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Autism Spectrum Disorders (ASD) are characterised by impairment in joint attention (JA), which 
has two components: the response to JA and the initiation of JA. Literature suggests a correlation 
between JA and neural circuitries, although this link is still largely unexplored in ASD. In this pilot study, 
we aimed at investigating the neural correlates of responding and initiating JA in high-functioning 
children with ASD and evaluating the changes in brain function and visual pattern after six months 
of rehabilitative treatment using an integrated EEG/eye-tracking system. Our results showed that 
initiating and responding JA subtend both overlapping (i.e. frontal and temporal) and specialized (i.e. 
parietal for responding JA and occipital for initiating JA) neural circuitries. In addition, in a subgroup 
of subjects, we observed trends of changes in both brain activity and connectivity after rehabilitative 
treatment in both the two tasks, which were correlated with modifications in gaze measures. These 
preliminary results, if confirmed in a larger sample, suggest the feasibility of using the proposed 
multimodal approach to characterise JA-related brain circuitries and visual pattern in ASD individuals 
and to monitor longitudinal changes in response to rehabilitative intervention.

Joint attention (JA) is described as the ability to coordinate visual attention with another person and then shift 
the gaze toward a shared object or event1. Deficits in JA are known to be one of the prominent features of Autism 
Spectrum Disorders (ASD)2–4, and have been correlated not only with social and communicative problems, but 
also with deficits in language development5. Children who will later receive a diagnosis of ASD show by 6 months 
of age a reduced ability to pay attention to social cues6,7. In addition, face processing deficits seem to represent a 
sensitive marker for the detection of ASD risk in toddlers and siblings8–10.

Literature reports on two main components of JA: the response to JA and the initiation of JA. Responding to 
JA (RJA) was described as the ability to shift visual attention following other’s social cues such as gaze or pointing; 
initiating JA (IJA) was reported as the ability to seek other’s attention using one’s own direction of gaze or gestures 
with the aim of sharing an experience. IJA and RJA are thought to be as two interrelated aspects of JA linked 
to different processes during infant development2. Several studies have analysed in depth joint behaviours11–14, 
most of which having focused on the responding abilities12,15, that precede the initiation skills during typical 
development.

Eye-tracking has recently been used during JA tasks in ASD, focusing in particular on RJA and gaze accu-
racy. For example, Chawarska and colleagues16, using images of faces appropriately processed to reproduce the 
effect of gaze shift, did not find any differences in gaze accuracy between children with ASD and peers with 
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typical development (TD), but reported that the difficulties in gaze following emerge along with the severity of 
the socio-communicative impairment. On the other hand, Falck-Ytter and colleagues17, using video sequences 
where a model either looked, or pointed, or looked and pointed toward an object, found that preschoolers with 
ASD performed fewer and slower correct gaze shifts compared to TD preschoolers. More recently, the same group 
explored the response to JA in younger children, using videos in which a female model looked and turned her 
head towards an object, and found no differences between ASD subjects and TD peers. However, the ASD group 
showed a weaker first fixation preference for the attended object compared to TD, suggesting an initial process-
ing bias for attended objects in ASD individuals18. These contradictory results could be ascribed to the different 
nature of the stimuli used in the tasks (images or videos), and/or to the different social cues (gaze shift, pointing, 
head movement), and/or, most importantly, to the focus of most studies on the responding component of JA that 
could be likely only partially impaired in ASD.

Recently, we have described the visual patterns of toddlers with ASD and TD searching for differences in RJA 
and IJA tasks in an eye-tracking scenario19. We found no differences in the RJA task between the two groups, 
whereas different gaze patterns emerged in the IJA tasks. We have hypothesised that these differences were due to 
ASD-related impairments in visual disengagement from faces, in global scanning of the scene, and in the ability 
to anticipate object’s action.

Literature has suggested a correlation between JA abilities and specific neural circuitry. Previous studies indi-
cated a direct relationship between increased frontolimbic neural circuit connectivity at 6 months and subsequent 
RJA abilities at 9 months in TD individuals20.

Some functional magnetic resonance imaging (fMRI) studies also explored the neural correlates of JA in 
adults with ASD. In a RJA task consisting of watching an animation of a gaze shift towards (congruent condition), 
or away from (incongruent condition) a flashing target, adults with ASD did not show any modulation in the 
activation of the superior temporal sulcus (STS) while looking at the congruent vs. incongruent condition like 
TD adults21. Another study has explored the neural substrates of IJA and RJA in adults with ASD in a paradigm 
using live interactions and revealed both distinct (ventromedial prefrontal cortex for RJA, and intraparietal sulcus 
and middle frontal gyrus for IJA) and overlapping regions (dorsal medial prefrontal cortex, and right posterior 
superior temporal sulcus) for RJA and IJA abilities22.

Recently, few studies have explored JA in ASD patients using combined eye-tracking and brain-based meas-
ures. Specifically, Elison and colleagues23 collected both eye-tracking and diffusion tensor imaging data in 
high-risk positive, high-risk negative and low-risk infants. They reported longer visual orienting latencies in 
high-risk positive subjects compared to the other groups and detected a correlation between visual orienting 
and microstructural organization of the splenium of the corpus callosum only in typical infants. Only one recent 
study24 used a combined EEG/eye-tracking paradigm to explore the correlates of RJA in adolescents with ASD, 
during congruent and incongruent tasks. The authors reported that, across conditions, adolescents with ASD 
exhibited reduced right hemisphere temporal–central alpha coherence compared to TD controls while no signif-
icant between-groups differences in visual fixation were reported.

In broader terms, multimodal neuroimaging and neurophysiological approaches associated with eye-tracking 
measures seem to be crucial for providing new information on how the structural, functional and behavioural 
alterations in early attention abilities reported in ASD patients are related.

The aim of this pilot study is to investigate the neurophysiological and gaze correlates of both RJA and IJA 
tasks in high-functioning children with ASD. To this aim, we developed a new paradigm, based on our previous 
study in toddlers19, and recorded simultaneous EEG/eye-tracking data in an integrated approach. We also aimed 
at quantifying the longitudinal changes in neurophysiological and gaze correlates of JA after treatment. The work 
was carried out within the framework of MICHELANGELO, a project funded by the European Commission 
(FP7-ICT-288241) (http://www.michelangelo-project.eu/).

This study has several elements of novelty, namely: (a) exploring the neural correlates of RJA and IJA in chil-
dren with ASD; (b) integrating EEG with eye-tracking to explore the visual patterns of the two components of JA 
(to our knowledge, the only study that used a similar protocol in ASD, focusing only on the RJA, was indeed the 
study by Jaime and colleagues24); and, (c) evaluating the changes in JA-related brain regions and visual patterns in 
a longitudinal way. This new methodology has been tested in a pilot study in eleven children with ASD, of which 
a subgroup of seven performed the treatment. Given the high novelty of the approach, we aimed at evaluate the 
feasibility of the method in this small sample size and we did not presume to test the efficacy of the approach.

Based on previous EEG literature in TD, we expect that both overlapping and different circuitries activate 
during RJA and IJA tasks. In addition, following our previous study on toddlers19, we hypothesise a prevalent 
impairment in initiating, and expect some longitudinal improvement after 6-month treatment; finally, given that 
a decreased coherence in ASD patients compared with TD individuals has been reported24, we hypothesise an 
increase of coherence after the 6-month treatment focused on JA.

Results
Neural correlates of RJA and IJA tasks at T0.  Differences in EEG measures between RJA and IJA task 
were statistically assessed in the whole group of subjects at T0.

Repeated measures ANOVA for relative power revealed a significant effect of task x band in right frontal 
(F = 7.32, p = 0.02, η2 = . 449), right parietal (F = 10.34, p = 0.01, η2 = . 771), left temporal (F = 5.50, p = 0.03, 
η2 = . 408), right occipital (F = 13.93, p = 0.001, η2 = . 635) and left occipital (F = 4.18, p = 0.009, η2 = 0.374) 
regions.

Successive univariate analyses were performed to evaluate between-condition differences in power within the 
five different bands. A series of Bonferroni adjusted paired-sample t-tests resulting in a significance of p < 0.01 
were applied. These tests showed that in RJA task right frontal relative power was significantly higher in alpha 
band (RJA: 6.5 ± 1.19, IJA: 4.3 ± 1.22, p = 0.008, d = 1.00) and marginally significantly higher in theta band (RJA: 
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13.5 ± 2.49, IJA: 11.25 ± 2.35, p = 0.01, d = 0.84). In addition, relative power was significantly increased in RJA 
task in right parietal areas in alpha band (RJA: 8.45 ± 2.32, IJA: 6.55 ± 2.17, p = 0.009, d = 0.95); left temporal 
power was marginally significantly increased in theta band (RJA: 12.3 ± 1.87, IJA: 11.0 ± 1.75, p = 0.01, d = 0.93) 
and right occipital power was significantly increased in theta band (RJA: 13.09 ± 3.14, IJA: 11.87 ± 3.15, p = 0.003, 
d = 1.30)

Conversely, during IJA there was a marginally significantly higher right frontal power in delta band (RJA: 
59.7 ± 7.33, IJA: 67.28 ± 5.75, p = 0.01, d = −0.95) and higher left temporal power in delta band (RJA: 60.4 ± 4.17, 
IJA: 64.0 ± 4.7, p = 0.01, d = −0.90). Moreover, right occipital power was significantly increased in delta band 
(RJA: 62.32 ± 8.41, IJA: 65.02 ± 8.28, p = 0.003, d = −1.27) while left occipital power was marginally significantly 
increased in delta band (RJA: 60.4 ± 3.40, IJA: 62.7 ± 3.22, p = 0.01, d = −0.90). Differences in RJA and in IJA in 
the various brain regions and frequency bands are summarised in Fig. 1.

With regard to coherence, the ANOVA revealed a significant effect of task x band for parietal (F = 5.89, 
p = 0.018, η2 = 0.890), occipital (F = 3.30, p = 0.02, η2 = 0.369) and right fronto-occipital coherence (F = 5.68, 
p = 0.02, η2 = 0.820).

Also in this case, to evaluate between-condition differences in coherence within the five different bands, a 
series of Bonferroni adjusted paired-sample t-tests resulting in a significance of p < 0.01 were performed. These 
univariate tests revealed higher inter-hemispheric parietal coherence during RJA task in theta band (RJA: 
0.23 ± 0.01, IJA: 0.18 ± 0.01, p = 0.008, d = 1.03).

On the other hand, in the IJA task, there was a higher delta occipital coherence (RJA: 0.42 ± 0.17, IJA: 
0.52 ± 0.16, p = 0.003, d = −1.20) and delta right frontal-occipital coherence (RJA: 0.26 ± 0.07, IJA: 0.31 ± 0.07, 
p = 0.003, d = −1.20).

Longitudinal changes in eye-tracking measures.  Longitudinal changes were qualitatively evaluated in 
the subgroup of seven subjects who performed the six-month treatment.

Regarding the eye-tracking, we observed a trend of an increase in the cumulative fixation duration for face at 
T1 compared to T0 for control (T0: 1.15 ± 6.9, T1: 51.5 ± 10.2), RJA (T0: 33.4 ± 9.4, T1: 51.6 ± 12.6) and IJA (T0: 
21.6 ± 8.7, T1: 48.2 ± 15.4) tasks. In the RJA task, the cumulative fixation duration for the target object slightly 
increased, while the cumulative fixation duration for the non-target object remained quite stable.

In the IJA task, children with ASD tended to decrease the cumulative fixation duration for the target object 
(the moving one) and to increase the cumulative fixation duration for the non-target object.

Longitudinal changes EEG measures.  Some trends were observed in EEG power and coherence between 
T0 and T1 both in RJA and IJA tasks. As regard the RJA task, we observed a trend of decreasing in relative power 
in alpha band in right temporal (T0: 6.75 ± 1.56, T1: 4.54 ± 1.67), left frontal (T0: 7.47 ± 2.11, T1: 4.35 ± 1.22) and 
right frontal areas (T0: 8.74 ± 2.61, T1: 4.08 ± 1.26). A reduction in theta band in the right frontal polar area was 
also noticed (T0: 11.48 ± 0.54, T1: 10.6 ± 0.34). Figure 2 shows trends of changes in power between T0 and T1.

Looking at coherence, a trend of increasing of the right inter-hemispheric coherence between frontal-parietal 
and occipital regions in delta band (T0: 0.20 ± 0.06, T1: 0.30 ± 0.10) was reported. In addition, intrahemispheric 

Figure 1.  Differences in relative power between responding (RJA) and initiating (IJA) joint attention task at T0 
in frontal, parietal, temporal and occipital regions. RF: right frontal, RP: right parietal, LT: left temporal, RO: 
right occipital LO: left occipital.
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theta coherence tended to increase in parietal regions (T0: 0.23 ± 0.08, T1: 0.31 ± 0.07) and to decrease in fron-
tal and occipital regions (T0: 0.25 ± 0.05, T1: 0.22 ± 0.04). Right beta frontal-occipital coherence also tended to 
decrease (T0: 0.21 ± 0.03, T1: 0.19 ± 0.03) while alpha band tended to increase in parietal regions (T0: 0.22 ± 0.03, 
T1: 0.29 ± 0.04).

Figure 3 shows the pattern of changes in delta and theta coherence after the six-month treatment in the RJA 
task.

In the IJA condition, treatment induced a quite different pattern of EEG activity.
As regards power, we observed an increase in frontal gamma activity, specifically in right frontal (T0: 

1.71 ± 1.13, T1: 2.66 ± 1.59) and right frontal polar (T0: 1.21 ± 0.21, T1: 1.78 ± 0.39) areas. A concurrent decrease 
in alpha activity in left frontal area (T0: 7.65 ± 1.95, T1: 4.27 ± 1.9), and in delta activity in left temporal (T0: 
7.35 ± 0.1, T1: 6.03 ± 0.1) and left occipital (T0: 6.17 ± 0.51, T1: 5.41 ± 0.25,) areas was also noticed (Fig. 2).

As regards coherence we observed a trend of increasing in gamma band in both right (T0: 0.22 ± 0.01, T1: 
0.25 ± 0.02) and left (T0: 0.23 ± 0.2, T1: 0.28 ± 0.4) hemisphere coherence between frontal and occipital regions. 
On the contrary, delta (T0: 0.58 ± 0.2, T1: 0.49 ± 0.1) and alpha (T0: 0.49 ± 0.16, T1: 0.34 ± 0.12) coherence 
tended to decreased in occipital areas. Figure 4 shows the pattern of increase in gamma coherence and a decrease 
in delta coherence during the IJA task, after the six-month treatment.

In the control condition, we observed a trend of increasing in intra-hemispheric gamma coherence in tempo-
ral regions (T0: 0.20 ± 0.02, T1: 0.25 ± 0.03) and between right occipital and temporal regions (T0: 0.24 ± 0.35, 
T1: 0.32 ± 0.08). In addition, a trend of reduction in delta occipital coherence (T0: 0.54 ± 0.14, T1: 0.37 ± 0.09), 
in delta right frontal-occipital coherence (T0: 0.29 ± 0.5, T1: 0.21 ± 0.04) and in alpha left fronto-temporal coher-
ence (T0: 0.24 ± 0.35, T1: 0.32 ± 0.08) was noticed.

Correlations between EEG and eye-tracking measures at T1.  Correlations between eye-tracking 
measures and EEG features at T1 were explored, to investigate the neurophysiological underpinnings of gaze 
processing. Cumulative fixation duration for face was positively correlated with relative gamma and beta power 
in occipital in the RJA (r = 0.67) and the IJA tasks (r = 0.69). In the control condition, a positive correlation was 
observed between cumulative fixation duration for face and gamma and beta activity in occipital areas (r = 0.80) 
(Fig. 5a), and between cumulative fixation duration for face and the right temporal-occipital coherence in gamma 
band (r = 0.90) (Fig. 5b).

In the RJA task, a trend of positive correlation between the inter-hemispheric occipital delta coherence and the 
cumulative fixation duration for target object was noticed (r = 0.80) (Fig. 5c). Finally, in the IJA task, a positive 
correlation between coherence between frontal and occipital areas in beta (r = 0.80) and gamma bands (r = 0.90) 
and cumulative fixation duration for non-target object was observed (Fig. 5d), with both features increased after 
the treatment.

Discussion
In this study, we used an integrated approach to assess the neurophysiological circuitry during joint attention 
tasks and their changes after treatment in children with ASD.

Our results suggest that: (1) initiating and responding JA subtend with both overlapping and specialized neu-
ral circuitries, elicited by the two different tasks; (2) trends of changes in brain activity and connectivity are 
observed after treatment; (3) these modifications subtend changes as measured by eye-tracking.

Literature proved that IJA and RJA reflect overlapping but also different types of social information processing 
networks that rely on both shared and unique neural circuitries25. In particular, according to previous EEG and 
imaging studies in infants, the IJA competence seems to involve, during early development, mainly the frontal 

Figure 2.  Trends of changes in relative power in responding (RJA) (left side) and initiating (IJA) (right side) 
joint attention task between T0 and T1. RFP: right frontal polar, LF: left frontal, RF: right frontal, RT: right 
temporal, LT: left temporal, LO: left occipital.
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regions26,27, while the RJA is more related to parietal and temporal cortical processes27,28. However, it is also 
plausible that, although IJA and RJA follow distinct neural pathways during development, they later integrate in a 
frontal-posterior pattern of connectivity. Indeed, a recent combined fMRI-eye-tracking study in typically devel-
oping adults has identified a common frontotemporal-parietal network for RJA and IJA task29. The comparison of 
the neural circuitries before treatment, in our sample of ASD subjects, confirms such integration, although with 
some differences between the two tasks.

As regards the overlapping regions, in both IJA and RJA tasks, we observed an involvement of frontal regions 
and temporal brain areas. Frontal regions have been implicated in several tasks related to joint attention including 
reward15, theory of mind30 executive functions31 and observing goal-directed actions32. The frontal activation in 
joint attention is consistent with other studies on typically developing children27, and may be related to functions 
like working memory and related dual-task processing, as well as to the representational encoding of visual stim-
uli related to the task. In addition, the fact that the joint attention skill has been linked to language development33, 
and that temporal processes are involved in word discrimination and comprehension, suggest the existence of 
possible links between the activation of temporal circuitries and JA function2.

In particular, it has been hypothesised a key role for the STS, being activated both during language processing 
and during the processing of biological motion and social attention, such as eye gaze processing, in mediating 
language and attention functional domains. This mechanism could occur by integrating changing auditory and 
visual cues and extracting social or communicative significance of these cues, which may be critical to word 
learning. The STS’ role in interpreting social and speech input, could explain why impairments in this region may 
underlie many of the social and language abnormalities observed in ASD individuals34.

Concerning circuitry specialisation, we observed, in RJA task, an involvement of the parietal regions, as 
shown by both power and coherence analyses, which was not present in IJA task. The reported function of the 
parietal lobe consisting of enabling shifts of attention by disengaging attention from its current focus35 may be 

Figure 3.  Coherence maps before (a,c) and after (b,d) six-months treatment in delta band (a,b) and in theta 
band (c,d) during the responding to joint attention (RJA) task. Maps show an increase of inter-hemispheric 
frontal-parietal delta coherence (pink boxes) and a reduction of theta band in occipital areas (green boxes), and 
in frontal areas (yellow boxes) as well as an increase of theta band in parietal regions (red boxes). Coherence 
data are represented as a matrix in which electrodes are displayed on the x and y axes. Elements of the matrix 
represent color-coded coherence values between electrodes.
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employed when a child redirects his/her attention in response to head and gaze shift of the experimenter during 
the RJA trial. Conversely, in the IJA task there was an involvement of the occipital regions in both power and 
coherence and in the connectivity between occipital and frontal regions, which was not present in the RJA task. It 
has been suggested that the double activation of both frontal and posterior regions in IJA could be explained with 
the posterior-to-anterior model of development27. The posterior component of this system is thought to develop, 
indeed, before the anterior component. Between 3 and 6 months of age, infants become able to shift attention by 
inhibiting or disengaging attention from an immediate focus. The development of this ability is thought to reflect 
a posterior “orienting” attention system regulated, in part, by components of the parietal cortex as well as associ-
ated midbrain and thalamic areas36.

Previous fMRI studies in children and adults with typical development suggested that frontal and temporal 
areas are involved with both RJA and IJA tasks29,37, while the parietal region is mainly associated with the RJA 
task29,38. The present results suggest that the involvement of brain regions in our sample of high-functioning chil-
dren with ASD resembles that of typically developing individuals as far as JA circuitries are concerned.

Notably, before treatment, a different involvement of EEG bands between the two JA tasks was also observed. 
In RJA task, there was an increase of theta and alpha, while delta band increased in IJA. Consistently, theta and 
alpha power have been related to eye gaze processing39. In particular theta oscillations may imply the activity of 
the frontal cortex including an attention network involved in executive and voluntary control of attention40, while 
alpha has been related, in adults, to attention mechanisms that actively suppress distracting information to focus 
on the relevant input41. Conversely, delta band has been linked to learning, motivation and reward processes42.

After treatment, some trends of changes were observed both in terms of power and coherence in RJA and 
IJA circuitries. In particular, in RJA task power decreased both in frontal and temporal regions, while coherence 
decreased between frontal and occipital areas and increased between frontal and parietal areas, as well as within 
parietal regions. Thus, it seems that after treatment for RJA there is a strengthening of the fronto-parietal net-
work reducing the activation of the other circuitries. Such changes are mainly concerned with theta and alpha 

Figure 4.  Coherence maps before (a,c) and after (b,d) six-months treatment in gamma band (a,b) and in 
delta band (c, d) during the initiating joint attention (IJA) task. Maps show an increase of gamma coherence 
especially in fronto-occipital connections (yellow boxes) and a reduction of delta band in occipital areas (green 
boxes). Coherence data are represented as a matrix in which electrodes are displayed on the x and y axes. 
Elements of the matrix represent color-coded coherence values between electrodes.
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bands, which are also involved in gaze perception, as observed before treatment. Jaime and colleagues24 found a 
significant decrease in alpha coherence during the RJA task in children with ASD compared to TD and they also 
found a significant positive correlation between alpha coherence and the “Ready the Mind in the Eyes Test” in 
TD, suggesting that this measure is a positive biomarker for social functioning. We also observed a fronto-parietal 
increase of coherence in delta band after treatment. EEG delta activity increases mainly in frontal areas in differ-
ent tasks involving semantic and working memory skills43. Moreover, the increase in frontal delta during cogni-
tive tasks has been linked to the perceptual switching of objects44. These essential functions of the brain are likely 
to play a crucial role in the RJA task, thus possibly explaining the increase of delta band in this condition.

In IJA we observed an increased activation of frontal regions and an increased coherence between frontal and 
occipital areas. Conversely, coherence decreased within occipital regions, while power decreased in temporal and 
occipital regions. We could speculate that the treatment might strengthen some frontal abilities that are needed 
to achieve efficient IJA, i.e. the perception of a social partner45, or the ability of making judgments about others 
and oneself46, and of inferring others’ mental states47. In addition, after treatment the connectivity between frontal 
and occipital areas increased. This anterior-posterior connectivity could ameliorate the communication between 
visual information and cognitive control according to the view “where my eye’s go, my behaviours follows”2. These 
changes were particularly evident in the gamma band, which has an important role in sensory integration and 
cognitive processing48, as well as in sustained attention49. The increase of gamma activity after treatment might 
be therefore an index of an improvement of the abilities that serve to the child to effectively achieve the JA goal.

The 6-month treatment was accompanied by changes in eye-tracking measures, which partially correlated 
with the EEG features. In RJA, we observed a tendency to increase the gaze duration to target object, suggesting 
an increased ability to follow the gaze of the actress and to engage with the attended object4. The correlation of 
delta coherence and cumulative fixation duration for target object after treatment may suggest that the process of 
gaze following is sustained by an increase in delta coherence. This result agrees with the assumption for the role 
of frontal delta in working memory and object perception43,44. Interestingly, delta oscillations are also associated 
with motivational processes, and with the research of internal, motivationally salient, cues that signal potential 
rewards50,51. It is possible that these latter aspects might be the actual targets of the therapy, and that they might 
exert an indirect, beneficial effect, on the child ability to respond to JA.

In IJA, a tendency to increase cumulative fixation duration for the non-target object was also observed. 
Although this result may seem counterintuitive, our previous findings on toddlers with TD and ASD children19 
showed that, in this type of IJA task, the TD children tended not only to look at the moving (target) object, but 
also to divide their attention between the moving and the other object. Conversely, ASD children tended to focus 

Figure 5.  Correlations between cumulative fixation durations and electrophysiological measures. (a) Positive 
correlation between gamma and beta activity in occipital regions and cumulative fixation duration for face in 
control condition; (b) positive correlation between cumulative fixation duration for face and right temporal-
occipital coherence in gamma band in control condition; (c) positive correlation between intra-hemispheric 
coherence in delta band and cumulative fixation duration for target object in responding to joint attention (RJA) 
task; (d) positive correlation between left frontal-occipital coherence in gamma and beta bands and cumulative 
fixation duration for non-target object in the initiating joint attention (IJA) task.
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their attention only on the moving object. A possible explanation of this behaviour is that TD subjects foresee 
a possible movement of the still non-target object, while this capacity is impaired in ASD patients. In fact, dif-
ficulties in anticipation have been described as one of the strongest indicators of ASD52 and as a sign of mirror 
neuron system dysfunction53. The increased attention to the non-target object after the treatment protocol seems 
to suggest that children likely increased the abilities to anticipate object movement, more similarly to TD people. 
Such changes were also correlated with an increased gamma activity in frontal areas, which has been also linked 
to anticipation of visual stimuli skills54.

Eye-tracking measures also showed an increased attention for face in all the conditions. Looking at social 
stimuli, such as face, is a prerequisite for joint attention behaviour4, therefore likely representing a positive 
treatment effect on children involved in the study. In the control condition, where only the face was present, 
we observed an increase in beta occipital activity, which is known to be mainly associated to the processing of 
emotional face stimuli55, suggesting an increased ability of processing the social stimuli, which is confirmed by 
the positive correlations between cumulative fixation duration for face in control condition, and occipital beta, 
together with gamma.

Due to the small sample size, we only reported the effect sizes of these correlations (Pearson’s r) and we 
obtained quite large effects (0.67 < r < 0.90).

Despite the novel approach presented in this study and the promising results of the proposed method in 
characterising brain and visual patterns linked to joint attention in ASD, some important limitations need to 
be considered when interpreting these results. A first limitation is represented by the small sample size; in par-
ticular, only a subgroup of seven subject was longitudinally assessed and thus we could only report qualitative 
trends and we could not drive solid conclusions about the treatment effect. The significance of results at T0 in the 
whole group were quite strong (between 0.01 and 0.003) and mostly survived the stringent Bonferroni correction. 
Moreover, we also relied on effect sizes, which are not affected by sample size, and we obtained large effect size 
values, suggesting the reliability of the results we achieved.

The study was designed as a pilot research, aiming at testing the feasibility of using a novel protocol, based on 
the integration of high-density EEG and eye-tracking, to assess the effect of a 6-month intensive treatment on the 
neurophysiological and visual correlates of joint attention. Thus, only a small number of patients was recruited, 
with the aim of having a homogeneous group of high-functioning male children with ASD, who could complete 
the assessment protocol and the treatment, while limiting the overall dropout. The findings of the study need to 
be replicated with a larger sample to verify the results of this pilot investigation and to prove the efficacy of the 
treatment.

Another limitation is represented by the absence of a control group of ASD patients, which did not perform 
the treatment. In fact, the study design involved a within-group and pre-post treatment comparison, in which 
each child was a control for himself. Future studies might also add a control group of children with ASD undergo-
ing a treatment “as usual”, in order to make us more confident that the longitudinal changes, eventually observed, 
were effectively due to the treatment. In addition, we could also include a sample of typically developing children 
to understand how the brain activation and eye-tracking response is different to that of children with ASD in this 
specific responding to joint attention and initiating joint attention tasks.

It is of note that in the current study we restricted eligibility to male patients, in order to control for potential 
gender-related heterogeneity. Thus, the lack of females within the ASD sample prevents us from identifying what 
their pattern of EEG/eye-tracking change would be. Recent literature that specifically explored the JA skills in 
children with ASD suggested no gender differences between girls and boys evaluated through a structured ses-
sion of play interaction56, or a parent report scale focused on JA57. We can therefore speculate that females with 
ASD, carefully matched on developmental and diagnostic variables with the males recruited in this study, would 
have the same pattern of EEG/eye-tracking response of JA. An ad hoc investigation of sex differences in the tasks 
proposed in the current study should be planned in order to verify this hypothesis.

Conclusions
Overall, these findings suggest the existence, in high-functioning children with ASD, of neural circuitries respon-
sible of joint attention process, with some regions of overlap between the two components and some regions of 
specialization, as previously observed in typically developing subjects25 and in adults with ASD22. In addition, 
the results of this study may suggest that the treatment affects neurophysiological and eye-tracking measures. 
The intensive rehabilitative intervention implemented in the MICHELANGELO project, mainly focused on joint 
attention and imitation, has likely changed the ability of children to process joint attention stimuli, both at a 
behavioural and at a neural circuitry level. The behaviour-brain link is supported by the integrated acquisition 
and analysis of eye-tracking and EEG measures. These results could go in the directions of previous studies apply-
ing neuroimaging methods demonstrating brain plasticity caused by behavioural treatment in ASD, which result 
in a brain pattern more similar to those of subjects with typical development58. Thus, repeated neuroimaging 
evaluation might represent a promising tool for the investigation of neural changes in response to treatment in 
patients with ASD. The research was designed as a pilot study, to test the feasibility of this new methodology, thus 
considerably limited in the sample size. Further data collections, and larger samples, are needed to confirm these 
preliminary results, the possibility to accurately characterise the neurophysiological patterns linked to different 
behaviours, and to longitudinally monitor the effect of the treatment through objective measurements of the 
child’s response. Importantly, a control group will be necessary in future steps of the study, in order to compare 
the results obtained in children with ASD and to further ensure that the modifications observed in the ASD sam-
ple would be actually due to treatment intervention.
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Method
Participants.  A total of 14 high-functioning children with ASD were recruited from the IRCCS Stella Maris 
Foundation. Two of them did not complete the protocol, while one was not included in the analyses because of 
missing EEG data due to technical problems during the acquisition. Therefore, the final sample consisted of 11 
children with ASD (all males, age range = 6.1–9.2 yrs, mean age = 7.5 ± 1.1 yrs) (Table 1). A subgroup of 7 of these 
children was longitudinally assessed after 6 months of treatment. The ASD diagnosis was formulated accord-
ing to the DSM-5 criteria59 and confirmed by the Autism Diagnostic Observation Schedule-2 (ADOS-2)60 and 
the Autism Diagnostic Interview-Revised (ADI-R)61. The adaptive behaviour was assessed using the Vineland 
Adaptive Behaviour Scale-II (VABS-II)62. A multidisciplinary team - including a senior child psychiatrist, and two 
clinical child psychologists experienced in ASD - conducted the diagnostic assessment during a 5-day extensive 
evaluation. The Wechsler Intelligence Scales for Children-fourth edition (WISC-IV)63 were used to assess the 
Full Scale Intelligence Quotient (FSIQ). The study was approved by the IRCCS Stella Maris Foundation’s Ethical 
Committee and all the parents signed a written informed consent form to participate. The participants were 
treated in accordance with the declaration of Helsinki.

Intervention.  Participants performed one 40-min treatment session each week for six months, during which 
a technological platform was used to record neurophysiological, autonomic and behavioural data64,65. The first 
half of the session consisted of a therapeutic protocol with gradually increasing difficulty based on imitation (IM), 
and on IJA and RJA in the context of a play-based setting. In the IM tasks, the therapist asked the child to imitate 
what he/she was doing. In an example of JA task, a therapist red a social story while a second therapist dramatized 
some parts of the story: in the IJA task the child was expected to spontaneously look at the second therapist, and 
then shift the gaze toward the first therapist in order to share the event; in the RJA task, the first therapist looked at 
the child and then vocalised, pointed or looked at the second therapist in order to elicit a JA response in the child. 
During the second half of the session the therapist proposed the children some socio-cognitive tasks supported 
by the use of the serious game “GOLIAH”, developed within the MICHELANGELO project66,67, that maps IM and 
JA stimuli derived from the Early Start Denver Model68. Importantly, the games were implemented on two tablets, 
one managed by the therapist and the other by the child, in order to drive them to cooperate to achieve the goal 
of the game. In addition to the treatment sessions with the therapist at the hospital, the training with “GOLIAH” 
also included five 20-minute sessions per week with parents playing with their children at home.

Data acquisition.  EEG and eye-tracking data were concurrently acquired in all ASD children at the begin-
ning (T0) and, for a subgroup of 7 children, at the end (T1) of a six-month treatment. The EEG system and 
the eye-tracker were synchronized using a switch to simultaneously send the stimuli from the stimulus PC to 
the Net Station and the eye-tracker PC. EEG data were continuously recorded with a 128 channels HydroCel 
Geodesic Sensor Net (HCGSN 128; Electrical Geodesics Inc). Data were acquired at a sampling rate of 500 Hz, 
setting impedances below 50 kΩ, and using a band-pass filter between 0.1 and 100 Hz, and a notch filter at 50 Hz 
for a visualization purpose. Children’s gaze was recorded by the SMI Eye Tracking (SensoMotoric Instruments, 
Germany), with a sample rate of 500 Hz and an accuracy of more than 1 degree of visual angle. The eye-tracker 
was placed in front of the subject (approximately 50 cm), just below a 22-inch flat screen monitor where the stim-
uli were presented through the SMI Experiment Center SoftwareTM.

Stimuli.  The JA paradigm was created using the E-Prime software. The experiment began with a 5-point 
calibration routine. Stimuli consisted in video sequences, with an actor/actress visible in the foreground on 
black neutral background with two identical toys placed on the floor in front. The experimental proof of the task 
involves three conditions: the RJA, the IJA and a control condition without objects (Fig. 6).

Subjects
Age (in 
years)

ADOS-2 
CS

ADI 
QARSI

ADI 
QAC

ADI 
RRSPB

ADI ADE 
36 months

WISC-IV 
FSIQ

Vineland-2 
ABC

S1* 6.1 3 10 8 3 3 117 75

S2* 6.3 3 12 10 4 3 84 76

S3* 7.3 3 14 12 3 1 97 85

S4* 7.8 4 16 11 3 5 98 75

S5* 6.8 4 10 8 3 1 92 73

S6* 8.10 5 12 9 3 3 127 75

S7* 9.2 5 11 9 3 1 111 74

S8 7.6 6 22 12 2 2 123 78

S9 8.3 4 9 8 1 1 117 77

S10 9.1 8 21 18 11 3 100 94

S11 6.1 5 12 11 4 2 118 97

Table 1.  Participants characteristics. CS = Comparison Score; QARSI = Qualitative Abnormalities in Reciprocal 
Social Interactions; QAC = Qualitative Abnormalities in Communication; RRSB = Restricted, Repetitive, and 
Stereotyped Patterns of Behavior; ADE = Attività Didattica Elettiva (Elective Teaching Activities); FSIQ = Full 
Scale – IQ; ABC = Adaptive Behaviour Composite. *Subjects who performed the 6-month treatment.
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In the RJA, after the initial “looking down” in which the actor/actress looks down (500 ms), he/she smiles to 
the child in order to invoke the focus (“interactive” phase, 2000 ms). Following this interactive stage, the actor/
actress turns his/her head and eyes to one of the objects, realising the “joint attention” phase (2500 ms). In the IJA, 
the first two phases are identical to the RJA tasks. In the third phase of the IJA task while the actor/actress main-
tains direct gaze towards the camera and assumes a neutral facial expression, one of the two objects placed on 
the floor moved unexpectedly (“joint attention” phase, 2500 ms). In the Control condition, after the initial 500 ms 
“looking down” phase in which the actor/actress looks down, he/she smiles to the child in order to invoke the 
focus (“interactive” phase, 4500 ms). Each video clip of 5 seconds was interspersed with a fixation cross (500 ms) 
to control the attention of the child (Fig. 7). Two blocks of 40 repetitions for each condition were presented to 
each child. Stimuli were presented in a randomised order.

Eye-tracking data analysis.  Considering the focus of the paper and the JA construct, the measures were 
computed only for the JA segment of the RJA and IJA. Measures were computed by extracting raw data and ana-
lysing them in Matlab (MathWorks, Natick, MA, USA), using homemade scripts. The following areas of interests 
(AOIs) were selected: model’s face, target object, non-target object. To explore the child’s engagement with each 
AOI, cumulative fixation duration within the selected AOI, which is defined as the time spent on that AOI, was 
analysed. A fixation threshold of 60 ms was applied to avoid unconscious looking. Cumulative fixation duration 
on a specific AOI was computed as a percentage of the total, which means cumulative fixation duration on that 
AOI relative to the participants’ on-trial cumulative fixation duration. In the Control condition, we only com-
puted cumulative fixation duration for the face during the interaction phase.

EEG data analysis.  Data were pre-processed using EEGLAB Toolbox69. Data were band-pass 0.5-70 Hz to 
remove slow linear trends and high frequency noise and a notch filter (45–55 Hz) was applied to remove power 
line interference. Ocular and muscular artefacts were first removed by visual inspection. In particular blink arte-
facts were identified as segments of data having deflection > 150 μV, while ocular flutters, or muscle movement 
artefacts as segments having deflections of 50 μV relative to baseline. Channels where the amplitude exceeded 200 
μV, or that had zero variance, for at least 20% of the recording, were removed from the analysis, and subsequently 
interpolated. Data were re-referenced to the average of all channels. Data were then epoched according to the 
event markers for all the conditions considering a pre-stimulus of 800 ms, and their termination coinciding with 
the end of the video.

Figure 6.  Screen shots of the videos of the different tasks. (a) Responding to joint attention task (RJA), (b) 
initiating joint attention task (IJA) and (c) control task. The RJA and IJA tasks are divided into three different 
phases: looking down, interactive, joint attention. The control task is divided in two phases: looking down and 
interactive.
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For removing the residual artefacts on epochs due to eye movements or muscles the fastica algorithm of 
EEGLAB was applied, then the algorithm ADJUST70 was used for the selection of the components to be removed. 
Once major artefacts were removed, we rechecked the epochs for residual artefacts using the EEGLAB’s epoch 
rejection tools. In addition, we excluded the EEG epochs in which the child looked at the screen for less than 
200 ms, as measured using the eye-tracking. Data were baseline corrected considering the pre-stimulus segment 
of the video conditions as control signal.

Pre-processed data were imported in a home-made Matlab tool for quantitative EEG analysis. Quantitative 
features were extracted from each epoch, and then averaged over all epochs, separately for each of the three con-
ditions. First, the Power Spectral Density was calculated using the Welch method (Hanning window of 2 s, 50% 
overlap). From the Power Spectral Density, the relative power for each of the main EEG frequency bands was 
obtained: delta (1 – 4 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–29 Hz) and gamma (30–80 Hz). Coherence at 
each frequency band was then calculated for each pair of electrodes as a measure of phase locking.

A reduction of data was applied for comparing features: the power of the 128 electrodes was averaged across 
specific brain areas and coherence measures calculated between these areas. According to previous studies, the 
following areas were defined: left frontal polar, right frontal polar, left frontal, right frontal, left temporal, right 
temporal, left parietal, right parietal, left occipital and right occipital.

Statistical analysis.  Statistical analysis was performed using SPSS 20.0 for Mac only at T0 in the whole 
sample. The descriptive statistics for each of the dependent variables were examined. With the aim to explore 
the neural correlates of RJA and IJA, we performed a repeated-measures MANOVA on EEG measures at T0, in 
which the task (RJA or IJA) was the within-subject variable. Relative powers and coherences within brain regions 
were explored as independent variables. When powers and coherences where tested, band was also added as a 
within-subject factor. Age was used as covariate for all the analyses. Since the MANOVA only tells if there is an 
overall difference between the variables (i.e. coherence values), but it does not tell which specific variable (i.e. 
coherence in temporal regions in delta band) differ, univariate tests were performed when an overall statistically 
significant difference was observed. Univariate analyses were conducted using paired sample t-tests comparing 
variables for each band. When performing univariate tests, Bonferroni correction was applied resulting in a sig-
nificance of p < 0.01 (5 bands). Effect sizes (by partial eta squared-η2 for MANOVA and Cohen’s d for t-tests) 
were reported as they take into account mean differences and standard deviations without being sensitive to 
sample sizes. According to the literature, for η2 values between 0.01 and 0.06 are generally considered a small 
effect, between 0.06 and 0.14 a medium effect and those above 0.14 are regarded as a large effect; while d = 0.2 be 
considered a small effect size, 0.5 represents a medium effect size and 0.8 a large effect size71.

Because of the small size of the sample, which was longitudinally assessed, and the exploratory nature of our 
study, we did not report quantitative results for the longitudinal eye-tracking and EEG data but instead we only 
reported qualitative trends. To examine the relationship between eye-tracking and EEG measures effects sizes 
(Pearson’s r), rather than statistical significance, were used to interpret meaningful correlations.
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