data Bank) databases (Sayers et al., 
2018; Apweiler et al., 2004; Berman et al., 2000). For comparative 
analysis, SARS-CoV (first identified in Foshan, Guangdong, China in 
2002 from bats) data was also collected and analyzed (Chinese Law and 
Government, 2003; Li et al., 2005) (Table 1). 

2.3. Crystallizability and protein- disorderness 

The crystallization propensity of the SARS-CoV-2 spike glycoprotein 
sequence (UniProtKB ID: P0DTC2) was predicted by the PPCpred, 
CRYSTALP2 and XTalPred servers respectively (Mizianty and Kurgan, 
2011; Kurgan et al., 2009; Slabinski et al., 2007). XTalPred also dis-
closed diverse physicochemical information such as Molecular Weight 
(MW), hypothetical isoelectric point (pI), amino-acid length, instability 
index and Grand Average of Hydropathicity (GRAVY) index, etc. The 
prediction of the conformational diversity in the ordered globular do-
mains and intrinsically disordered regions of the spike glycoprotein 
sequence was derived using IUPred2A, MobiDB web tool, Meta disorder 

web server and PONDR servers (Meszaros et al., 2018; Piovesan et al., 
2018; Kozlowski and Bujnicki, 2012; Romero et al., 1997). The un-
structured regions of proteins are stipulated to play a crucial role in 
diverse cellular activities. 

2.4. Physicochemical characterization and post-Translational 
modifications (PTMs) 

The computation of the physicochemical properties and amino acid 
scale representation to determine the significant amino acid enrichment 
and/or depletion patterns were resolved by ProtParam and ProtScale 
tools of ExPasy (a SIB Bioinformatics resource portal) and Protein 
Calculator v 3.4 servers. (Gasteiger et al., 2005; Anthis and Clore, 2013). 

SignalP 4.1 server was used to identify the secretory signal peptides 
and its cleavage sites (Nielson, 2017). N-Terminal acetylation sites were 
predicted by NetAcet 1.0 server (Kiemer et al., 2005). High specificity 
Coronavirus 3C-like proteinase cleavage sites were predicted by the 
NetCorona-1.0 server (Kiemer et al., 2004). 

N-linked and O-linked glycosylation sites were predicted using the 
NetNGlyc-1.0 and NetOGlyc-4.0 servers respectively (Gupta and Bru-
nak, 2002; Steentoft et al., 2013). NetPhos 3.1 server was used to predict 
the serine, threonine or tyrosine phosphorylation sites (Blom et al., 
1999). DiANNA 1.1 webserver was used to predict the disulfide bond 
connectivity (Ferre and Clote, 2005). The surface accessibility, second-
ary structure, disorder, and phi/psi dihedral angles of amino acids were 
predicted by NetSurfP-2.0 server (Klausen et al., 2019). DeepLoc 1.0 
server was used to predict the sub-cellular localization of the spike 
glycoprotein by deep neural network algorithms (Armenteros et al., 
2017). 

2.5. Secondary structure prediction, tertiary structure prediction, 
refinement and model evaluation 

PSIPRED 4.0 and JPred v.4 servers were utilized to elucidate the 
secondary structure characteristics of the spike glycoprotein (McGuffin 
et al., 2000; Drozdetskiy et al., 2015). The UniProtKB spike glycoprotein 
sequence (P0DTC2) was submitted in FASTA format to Modeller v9.24 
which generated its 3D structure employing a restraint-based approach 

Table 1 
Spike Glycoprotein sequence information.  

Sr. 
No. 

Digital 
resource 

IDa Description 

1 UniProtKB P0DTC2 SARS-CoV-2b spike glycoprotein 
2 NCBI YP_009724390.1 SARS-CoV-2 surface glycoprotein 
3 NCBI MN908947.3 Severe acute respiratory syndrome 

coronavirus 2 isolate Wuhan-Hu-1, 
complete genome 

4 RCSB-PDB 6VYB SARS-CoV-2 spike ectodomain 
structure (open state) 

5 RCSB-PDB 6VSB Prefusion 2019-nCoV spike 
glycoprotein with a single receptor- 
binding domain up 

6 RCSB-PDB 6VW1 Structure of SARS-CoV-2 chimeric 
receptor-binding domain complexed 
with its receptor human ACE2c 

7 RCSB-PDB 6LZG Structure of novel coronavirus spike 
receptor-binding domain complexed 
with its receptor ACE2 

8 RCSB-PDB 6YLA Crystal structure of the SARS-CoV-2 
receptor binding domain in complex 
with CR3022 Fabd 

9 RCSB-PDB 2AJF Structure of SARS coronavirus spike 
receptor-binding domain complexed 
with its receptor  

a ID = Identification. 
b Severe Acute Respiratory Syndrome – Coronavirus-2. 
c Angiotensin Converting Enzyme-2. 
d antigen-binding Fragment. 
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using a model-single module (Webb and Sali, 2017; Sali and Blundell, 
1993). The best model was selected based on low discrete optimized 
protein energy (DOPE) score. It was then submitted to RAMPAGE server 
to determine the geometrical structural validity (Lovell et al., 2003). 
Loop refinement of the outlier residues was carried out by ModLoop 
server (Fiser et al., 2000). 

The above steps were repeated until the outlier residues were within 
the designated values. The final model geometry was subjected to en-
ergy minimization by Chiron server wherein the atomic steric clashes 
between the side-chain and backbone were resolved (Ramachandran 
et al., 2011). The overall quality assessment of the final model in terms 
of packing density (total void volume), unsatisfied hydrogen bonds, 
steric clashes and the accessible surface area scaling was exemplified by 
Gaia server (Kota et al., 2011). The stereochemical quality evaluation of 
the pre- and post-refinement 3D models of spike glycoprotein was done 
via PROCHECK, ERRAT (v 2.0) and Verify3D environment profile 
analysis methods by submitting to SAVES v5.0 (Structural Analysis and 
Verification Server) (Pradeepkiran et al., 2015). 

The Root Mean Square Deviation (RMSD) statistics between the 
target model and template were calculated by structural superimposi-
tion in SuperPose v1.0 program which utilizes a modified quaternion 
eigenvalue approach under the default parameters (Maiti et al., 2004). 
This final model was selected as the receptor for further studies. 
Composition profiler was utilized to investigate the amino acid 
composition bias in the modeled spike glycoprotein and the template 
protein (Vacic et al., 2007). 

2.6. Multiple Sequence Alignment (MSA) and comparative phylogeny 

MSA of the sequence of the generated 3-D model with the existing 
PDB structures was carried out using Jalview v2.11.1.0 (Waterhouse 
et al., 2009). Evolutionary analyses of the selected sequences was car-
ried out by phylogenetic tree construction using MEGA X v10.1.8 
maintaining the default values of the selected parameters (Kumar et al., 
2018). 

2.7. Binding sites prediction 

Binding site prediction to determine the active site residues of the 3- 
D spike glycoprotein model was carried out by COACH server (Yang 
et al., 2013; Yang et al., 2013). These were also determined by the re-
ceptor cavity method using Biovia Discovery studio v17.2.0.16349 
(Dassault Systemes, 2017). The functional domain prediction was car-
ried out by MOTIF search, a subserver of GenomeNet, using the Pfam 
and PROSITE data (Al-Khayyat and Al-Dabbagh, 2016). The cut-off 
score (E-value) was set at 1.0. 

2.8. Ligand selection and molecular docking 

The computational molecular docking of ACE-2 (PDB ID: 1R42) 
(receptor) with the spike glycoprotein model (ligand) was performed 
using the HawkDock server. It is an integrated web server that utilizes 
ATTRACT for protein-protein docking, HawkRank scoring function for 
re-ranking docked complexes based on desolvation potentials and Mo-
lecular Mechanics/Generalized Born Surface Area (MM/GBSA) free 
energy decomposition methodology for the identification of key residues 
in Protein-Protein Interactions [PPIs] (Weng et al., 2019; Sarkar et al., 
2020). 

The drug candidates for virtual screening against the spike glyco-
protein model were selected from an extensive literature survey of po-
tential therapeutic agents undergoing trials against SARS-CoV-2 and/or 
those which were previously developed as antiviral/anti-malarial ther-
apeutic inhibitors as shown in Table 1. The. sdf files of all molecules 
were retrieved from the PubChem database and were converted to. pdb 
files and saved for further docking protocols (Kim et al., 2015). 

Molecular docking of the selected ligands with the spike glycoprotein 

3-D model (receptor) was carried out by iGEMDOCK v2.1 (Hsu et al., 
2011; Kashyap, 2019). It is an integrated virtual screening graphical 
automatic drug design system dealing with preparations through 
post-screening analysis depicting crucial pharmacological interactions 
based on protein-compound interaction profiles. It employs a generic 
evolutionary method algorithm. The docking accuracy settings (GA 
parameters) for all docking operations were set as follows: Population 
size: 300; Generations: 80; Number of solutions: 10. The mode of 
docking was stable (slow docking). 

The scoring function was set to GEMDOCK and the hydrophobic and 
electrostatic preferences for the ligands were set to 1.00. The molecular 
interactions of the ligand-receptor docked complexes were analyzed 
using Discovery studio v20.1.0.19295, PyMol v1.7.4.5 and UCSF 
Chimera v1.11.2 respectively (Seeliger and de Groot, 2010; Sadati et al., 
2019; Pettersen et al., 2004). The best docked complex of each 
ligand-receptor combination was selected based on the least binding 
energy values for further analysis. 

2.9. Galaxy refine complex 

Refinement of protein-protein complex structure was done by Gal-
xyWEB. This tool allows us to understand the flexibility, at the protein 
interface (modeled RBD with RBD-ligand complex) and gives us an idea 
regarding overall conformational changes that occurs upon binding (Ko 
et al., 2012). GalaxyRefine refines the docked structure by a hybrid 
technique that involves the triaxial loop closure (TLC) algorithm during 
global optimization by conformational space annealing (CSA) technique 
(Park and Seok, 2012). The molecular interactions of the ligand-receptor 
docked complexes were analyzed using PyMol v1.7.4 (Seeliger and de 
Groot, 2010). Further, Favipiravir, Hydroxychloroquine and Nafamostat 
were taken to study the possible structural changes occurring to spike 
protein when drug binds. 

2.10. Argus Lab analysis 

Molecular docking interactions of the selected ligands with the 
SARS-CoV-2 whole trimeric spike glycoprotein (PDB ID’s 6VSB and 
6VYB respectively) were analyzed and visualized using Argus Lab 4.0.1 
(Thompson, 2004). Argus Lab platform has distinct advantages over 
other softwares because it performs meticulous docking analyses of huge 
peptides/proteins with a precise chain or domain selection within mi-
nutes. It follows the Lamarckian genetic algorithm along with precise 
grid resolution calculation in coherence with the ligand binding sites. 

It was performed under the following parametric considerations: 
scoring function selected as ‘AScore’, docking algorithm as Argus dock 
(exhaustive search), a grid resolution of 0.4 A0 and the binding site box 
dimensions measuring 60 A0 x 60 A0 x 60 A0 respectively. The docking 
precision was set to “Regular precision” and “Flexible” ligand docking 
mode was utilized for all docking runs. The individual docked pose 
stability was evaluated by ArgusLab energy calculations and the number 
of hydrogen bonds formed (Hafeez et al., 2013). 

The best docking model was selected according to the lowest AScore 
computed and the most pertinent binding conformation was selected on 
the basis of ligand-receptor hydrogen bond interactions in the vicinity of 
the substrate binding site. The lowest energy poses implied the highest 
binding affinity because high energy values represent unstable 
conformations. 

2.11. In silico toxicity prediction 

The analysis of the pharmacokinetic properties of the selected li-
gands such as absorption, distribution metabolism and excretion 
(ADME), drug-likeness and medicinal chemistry features was carried out 
by SWISS ADME (Daina et al., 2014, 2017; Daina and Zoete, 2016). 
OSIRIS Property Explorer was used to evaluate the risks of side effects, 
such as mutagenicity, tumorigenicity, irritant and reproductive 
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consequences, as well as drug-relevant properties including cLogP, LogS 
(solubility), molecular weight, Topological Polar Surface Area (TPSA), 
drug-likeness and overall drug-score (Ayati et al., 2012). 

3. Results 

3.1. Crystallization propensity and protein- disorderness 

PPCPred and CRYSTALP2 servers both predicted the sequence to be 
non-crystallizable. PPCPred predicted the crystallization propensity to 
be 0.084 which was significantly lower than the probability threshold 
value of 0.43. The individual step values of the crystallization process 
were as follows: probability that production of protein material fails: 
0.831, probability that purification fails: 0.806, probability that crys-
tallization fails: 0.01 and probability that target will yield diffraction- 
quality crystals: 0.355. CRYSTALP2 predicted the sequence as non- 
crystallizable with a confidence of 0.28. Xtalpred results depicted that 
the protein was non-crystallizable (EP crystallization class 5: very 
difficult; RF protein crystallization class 4). It also enumerated an 
assortment of molecular characterization parameters (Table 2). Overall, 
the spike glycoprotein RBD model was deemed non-crystallizable in its 
native form. 

The MobiDB web tool indicated 0% disorderness in the spike 
glycoprotein sequence (UniProtKB: P0DTC2) while IUPred2A and Met-
adisorder web server (global disorder tendency = 0.3474) indicated 
disordered residues. PONDR server depicted 11 disordered regions, 
comprising a total of 98 disordered amino acid residues (7.70%) with 
the longest disorder region comprising of 38 amino residues (Average 
prediction score = 0.1374). DEPP (Disorder Enhanced Phosphorylation 
Predictor) in the PONDR server predicted the phosphorylation potenti-
ality of serine (6 out of 99; 6.0606%), threonine (2 out of 97; 2.06%) and 
tyrosine (3 out of 54; 5.56%) residues of the spike glycoprotein. 
(Table S1; Fig. S1 in supplementary data). 

3.2. Physicochemical characterization and post-translational 
modifications (PTMs) 

SARS-CoV-2 encompasses a variety of structural proteins such as the 
spike glycoprotein, small envelope protein (E), Matrix protein (M) and 
the nucleocapsid protein (N) while the ORF1a/b region (initial ~20 kb) 
is translated into two polyproteins (PP1A and PPIB) which encode the 
majority of the Non-Structural Proteins (NSPs) (Khodadadi et al., 2020, 
Wu et al., 2020).ProtParam and ProtScale servers explicated several 
physicochemical parameters of SARS-CoV-2 spike glycoprotein viz. 
Molecular weight: 141.178Kda; theoretical pI: 6.24; Instability index: 
33.01 (stable); aliphatic index: 84.67; GRAVY: − 0.079. The estimated 
half-life (t1/2) was predicted to be 30 h in mammalian reticulocytes (in 
vitro); >20 h in yeast (in vivo) and >10 h in E. coli (in vivo) (Kar et al., 
2020). ProtScale also depicted an anthology of hydrophobicity plots of 
the spike glycoprotein. Protein calculator v3.4 further corroborated the 
above results. SignalP 4.1 server predicted residues 1–13 as the signal 
peptide (cleavage site between the 13th and 14th residues) with a score 
(D value) of 0.837 which was higher than the threshold cut-off value (D 
= 0.450). 

NetAcet 1.0 server predicted no N-terminal acetylation as alanine, 
glycine, serine or threonine residues were not present at positions 1–3. 
One specific coronavirus 3C-like proteinase cleavage site was found by 
NetCorona 1.0 server at position 1002 with a score of 0.685 
(TGRLQ^SLQTY). N-linked glycosylation sites predicted by NetNGlyc 1.0 
server were in accordance with the data retrieved from UniProtKB for 
the spike glycoprotein while O-linked glycosylation sites were predicted 
at positions 673, 678 and 686 by NetOGlyc server 4.0 which was in 
accordance with the previous research analysis (Andersen et al., 2020). 

NetPhos 3.1 server predicted phosphorylation of serine, tyrosine and 
threonine residues at 136 positions in the spike glycoprotein. DiANNA 
1.1 web server revealed 20 disulfide bond connectivity predictions. 
NetSurfP 2.0 results validated the disorder predictions and also depicted 
surface accessibility and phi/psi angles for each amino acid. DeepLoc 1.0 
server predicted that the spike glycoprotein was a soluble (score =
0.0577), membrane type protein (score = 0.9423). 

3.3. Secondary structure prediction, tertiary structure prediction, 
refinement and model evaluation 

PSIPRED 4.0 and JPred v.4 servers deduced the secondary structure 
of the spike glycoprotein which comprised of α-helices, β-sheets and 
coils. It also predicted a putative domain boundary at position 164 
(Asparagine) (Fig. S2 in supplementary data). 

The spike glycoprotein sequence from UniProtKB was submitted to 
MODELLER v9.24. It generated two models whose characteristics are 
listed in Table 3. GA341 (range: 0–1, value near 1 being preferred), z- 

Table 2 
Molecular characterization of P0DTC2 sequence predicted by XTalPred server.  

Sr. 
No. 

Server Molecular feature (s) Prediction 

1 XtalPred Molecular weight 141.196 
KDa 

Amino acid length 1273 
Theoretical pI 6.24 
Instability index 33.02 
GRAVY − 0.08 
Molecular surface feature (EP and RF 
crystallization):  
a) Surface entropy − 1.06 
b) Surface hydrophobicity − 0.09 
c) Surface ruggedness 4.04 

2 COILS Coiled-coils regions 28 
3 DISOPRED 

2 
Longest disorder region 16 (1%) 

4 TMHMM Transmembrane helices 1 
5 SignalP Signal peptides No 
6 SEG Longest low-complexity region 23 
7 PSIPRED Secondary structure prediction:  

Coil residues% 38 
Helix residues % 22 
Strand residues % 40 

8 – Residue content  
Cysteine residues 40 
Methionine residues 14 
Tryptophan residues 12 
Tyrosine residues 54 
Phenylalanine residues 77 

pI: Isoelectric point; GRAVY: Grand Average of Hydropathicity; EP: Expert Pool; 
RF: Random Forest. 

Table 3 
Model characteristics generated by MODELLER v.9.24.  

Sr.No. Features Model 1 Model 2 

1 Target region 14–302 330–529 
2 Protein length 1273 1273 
3 PDB template code 5 × 4S A 6YLA E 
4 Template region 18–289 330–529 
5 Sequence identity 54% 100% 
6 E-value 0 0 
7 GA341 1 1 
8 MPQS 0.786723 1.37941 
9 z-DOPE − 0.3 − 1.32 
10 TSVMod method MSALL MSALL 
11 TSVMod RMSD 3.711 0.464 
12 TSVMod NO35 0.923 0.972 

E-value: no: of expected hits of similar quality; MPQS: ModPipe Quality Score; z- 
DOPE: Discrete Optimized Protein Energy Score of Salilab Model evaluation 
server; TSVMod RMSD: Root Mean Square Deviations; TSVModNO35: Native 
Overlap prediction of fraction of Cα atoms within 3.5 Å of the native structure. 
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DOPE (lowest score preferred), MPQS (ModPipe Quality Score; highest 
value preferred) and sequence identity (highest value preferred) scores 
were employed for model quality assessment. 

The results indicated that model 2 was the most reliable one as 
compared to model 1. The MPQS score of model 1 was also predicted to 
be unreliable as compared to that of model 2. Model 2 represented a 
segment of the S1 subunit of the SARS-CoV-2 spike glycoprotein as 
deduced from the UniProtKB data while model 1 corresponded to the N- 
Terminal Domain (NTD) region. It depicted 2 N-Acetyl glycosylation 
sites at asparagine residues (positions 331 and 343 respectively). The 
model (residues 1–200) formed the majority portion of the Receptor 
Binding Domain (RBD: residues 319–541) containing the Receptor 
Binding Motif (RBM; residues 437–508). 

The selected model (Fig. 4a) was analyzed by Ramachandran plot 
generation by submission to the RAMPAGE server which elucidated 186 
favored residues (93.9%), 10 allowed residues (5.1%) and 2 outlier 
residues (TRP353 and PHE497; 1%) respectively. The model was sub-
jected to further structural refinement by ModLoop server which then 
depicted 186 favored residues (93.9%), 12 allowed residues (6.1%) and 
zero outlier residues respectively (Fig. 4b). The refined model was then 
subjected to energy minimization by Chiron server with side chain 
constraints. 

After energy minimization, the model was subjected to structural 
validation by Gaia server (with side chain constraints) which elucidated 
the following data: Clash score = 0.0381; 69 unsatisfied HBS (Hydrogen 
Bonds in Shell); 4 HBC (Hydrogen Bonds in Core); solvent accessible 
(10225.4 Å2) and solvent excluded (8623.33 Å2) surface areas and a 
void volume score of 0.53. All bond lengths were within the acceptable 
range. The side-chain integrity discrepancies were refined and the model 
was then submitted to the SAVES V5.0 server for structure validation. 

SAVES server validated the refined model yielding an overall quality 
factor of 83.3333. VERIFY3D substantiated that about 80% amino acids 
scored≥0.2 in the 3D/1D profile. PROVE results depicted about 25 
buried outlier protein atoms (3.6%). Overall results validated the 
refined model (spike RBD model). Discovery studio construed charac-
teristics of the spike RBD model viz. 1947 atoms; Molecular formula: 
C1016 H1522 N265 O295 S8; molecular weight: 22.411Kda and a net formal 
charge of +5. 

The spike RBD model and the template (6YLA chain E) were super-
imposed via Superpose 1.0 server which depicted a resulting local and 

global RMSD value of 0.37 over 200 Cα atoms and a value of 0.43 over 
800 atoms in the protein backbone (Fig. 5a). 

Composition profiler revealed that no significant enrichment or 
depletion patterns in the amino acid composition had occurred. The 
relative entropy had a value of 0.00092 with a p-value of 1. The spike 
model was also superposed with the SARS-CoV-2 spike open-state 
ectodomain structure (PDB ID: 6VYB) and the Prefusion 2019-nCoV 
spike glycoprotein with a single receptor-binding domain up structure 
(PDB ID: 6VSB). The spike RBD model-6VYB superimposition illustrated 
a local and global RMSD value of 1.183 over the Cα atoms and atoms in 
the protein backbone whereas the spike RBD model-6VSB superimpo-
sition elucidated a local and global RMSD values of 1.655 and 1.648 over 
the Cα atoms and atoms in the protein backbone respectively (Fig. 5b 
and c). The MOTIF server detected diverse proteomic segments in the 
whole spike glycoprotein and the spike RBD model (Table 4). 

Sequential analysis of the spike RBD model and the template (6YLA 
chain E) revealed that our RBD model lacked the first three residues 
(GLU327, THR328 and GLY329) incorporated by 6YLA chain E. In 
addition, the residues 1, 2, 3, 4 …. in the spike RBD model corresponded 
to residues 330, 331, 332, 333… and so on. Hence, the numbering of 
residues in the spike RBD model could be correlated to the residue po-
sition in 6YLA chain E as follows: 

R.N in 6YLA chain E=R.N in spike RBD model + 329  

Where R.N = Residue Number. 

3.4. Multiple Sequence Alignment (MSA), comparative phylogeny and 
binding sites prediction 

SARS-CoV-2 is a more potent virus as it depicts important genomic 
dissimilarities when compared to the SARS-CoV (79%) and MERS-CoV 
(50%) genomes (Walls et al., 2020). Previous studies elucidated that 
amino acid mutations in the Spike glycoprotein influenced its credited 
ACE-2 (receptor) binding capability in humans (Walls et al., 2020; 
Coutard et al., 2020). 

MSA of the selected sequences listed in Table 1 including the spike 
RBD model was carried out using Jalview v2.11.1.0 (Fig. 6). It revealed 
that large number of significant amino acid substitutions/mutations had 
occurred in the SARS-CoV-2 as compared to the SARS-CoV spike protein 
sequences reported earlier viz. R403K, E406D, K417V, L441I, S443A, 
K444T, V445S, G446T, L452K and K501N respectively. 

Furthermore, SARS-CoV-2 spike glycoprotein asserted 80% sequence 
identity to the previously validated spike protein structures. These res-
idues formed a part of loops 1e, 1 d, 2 g and 3f respectively. Loop 2 g 
accounted for 50% of these mutations. These mutations accentuate the 
augmented binding affinity of the spike protein to its receptor ACE-2 and 
were in good co-relation with earlier investigations (Ortega et al., 2020). 

An evolutionary analysis of the Spike RBD model with the selected 
sequences in Table 1 was achieved by phylogenetic tree construction 
utilizing the Neighbour-Joining method (Saitou and Nei, 1987) (Fig. 7). 
The evolutionary distances were computed using the Poisson correction 
method and are in the units of the number of amino acid substitutions 
per site (Zuckerkandl and Pauling, 1965). 

COACH and TM-SITE results predicted the binding site residues of 
the Spike RBD model viz. ASN354, LYS356, SER399, VAL401 and 
ARG509 with C-score (confidence of prediction) values of 0.10 and 0.22 
respectively. Using Discovery studio visualizer, we found 6 possible 
receptor-binding cavities in the Spike RBD model (Table S3 in supple-
mentary data). 

3.5. ACE-2-spike RBD model molecular docking and analysis 

The spike RBD model (ligand) and ACE-2 (receptor) were docked 
using the HawkDock server which generated 10 ligand-receptor docked 
complexes. The best one was selected based on the MM/GBSA score 

Fig. 1. ACE-2 receptor-mediated SARS-CoV-2 internalization occurs via three 
steps. The first step involves the recognition and attachment of the spike 
glycoprotein (SP, olive green) to its receptor ACE-2 (Red). This binding in-
stigates the activation process wherein the spike protein is cleaved into its 
subunits, S1 (receptor-binding domain, light blue) and S2 (fusion peptide, 
yellow) via the adjacent transmembrane protease TMPRSS2 (light green). This 
fusion peptide integrates with the host cell membrane, resulting in subsequent 
release and internalization of the SARS-CoV-2 single-stranded RNA (ssRNA, 
blue) and other components. Once internalized, the virus utilizes the host cell 
machinery for replication and extrusion of novel viral particles (Colour, 
Double-column fitting image). 
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(binding free energy in Kcal/mol) having a value of − 52.33 (Fig. 8). A 
total of 20 molecular interactions were observed upon analysis using the 
aforementioned molecular analysis software, of which 15 interactions 
were considered significant (bond-length of ≤4.0 Å) (Table 5). 

Earlier studies expounded that the spike RBD comprised of signifi-
cant loops (a-f) which were then re-categorized into loop 1, 2 and 3 sub- 
segments. It was observed that the spike protein interactions with ACE-2 

receptor comprised of loops 3a, 3 b and 3f respectively (Robson, 2020). 
It also contained nine cysteine residues of which eight are involved in 
disulfide bond formation viz. CYS336-CYS361, CYS379-CYS432, 
CYS391-CYS525 and CYS480-CYS488 respectively. Of these, the first 
three disulphide bonds facilitate structural stabilization while the last 
one acts as a loop connector in the distal RBM region (Lan et al., 2020). 
From the results obtained, it was observed that the loop regions of the 

Fig. 2. Spike glycoprotein gene schematics. The 
spike glycoprotein gene comprises of eight distinct 
segments. Residues 1–12 act as the Signal peptide 
(SP, Red). Residues 13–685 and 686–1273 indicate 
the S1 and S2 subunits of the spike glycoprotein 
respectively. The S1 subunit comprises of the N- 
Terminal Domain (NTD, residues 13–303, Olive 
green) and the Receptor-Binding Domain (RBD, res-
idues 319–541, yellow). The RBD domain is further 
sub-divided into the C-Terminal Domain (CTD, resi-
dues 334–427, Pink) and the Receptor-Binding Motif 
(RBM, 437–508, Light blue). The cleavage site 1 
(685–686) releases the S2 subunit which comprises 
of the Fusion Peptide region (FP: 788–806, Brown) 
followed by a second cleavage site (815–816) which 
generates the S2′ Domain (816–1273). The S2 sub-
unit comprises of two heptad repeats HR1 (920–927) 
and HR2 (1163–1202) (Green) and two Coiled-Coil 
Regions CCR1 (949–993) and CCR2 (1176–1203) 
(Cyan) respectively. A transmembrane Helical 
Domain exists (1214–1234, Bright yellow) followed 
by a Topological Cytoplasmic Domain (TPC, 
1235–1273, Magenta) which encompasses a Short 
Sequence Motif (SSF, 1269–1273, light red). The 
Extracellular Topological domain spans from resi-
dues 13–1213. (Colour, Double-column fitting 
image).   

Fig. 3. Alternative therapeutic strategies to counteract SARS-CoV-2 targeting the spike Glycoprotein. (Black and White, Single-column fitting image).  
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spike RBD model (2 g, 3 b and 3f respectively) displayed maximum 
significant interactions. 

A total of thirty ligands were selected from an extensive literature 
survey, WHO (www.who.int/covid-19/information) and FDA (www. 
fda.gov/drugs/emergency-preparedness-drugs/) organizations’ list of 
approved drugs designated for the treatment of SARS-CoV-2 to evaluate 
their therapeutic inhibitory potential against the spike Glycoprotein. 
These ligands were docked against Spike RBD model (receptor) utilizing 
iGEMDOCK v2.1 and their molecular interactions were analyzed 
(Table 6). 

The criteria for selection of the potential drug candidates as potential 
inhibitors of SARS-CoV-2 spike glycoprotein RBD model hinged on 
various factors viz. number and strength of the hydrogen bonds, number 
and strength of other interactions (electrostatic/hydrophobic/van der 
Waals), number of loop interactions (2 g, 3 b and 3f respectively), 
number of mutated residues involved, and number of non-significant 
interactions involving loop residues, etc. Based on the above factors, 
we selected ten drugs out of the thirty studied for further analysis whose 
detailed significant molecular interactions are entailed (Table 7). All 
selected drug candidates are illustrated in Fig. 9. 

Most significant interactions were observed in case of Stavudine, 

Doxycycline and Favipiravir (Fig. 10a, b and 10c). Our results also 
indicated that Tenofovir, Eugenol, Allicin, Raltegravir, Zalcitabine, 
Camostat and Ivermectin depicted significant molecular interactions 
with the ACE-2 residues involved in spike glycoprotein recognition 
elucidating their inhibitory potentiality. Moreover, Raltegravir also 
interacted with loop 1e (LYS441) but via a halogen (fluorine) interac-
tion. (Fig. S3a/b - S9a/b in supplementary data). 

Remdesivir, Liquiritin, Nafamostat, Oseltamivir, Zanamavir, Lopi-
navir, EmblicaninA and Ivermectin depicted strong interactions with 
CYS336 and CYS379 residues of the Spike RBD model, thus hypothe-
sizing their role in structural destabilization of the Spike protein 
(Table S2; Fig. 6 supplementary data). 

In Fig. 11 we can see the residues at the interface of RBD of the spike 
protein and the ACE-2 receptor as listed earlier (Table 5). To understand 
whether the binding of inhibitor causes any structural changes in the 
RBD-ACE2 complex, we superimposed the structure of the RBD with and 
without the inhibitors. Favipiravir was found to interact directly with 
residues Y505, R403 and L441 of the RBD, where R403 is considered to 
be a possible mutation (Fig. 12a, Fig. 6, Table 7). Surprisingly, upon 
superimposition of RBD and the RBD-Favipiravir complex we found 
deviation in side chain conformation of R403 (Fig. 12a). Apart from that 

Fig. 4. The refined spike RBD model 3D structure comprising of helix (red), sheet (yellow) and loop (green) regions. b) The Ramachandran plot of the spike RBD 
model exhibiting zero outlier residues. (Colour, Double-column fitting image). 

Fig. 5. a) Superimposition of spike RBD model (red) with its template 6YLA chain E (green). b) Superimposition of the spike RBD model (yellow) with 6VSB (red). c) 
Superimposition of the spike RBD model (yellow) with 6VYB (yellow). (Colour, Double-column fitting image). 
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few changes were seen in V401 and R509. This may envisage that 
Favipiravir alters the spike binding efficiency with ACE-2 receptor. 
Further, we also did a similar study with Hydroxycholoroquine and 
Nafamostat, both of which did not directly bind near the interface region 
of the Spike and ACE2 proteins. As it can be seen from Fig. 12b, amino 
acids L517, T430, F429, F464, E516 and D428 were directly interacting 
with the hydroxychloroquine. The large number of non-polar residues 
promotes primarily hydrophobic interactions with the ligand. After su-
perimposition we could observe the switch in the polar side chain of 
D428 of the spike protein. Although, we could not see much difference at 
the interface region of Spike-ACE2 complex, we could again find a 
prominent side chain shift of R403 towards RBD, in the presence of in-
hibitor, similar to favipiravir. Nafamostat showed interactions with 
S371, S373 A363, C336, F368, G339, S373, S371, V367, L335 and D 364 
residues and not much difference was seen in the absence of the ligand 
(Fig. 12c). C336 forms disulphide linkage with C361 and plays a crucial 
role in structureal stabilization of RBD. However, R403 shift remained 
consistent in all the three complexes. This indicates that inhibitor 
binding impacts the binding energetics of the RBD to the ACE2 receptor. 

Validation of the drug-Spike molecular interactions were achieved 
by docking studies of the selected drugs with the Spike glycoprotein 
trimeric structures available (PDB ID’s 6VSB and 6VYB respectively) 
(Tables S4–S5 in supplementary data). We observed that Eugenol, Alli-
cin, Doxycycline and Ivermectin did not depict any significant in-
teractions with 6VSB. Furthermore, Tenofovir, Zalcitabine and 
Favipiravir depicted four significant interactions each with the Extra-
cellular Topological Domain (ETD) of the S1 subunit while Camostat 
exhibited five significant interactions with the S2 subunit ETD. Likewise, 
Allicin, Stavudine, Raltegravir and Ivermectin elucidated no in-
teractions with 6VYB. However, Camostat and Zalcitabine exhibited 1 
and 4 interactions respectively with the Coiled-Coil Region 1 (CCR-1) of 
the S2 subunit. Eugenol and Doxycycline exhibited 1 interaction each 
with the ETD of S2′ domain and S1 subunit respectively (Figs. S10–S11 
in supplementary data). 

3.6. In silico toxicity prediction 

SWISS-ADME determined the in silico physico-chemistry and phar-
macokinetic analysis of the selected drugs. It was perceived that Iver-
mectin had the highest Po/w coefficient (iLOG Po/w = 5.86) while 
Favipiravir had the lowest value (iLOG Po/w = 0.39) signifying its higher 
solubility. Furthermore, Allicin exhibited the lowest skin permeation 
rate (log Kp = − 9.89 cm/s) whereas Eugenol depicted the highest (log 
Kp = − 5.69 cm/s). All drugs, except Ivermectin, complied with the 
Lipinski rules accompanied by minor violations. The GI absorption rate 
was high for all drugs except Tenofovir, Raltegravir, Doxycycline and 
Ivermectin. Out of all drugs, Eugenol and Allicin were predicted as 
Blood-Brain Barrier (BBB) permeants. Ultimately, all drugs had an 
acceptable bioavailability score, except for Doxycycline and Ivermectin 
(Tables S6–S7 in supplementary data). 

OSIRIS Property Explorer was utilized to compute the systemic 
toxicity of the selected drugs. Our analysis showed that Raltegravir 
displayed the highest drug-likeness capacity (score = 0.999) while 
Tenofovir had the least possible value (0.0). Moreover, Eugenol and 
exemplified a high risk of mutagenicity, tumorigenicity and irritant 
capacity (scores of 0.6 in each) while Zalcitabine and Doxycycline 
exhibited a high risk of reproductive toxicity (score of 0.6). Favipiravir 
had the best drug score (0.933) amongst all potential drug candidates 
(Tables S8–S9 in supplementary data). 

4. Discussion 

Coronaviruses (CoV) are positive single-stranded RNA viruses clas-
sified as pathogenic agents reported since the 1960’s. These viruses are 
responsible for causing acute and chronic respiratory diseases as well as 
enteric, hepatic and neurologic infections as it has a broad host range 
(avian, murine, porcine, bovine and other domestic mammalian species 
including humans) (Weiss and Martin, 2005; Di Gennaro et al., 2020). 

SARS-CoV-2 has materialized as a potent etiological agent with a 
current infection rate of ~20,000 individuals/day. Till date, no 
confirmed drug/vaccine candidates have been reported to counteract 
COVID-19 epidemic rendering healthcare facilities to face comprehen-
sive obstacles to restore the healthiness of COVID-19 affected in-
dividuals. This is predominantly accredited to the genomic discrepancy 
of SARS-CoV-2 as compared to previously established SARS-CoV and 
MERS-CoV strains, making SARS-CoV-2 more virulent than its pre-
decessors. These anomalies have commanded stringent amendments in 
conventional treatment regimes in terms of efficacy for eradication of 
SARS-CoV-2 (Fig. 6). 

Diverse experimental research analyses have yielded abundant in-
formation regarding SARS-CoV-2 life cycle, epidemiology, etc (Wu et al., 
2020; Li et al., 2020). Molecular experimentation in coherence with 
computational biology has resulted in the fabrication of credible ther-
apeutic strategies for combating COVID-19 viz. identification of prote-
omic and genomic drug targets, traditional epidemiological drug 
re-purposing, peptidomimetics studies for antibody/vaccine develop-
ment against structural and non-structural proteins of SARS-CoV-2 tar-
geting host attachment and viral replication processes, etc. (Alanagreh 
et al., 2020) (Figs. 1 and 2). 

The present study focused on the drug re-purposing based inhibition 
of SARS-CoV-2 attachment wherein the spike glycoprotein of SARS-CoV- 
2 undergoes conformational reorganization to distinguish its receptor 
ACE-2 and initiates a cascade of molecular progressions resulting in the 
integration with the cell membrane and liberation of its genome inside 
the host cell for replication. 

We developed our validated model of the spike glycoprotein RBD 
based on the UniProtKB sequence P0DTC2 utilizing 6YLA chain E as the 
template (Fig. 5a). Multiple sequence alignment studies of the con-
structed spike RBD model with previously constructed 3-D structures 
demonstrated that SARS-CoV-2 exhibited significant mutations as 
compared to SARS-CoV and MERS-CoV strains resulting in an amplified 

Table 4 
Functional domain prediction by MOTIF search server.  

Whole Spike Glycoprotein 

Sr. 
No. 

Pfama 

ID 
Pfam Position IE- 

valueb 
Descripton 

1 PF01601 Corona_S2 686–1270 1.4e- 
266 

Coronavirus S2 
glycoprotein 

2 PF09408 Spike_rec_bind 330–583 6.6e- 
75 

spike receptor 
binding domain 

3 PF16451 Spike_NTD 262–294 0.0014 spike glycoprotein 
N-terminal domain 

4 PF04513 Baculo_PEP_C 931–989 0.11 Baculovirus 
polyhedron 
envelope protein, 
PEP, C-terminus 

5 PF11172 DUF2959 917–1015 0.057 Unknown 
functional protein 

6 PF17192 MukF_M 906–969 0.22 MukF middle 
domain 

7 PF16025 CALM_bind 853–871 0.26 Calcium- 
dependent 
calmodulin 
binding 

8 PF16519 TRPM_tetra 934–962 0.21 TRPM 
tetramerization 
domain 

9 PF00517 GP41 1149–1241 0.26 Retroviral 
envelope protein 

Spike RBD model 
10 PF09408 Spike_rec_bind 1–200 2.7e- 

60 
spike receptor 
binding domain  

a Pfam = Protein family. 
b IE-value = Independent E-value. 
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affinity for ACE-2 (Fig. 6). The protein was predicted to be non- 
crystallizable and depicted minute disorderness. The spike glycopro-
tein RBD harboured many such mutations and exhibited additional 
sequential diversity which designates it as a latent therapeutic drug 
target (Tables 2–4; Fig. 10a/10b/10c). 

We implemented a computational biology–based approach for drug 
re-purposing to screen drug candidates as potential therapeutic in-
hibitors via molecular docking analyses impacting the spike glycopro-
tein mechanism of action (Tables 6–7). 

Molecular docking analysis involving the spike glycoprotein RBD 
model (ligand) with ACE-2 (receptor) depicted twenty interactions of 
which fifteen were deemed significant and implicated loop 2 g, 3 b and 
3f residues. Considering the above results in conjunction with the 
number and type of significant bonds formed, loop interactions, mutated 
amino acid residues concerned, etc., we observed that ten molecules out 
of the assorted set of thirty drug candidates exposited molecular in-
teractions with the loop residues of the spike glycoprotein (Tables 6 and 
7). Additionally, eight drugs exhibited significant interactions with the 
cysteine residues of the spike RBD model constituted in disulfide bond 
formation for structural stabilization (Table S2 in supplementary data). 

Eugenol, an allyl-chain substituted guaiacol, is derived from essen-
tial oils such as clove oil, etc. It retains diverse pharmacological roles, 
including antiviral potentiality. It has been reported to have a 

detrimental effect on the viral envelope of newly formed virions as 
observed in studies with Herpes Simplex viruses HSV-1 and HSV-2 
(Pramod et al., 2010). Similarly, Allicin (allyl 2-propenethiosulfinate) 
is a bioactive compound present in garlic extract and is reported to 
display antiviral activity against Influenza viruses A and B, HIV, herpes 
simplex viruses, rotavirus, etc. (Bayan et al., 2014). Eugenol exhibited 
interactions with the loop residues of spike glycoprotein but was deemed 
to be a BBB permeant, along with high risks of mutagenicity and 
tumorigenicity, questioning its administration for treatment of 
COVID-19 (Fig. S4; Table S6). 

Stavudine, a thymidine nucleoside analogue, is a reverse transcrip-
tase (RT) inhibitor and has been selectively utilized against HIV strains. 
Stavudine is intracellularly phosphorylated by cellular kinases to Stav-
udine triphosphate which competes with deoxythymidine triphosphate, 
the natural substrate of RT. It also inhibits DNA polymerases Beta and 
Gamma (Hurwitz and Schinazi, 2012). Favipiravir, a purine nucleoside 
analogue (6-fluoro-3-hydroxy-2-pyrazinecarboxamide), is a potent 
RNA-dependent RNA polymerase inhibitor where its phosphorylated 
form (T-705-RTP) exhibits broad-spectrum antiviral potency against 
retroviruses viz. arenavirus, bunyavirus, flavivirus, etc. (Du and Chen, 
2020). Both depicted significant interactions with the ACE-2 binding 
regions of spike glycoprotein with no inherent risk of predicted systemic 
toxicity (Tables S6- S7). 

Fig. 6. MSA (Multiple Sequence Alignment) of the refined spike model with the assorted spike glycoprotein sequences listed in Table 1. The Receptor-Binding 
Domain (RBD, 319–541) consisted of the Receptor-Binding Motif (RBM, 437–508). 15 RBD residues were implicated in molecular interactions with ACE-2 (red 
and green). The cysteine residues (dark blue) were involved in disulphide bond interactions. MSA revealed mutation of amino acid residues of SARS-CoV-2 viz. 
V417K, T446G, P475A, W490F, N493Q, and T501N respectively (green). The other possible mutations within the strains are reported by white within the strains. 
(Colour, Double-column fitting image). 
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Zalcitabine, another thymidine analogue, acts in the same way as 
Stavudine and is more potent (Leandro et al., 2013). It depicted two 
interactions with ARG403 (loop 1e) of the spike protein with a high risk 
of hazardous reproductive consequences. Tenofovir, an acyclic adeno-
sine nucleotide analogue, is used in combinatorial therapy with other 
anti-retroviral drugs to treat HIV and singularly to treat Hepatitis B in-
fections, acts as a reverse transcriptase inhibitor and depicted no 

predicted systemic toxicity upon administration (Delaney et al., 2006) 
(Fig. S7; Table S7). 

Raltegravir is an anti-retroviral drug belonging to the class of inte-
grase inhibitors, ultimately affecting viral DNA insertion and its subse-
quent integration into the host cell’s DNA. It is primarily used to treat 
HIV-1 infections (Boesecke and Gelgor, 2009). It exhibited seven sig-
nificant interactions of which only one targeted the loop residue of spike 
protein (LEU441) (Fig. S7). Similarly, Camostat (a carbonyl compound) 
is a synthetic serine protease inhibitor targeting the host cell TMPRSS2 
(viral entry mediator) thereby inhibiting viral infection and replication 
(Uno, 2020). It also exhibits anti-inflammatory and anti-fibriotic ca-
pacity. Like Raltegravir, it interacted with LEU441 but overall had only 
two significant bonds. Both drugs lacked predicted toxicity upon 
administration (Fig. S8). 

Doxycycline (a semi-synthetic derivative of oxytetracycline) is a 
protein synthesis inhibitor and exhibits broad spectrum anti-bacterial 
potency (Holmes and Charles, 2009). It also exhibits antiviral compe-
tence by inhibition of matrix metalloproteases in case of Dengue and 
other retroviruses or transcriptional up-regulation of intracellular zinc 
finger antiviral protein (ZAP) (Malek et al., 2020). Although it illus-
trated three significant spike RBD loop interactions, it was predicted to 
have a low bioavailability and posed a high risk of reproductive toxicity 
(Fig. 10b; Table S9). Ivermectin (an avermectin derivative), a 
broad-spectrum anti-parasitic agent is a potent endectocide and has 
been reported to inhibit the HIV-1 integrase and host cell Importin 
(responsible for nuclear import of viral proteins) subsequently hindering 
viral replication and also exhibits antiviral potency against other ret-
roviruses (Caly et al., 2020). Ivermectin did not interact with any ACE-2 
binding regions of Spike protein. However, it did depict a significant 
interaction with CYS379 which is involved in disulfide bond formation 
(CYS379-CYS432) and depicted no systemic toxicity whatsoever. 
Docking of the selected drug candidates with the spike glycoprotein 
trimeric structures elucidated distinctive subsidiary spike protein target 
regions in addition to the RBD, contriving the segmented drug targets 

Fig. 7. Phylogenetic tree analysis using MEGA X software. The optimal tree 
with the sum of branch length = 0.35413322 is shown. Data coverage is shown 
in percentage (%) while the nodal branch lengths are depicted in decimals. 
(Black and White, Single-column fitting image). 

Fig. 8. Docked complex of spike RBD model (ligand, red) with ACE-2 (receptor, blue). Residues GLY446, GLY496 and ASN501 (RBD) formed a single hydrogen bond 
with residues ASN259, ASN136 and GLU132 of ACE-2 (bond lengths: 2.9, 2.2 and 2.7 respectively). TYR449 depicted 2 hydrogen bonds with residues ASN259 (bond 
length 2.8) and THR258 (bond length 2.7) respectively. The yellow-dashed lines indicate hydrogen bonds. (Colour, Double-column fitting image). 
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within the spike protein for future drug development experiments 
(Fig. S9). 

Several studies corroborate the usage of the drugs selected in the 
present study to counteract COVID-19. Remdesivir has reached the 

phase III level of clinical trials for the treatment of mild and moderate 
SARS-CoV-2 infections (Senanayake, 2020). Favipiravir, an 
antiviral/anti-influenza drug has been shortlisted in ten hospitals across 
India for a phase III trial with mild and moderately infected COVID-19 

Table 5 
ACE2-spike RBD model molecular interactions analysis.  

Bond Bond length Bond category Bond type Donor  Acceptor  

A:LYS229:NZ - B:GLU484:OE1 3.10837* Electrostatic Attractive Charge A:LYS229:NZ Positive B:GLU484:OE1 Negative 
B:LYS444:NZ - A:ASP274:OD1 3.3582* Electrostatic Attractive Charge B:LYS444:NZ Positive A:ASP274:OD1 Negative 
B:LYS444:NZ - A:ASP349:OD1 5.53446 Electrostatic Attractive Charge B:LYS444:NZ Positive A:ASP349:OD1 Negative 
B:ARG509:NH2 - A:ASP277:OD1 4.66804 Electrostatic Attractive Charge B:ARG509:NH2 Positive A:ASP277:OD1 Negative 
A: ASN136: ND2 - B: GLY496: O 2.19044* Hydrogen Bond Conventional Hydrogen Bond A:ASN136:ND2 H-Donor B: GLY496: O H-Acceptor 
A:ASN232:ND2 - B:GLU484:OE2 1.07015* Hydrogen Bond Conventional Hydrogen Bond A:ASN232:ND2 H-Donor B:GLU484:OE2 H-Acceptor 
A: ASN259: ND2 - B: GLY446: O 2.85426* Hydrogen Bond Conventional Hydrogen Bond A:ASN259:ND2 H-Donor B: GLY446: O H-Acceptor 
A:ASN259:ND2 - B:TYR449:OH 2.81454* Hydrogen Bond Conventional Hydrogen Bond A:ASN259:ND2 H-Donor B:TYR449:OH H-Acceptor 
A: SER262: OG - B: TYR495: O 2.58607* Hydrogen Bond Conventional Hydrogen Bond A:SER262:OG H-Donor B: TYR495: O H-Acceptor 
B: TYR449: OH - A: THR258: O 2.68899* Hydrogen Bond Conventional Hydrogen Bond B:TYR449:OH H-Donor A: THR258: O H-Acceptor 
B: SER494: N - A: SER262: O 2.68145* Hydrogen Bond Conventional Hydrogen Bond B:SER494:N H-Donor A: SER262: O H-Acceptor 
B:ASN501:ND2 - A:GLU132:OE1 2.64768* Hydrogen Bond Conventional Hydrogen Bond B:ASN501:ND2 H-Donor A:GLU132:OE1 H-Acceptor 
B:ASN501:ND2 - A:ASN136:OD1 1.59889* Hydrogen Bond Conventional Hydrogen Bond B:ASN501:ND2 H-Donor A:ASN136:OD1 H-Acceptor 
A:LYS229:CA - B:GLU484:OE2 3.48252* Hydrogen Bond Carbon Hydrogen Bond A:LYS229:CA H-Donor B:GLU484:OE2 H-Acceptor 
A:ASN259:CA - B:TYR449:OH 2.46628* Hydrogen Bond Carbon Hydrogen Bond A:ASN259:CA H-Donor B:TYR449:OH H-Acceptor 
B:LYS444:CE - A:ASP274:OD1 3.0135* Hydrogen Bond Carbon Hydrogen Bond B:LYS444:CE H-Donor A:ASP274:OD1 H-Acceptor 
B:TYR449:CA - A:SER262:OG 3.60435* Hydrogen Bond Carbon Hydrogen Bond B:TYR449:CA H-Donor A:SER262:OG H-Acceptor 
A:LYS229:NZ - B:PHE490 4.31429 Electrostatic Pi-Cation A:LYS229:NZ Positive B:PHE490 Pi-Orbitals 
A:GLU132:OE1 - B:TYR505 4.89665 Electrostatic Pi-Anion A:GLU132:OE1 Negative B:TYR505 Pi-Orbitals 
B:TYR489 - A:PRO235 5.23117 Hydrophobic Pi-Alkyl B:TYR489 Pi-Orbitals A:PRO235 Alkyl 

* = Significant; H-Donor = Hydrogen Donor; H-Acceptor = Hydrogen Acceptor. 

Table 6 
Molecular docking analysis of he selected ligands with the spike glycoprotein RBD model.  

Sr. 
No 

Selected PubChema Drug Class Drug Type Ligand-spike RBD model Docked complex analysis 

Energy VDWb AverConPair TIc SId LIe 

1. Azithromycin 447043 Antibiotic Macrolide − 90.34 − 90.34 13.78 9 5 No 
2. Hydroxychloroquine 3652 Anti-malarial Chloroquine derivative − 69.19 − 69.19 20.17 3 2 No 
3. Remdesivir 121304016 Anti-viral ATP analogue − 83.36 − 83.36 14.59 9 8 No 
4. Peramivir 154234 Anti-viral Neuraminidase inhibitor − 63.94 − 63.94 18.78 1 1 No 
5. Abacavir 441300 Anti-viral Nucleoside RT*inhibitor Guanosine analogue − 73.03 − 73.03 25.52 4 4 No 
6. Didanosine 135398739 Anti-viral Nucleoside RT inhibitor Purine analogue − 68.11 − 68.11 27.23 8 4 No 
7. Tenofovir 464205 Anti-viral Acyclic Adenosine nucleotide analogue − 64.91 − 64.91 20.79 9 5 Yes 
8. Colistin 5311054 Antibiotic Cyclic polypeptide − 85.92 − 85.92 13.33 9 5 No 
9. Eugenol 3314 Allylbenzene Phenylpropanoid, Guaiacol derivative − 57.03 − 57.03 29.33 8 4 Yes 
10. Liquiritin 503737 Flavanone 

glycoside 
Liquiritigenin derivative − 91.47 − 91.47 21.13 10 5 No 

11. Emblicanin A 119058016 Polyphenol Antioxidant − 146.89 − 121.98 17.39 9 7 No 
12. 3-Carene 26049 Bicyclic 

monoterpene 
Carane hydride derivative − 48.05 − 48.05 29.8 4 0 No 

13. Allicin 65036 Sulfenic acid 
thioester 

Allylthiosulfonate − 51.36 − 51.36 30.22 6 4 Yes 

14. Glycyrrhizic acid 14982 Triterpene 
glycoside 

Hepatoprotective drug − 99.17 − 99.17 13.19 12 7 No 

15. Nafamostat 4413 Anti-viral, Anti- 
cancer 

Synthetic Serine protease inhibitor − 92.44 − 92.44 22.5 9 6 No 

16. Oseltamivir 65028 Anti-viral Synthetic derivative prodrug of ethyl ester − 81.45 − 81.45 25.59 4 2 No 
17. Telbivudine 159269 Anti-viral Synthetic Thymidine nucleoside analogue − 67.42 − 67.42 28.35 8 7 No 
18. Zanamavir 60855 Anti-viral Sialic acid-analogue neuraminidase inhibitor − 67.26 − 67.26 20.26 4 3 No 
19. Stavudine 18283 Anti-viral Nucleoside RT inhibitor Thymidine analogue − 68.16 − 68.16 25.93 7 5 Yes 
20. Raltegravir 54671008 Anti-viral Integrase inhibitor − 93.62 − 93.62 20.34 12 7 Yes 
21. Zalcitabine 24066 Anti-viral Synthetic dideoxynucleotide, RT inhibitor − 66.87 − 66.87 27.66 5 1 Yes 
22. Favipiravir 492405 Anti-viral Pyrazine analogue, RNA-dependent RNA 

polymerase inhibitor 
− 53.70 − 53.70 27.90 5 3 Yes 

23. Ribavirin 37542 Anti-viral Synthetic Ribofuranose nucleoside analogue − 66.63 − 66.63 26.94 6 4 No 
24. Galidesivir 10445549 Anti-viral Adenosine analogue − 67.80 − 67.80 22.79 6 2 No 
25. Lopinavir 92727 Anti-viral Anti-retroviral protease inhibitor − 103.75 − 103.75 14.52 8 3 No 
26. Ritonavir 392622 Anti-viral Anti-retroviral protease inhibitor − 100.1 − 100.1 13.34 8 7 No 
27. Azadirachtin 5281303 Limonoids Hepatoprotective drug − 85.92 − 85.92 13.37 9 5 No 
28. Camostat 2536 Anti-viral Carbonyl compound − 88.78 − 88.78 21.24 7 2 Yes 
29. Doxycycline 54671203 Antibiotic Synthetic tetracycline derived protein 

synthesis inhibitor 
− 77.46 − 77.46 15.31 7 4 Yes 

30. Ivermectin 6321424 Antiparasitic Macrocyclic lactone − 102.63 − 102.63 11.98 10 5 Yes  

a PubChem CID = PubChem Chemical Identifier; b VDW = Van der Waal’s interactions; c TI = Total Interactions; d SI = Significant Interactions (Bold); e LI = Loop 
Interactions; * RT = Reverse Transcriptase, Red colour indicates interaction with spike glycoprotein RBD-ACE-2 receptor residues. 
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Table 7 
Detailed analysis of selected drugs with spike glycoprotein RBD model involving significant interactions.  

Sr. 
No. 

Drug Significant spike RBD 
model interacting 
residues 

Bond Type Bond 
Length (in 
Å) 

Interacting residues of Actual 
spike Glycoprotein 

Precise 
Loop 
Interactions 

Contact residues of 
the SARS-CoV-2 
RBD–ACE2 

Cysteine residue 
interactions 

RBD 
(319–541) 

RBM 
(437–508) 

1 Tenofovir W436 Conventional 
Hydrogen bond 

2.62 Yes No No No No 

F342 Carbon Hydrogen 
bond 

3.30 Yes No No No No 

W436 Electrostatic (pi- 
anion) 

3.48 Yes No No No No 

L441* Hydrophobic (pi- 
sigma) 

3.58 Yes Yes 2 g No No 

W436 Hydrophobic (pi- 
sigma) 

3.80 Yes No No No No 

2 Eugenol E471 Carbon Hydrogen 
bond 

3.30 Yes Yes 3a No No 

E471 Carbon Hydrogen 
bond 

3.29 Yes Yes 3a No No 

D467 Electrostatic (pi- 
anion) 

3.74 Yes Yes No No No 

K458 Hydrophobic (pi- 
sigma) 

3.81 Yes Yes 2 g No No 

3 Allicin E471 Electrostatic 
interaction 

3.78 Yes Yes 3a No No 

K458 Hydrogen bond 2.70 Yes Yes 2 g No No 
S469 Hydrogen bond 3.08 Yes Yes No No No 
P491 Hydrophobic 

interaction 
3.98 Yes Yes 3 b No No 

4 Stavudine Y453 Conventional 
Hydrogen bond 

2.35 Yes Yes 2 g Yes No 

N501* Conventional 
Hydrogen bond 

3.05 Yes Yes 3f Yes No 

R403* Carbon Hydrogen 
bond 

3.30 Yes Yes 1e No No 

Y495 Carbon Hydrogen 
bond 

3.23 Yes Yes 3f No No 

S494 Carbon Hydrogen 
bond 

3.30 Yes Yes 3 b No No 

5 Raltegravir S349 Conventional 
Hydrogen bond 

2.59 Yes No No No No 

S399 Conventional 
Hydrogen bond 

2.98 Yes No No No No 

S349 Conventional 
Hydrogen bond 

2.96 Yes No No No No 

F347 Conventional 
Hydrogen bond 

2.90 Yes No No No No 

L441* Halogen 
(Fluorine) 

3.65 Yes Yes 2 g Yes No 

N354 Pi-Donor 
Hydrogen bond 

2.44 Yes No No No No 

A348 Hydrophobic 
(alkyl) 

3.54 Yes No No No No 

6 Zalcitabine R403* Carbon Hydrogen 
bond 

3.30 Yes No 1e No No 

7 Favipiravir R403* Conventional 
Hydrogen bond 

3.05 Yes No 1e No No 

Y505 Conventional 
Hydrogen bond 

3.30 Yes Yes 3f Yes No 

R403* Carbon Hydrogen 
bond 

3.40 Yes No 1e No No 

8 Camostat L441* Conventional 
Hydrogen bond 

2.91 Yes Yes 2 g No No 

N354 Carbon Hydrogen 
bond 

3.30 Yes No No No No 

9 Doxycycline Y449 Conventional 
Hydrogen bond 

1.87 Yes Yes 2 g Yes No 

N501* Conventional 
Hydrogen bond 

2.35 Yes Yes 3f Yes No 

S494 Conventional 
Hydrogen bond 

3.22 Yes Yes 3 b No No 

Y505 Hydrophobic (pi- 
sigma) 

3.63 Yes Yes 3f Yes No 

10 Ivermectin G381 Conventional 
Hydrogen bond 

2.32 Yes No No No No 

F377 2.99 Yes No No No No 

(continued on next page) 

H.G. Toor et al.                                                                                                                                                                                                                                 



European Journal of Pharmacology 890 (2021) 173720

13

patients while an another combination of Doxycycline and Ivermectin 
has been recommended to treat acute symptoms of COVID-19 in 
Bangladesh which has reached to the experimental stage in India 
(Hafeez et al., 2020). 

Another example of combinatorial therapy combines Emtricitabine/ 
Tenofovir-Alafenamide and Lopinavir/Ritonavir to treat COVID-19 pa-
tients (Duan et al., 2020). Camostat and Nefamostat and their de-
rivatives are certified protease inhibitors which are currently being 
investigated in Japan as therapeutic alternatives to combat SARS-Co-V 2 
(Hoffman et al., 2020). No significant interaction was observed between 
RBD and hydroxychloroquine thus concluding that the mode of action of 
hydroxychloroquine is different than that of direct interaction with 
spike protein (Table 6;Fig. 12b). Chloroquine inhibits the viral attach-
ment to its receptor along with the subsequent molecular processes 
involved in the final viral particle extrusion (Narkhede et al., 2020; 
Devaux et al., 2020). Nafamostat, primarily used for anticoagulant 
therapy, exhibited spike-mediated membrane fusion inhibitory poten-
tiality (Li and Clercq, 2020). These experimental studies advocate 
drug-repurposing as a viable and resourceful technique to eradicate the 
infectivity of SARS-CoV-2 because of its cost-effectiveness and reduction 
of administration complexity in treatment regimes with high compati-
bility efficacy. 

5. Conclusion 

The present work comprised of selection and molecular docking 
analysis of a collection of 30 plausible drug candidates having diverse in 
silico mechanisms with the spike glycoprotein of SARS-CoV-2 aimed at 
identifying novel inhibitory competency of the same. Our results sug-
gested that ten drugs out of the thirty selected could be utilized as 
promising drugs as they interacted with the experimentally validated 
ACE-2 binding residues and also depicted additional interactions with 
the ETD regions. Camostat, Favipiravir, Tenofovir, Raltegravir and 
Stavudine illustrated maximum interactions with the spike glycoprotein 
RBD model and the inherent trimeric structure displaying optimal 
bioavailability (score = 0.55) with absence of predicted systemic 
toxicity. As these drugs can be a good candidate for further in vitro or in 
vivo studies so dosage appropriate amalgamation of these drugs/drug 
derivatives in conjunction with refined experimental validation can 
serve as the platform for combinatorial drug therapy design and devel-
opment to counter COVID-19 for futuristic applications. 
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Table 7 (continued ) 

Sr. 
No. 

Drug Significant spike RBD 
model interacting 
residues 

Bond Type Bond 
Length (in 
Å) 

Interacting residues of Actual 
spike Glycoprotein 

Precise 
Loop 
Interactions 

Contact residues of 
the SARS-CoV-2 
RBD–ACE2 

Cysteine residue 
interactions 

RBD 
(319–541) 

RBM 
(437–508) 

Carbon Hydrogen 
bond 

Y380 Carbon Hydrogen 
bond 

3.74 Yes No No No No 

C379 Sulfur-X 2.99 Yes No No No Yes 
Y369 Pi-Donor 

Hydrogen bond 
3.28 Yes No No No No 

RBD = Receptor Binding Domain; RBM = Receptor Binding Motif; ACE-2 = Angiotensin Converting Enzyme type II; * = Possible mutated amino acids in SARS-CoV-2. 

Fig. 9. Structures of all ten selected drugs colored by CPK. Hydrogen atoms (white), Oxygen atoms (red), Chlorine atoms (green), Nitrogen atoms (blue) and 
Phosphorous atoms (orange). (Colour, Double-column fitting image). 
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Dassault Systèmes Biovia, 2017. Discovery Studio, v20.1.0.19295. Dassault Systèmes, 
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