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Abstract

Introduction: A few copy number variations (CNVs) have been reported for

Alzheimer’s disease (AD).However, there is a lackof a systematic investigationofCNVs

in AD based onwhole genome sequencing (WGS) data.

Methods: We used four methods to identify consensus CNVs from the WGS data

of 1,411 individuals and further investigated their functional roles in AD using the

matched transcriptomic and clinicopathological data.

Results:We identified 3,012 rareAD-specific CNVswhose residing genes are enriched

for cellular glucuronidation and neuron projection pathways. Genes whose mRNA

expressions are significantly correlated with common CNVs are involved in major his-

tocompatibility complex class II receptor activity. Integration of CNVs, gene expres-

sion, and clinical and pathological traits further pinpoints a key CNV that potentially

regulates immune response in AD.
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P30AG10161,R01AG15819,R01AG17917,

U01AG46152,U01AG61356 Discussion:We identify CNVs as potential genetic regulators of immune response in

AD. The identified CNVs and their downstream gene networks reveal novel pathways

and targets for AD.
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1 BACKGROUND

Alzheimer’s disease (AD) is a neurodegenerative disease affecting

more than 50 million people worldwide.1 By 2050, the worldwide

frequency of AD is predicted to be 1 in 85 individuals older than

65.2 The heritability of early-onset familial AD (EOAD) is estimated

to be as high as 79%, based on a large twin study.3 However, rel-

ative to late-onset “sporadic” AD, EOAD is relatively rare (≤5%).4,5

Three genes (i.e., APP, PSEN1, and PSEN2) have been found to have

autosomal dominant mutations fully penetrant for EOAD. The genetic

mechanisms underlying AD, especially late-onset AD (LOAD), remain

largely unclear, although previous genome-wide association studies

(GWAS) have identified 42 risk factor loci for LOAD.6–8 Compared to

single nucleotide polymorphisms (SNPs; ≈1%),9 copy number varia-

tions (CNVs) affect a much larger fraction of the genome (≈10%).9–11

In normal diploid human cells, genomic regions comprise two homolo-

gous parental sequence copies. However, there are long fragment dele-

tions or duplications in some genomic regions, which deviate from the

typical sequence copy number of two for the region. Such deletions

and tandem duplications are collectively known as CNVs,12 ranging

in length from 50 bp to several Mb.12,13 CNVs play a significant role

in many neurological diseases such as Parkinson’s disease (PD),14,15

schizophrenia,16 mental retardation,2 and AD.2,17–20 However, these

studies have been limited to array comparative genomic hybridiza-

tion (a-CGH), targeted polymerase chain reaction (PCR), or SNP array

approaches.2 PCR-based methods, such as quantitative PCR(qPCR),

only cover a limited number of targeted regions. Even though a-CGH

analysis can cover the entire genome, its resolution is low (≈5–10 kb).2

SNP array-based analysis can cover the entire genome but is under-

powered to detect rare CNVs10 and also has a low resolution for pin-

pointing breakpoints (≈2–10 kb).2

In this study, we first comprehensively identified CNVs from the

paired-end short read (2 × 150 bp)–based whole-genome sequencing

(WGS) data generated from post mortem brain tissues of 1411 North

American White individuals across two cohorts from the Accelerating

Medicines Partnership–Alzheimer’s Disease (AMP-AD) consortium,21

including the Mount Sinai/JJ Peters VA Medical Center Brain Bank

(MSBB) AD cohort,22 and the Religious Orders Study/Memory

and Aging Project (ROSMAP) cohort23 using four complementary

CNV calling approaches (i.e., CNVnator,24 Pindel,25 MetaSV,26 and

Delly227). Within each cohort, individual-level calling results from

the four approaches were integrated into a set of population-level

CNVs. Furthermore, only consensus CNVs detected by three or more

approaches in each cohort were used for afterward analysis to exclude

software bias. Comparing 701 LOAD cases with 710 non-AD cases,

we identified 3,012 rare AD-specific CNVs genome-wide. The AD-

specific CNVs were only observed in AD cases. Sixty-four AD-specific

CNVs were conserved across two cohorts. The AD-specific CNVs are

enriched in transcriptional regions for biological processes such as cel-

lular glucuronidation, neuron projection, and multicellular organismal

signaling, a novel finding not found in AD GWAS. By further integrat-

ing clinical, pathophysiological, and transcriptomic data, we found that

commonCNVsaffect the transcription levels of genes involved inmajor

histocompatibility complex (MHC) class II receptor activity across dif-

ferent brain regions, supporting previous reports of the increased

immune response in AD.28 Three CNVs (i.e., mCNV233, mCNV236,

and mCNV11665) are significantly negatively correlated with the

Braak score in the dorsolateral prefrontal cortex (DLPFC) region. CNV-

Gene-Trait correlation networks integrating matched multi-omics and

clinicopathological data first pinpoint one novel CNV, a key regula-

tor for immune response (DEL6619.MSBB/mCNV21544.ROSMAP),

and further provide many novel gene targets that connect CNVs

with clinical and pathological traits of AD. All consensus CNVs of

the two cohorts have been uploaded to the AD Knowledge Portal

(http://doi.org/10.7303/syn26254632), and the University of Califor-

nia Santa Cruz (UCSC) genome browser track (http://genome.ucsc.

edu/s/c6ming2/AMPAD.CNVs).

Identification of AD-specific CNVs provides a new perspective of

AD’s genetic risk factors. Moreover, the association of CNVs with

matched clinical, pathological, and transcriptomic data sheds light on

disease mechanisms. To our knowledge, this is the first genomic CNV

study of LOAD by integratingWGS data with clinical, pathologic, tran-

scriptomic data. The AD-associated CNVs and the underlying gene

targets deepen our understanding of the genetic mechanisms under-

lying AD.

2 RESULTS

2.1 Identification of consensus CNVs in the
AMP-AD cohorts

After excluding the duplications, contaminated samples, and out-

liers, the MSBB22 and ROSMAP23 cohorts contain 341 and 1129

samples, respectively. To exclude bias from demographic history, we

focused on North American White samples in the analysis. There

http://genome.ucsc.edu/s/c6ming2/AMPAD.CNVs
http://genome.ucsc.edu/s/c6ming2/AMPAD.CNVs
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TABLE 1 Summary of detected consensus autosomal CNVs from
MSBB and ROSMAP

CNV type Calling Quality MSBB ROSMAP

Bi-allelic deletions Consensus class III 4627 3915

Bi-allelic duplications Consensus class III 724 949

Multi-allelic CNVs Consensus class III 1799 5038

Total CNVs 7150 9902

Note: Consensus class is defined by the supported software number. The

consensus class III represents CNVs detected by three or more software

programs. The numbers of Consensus class I and consensus Class II are

reported in Table S4.

Abbreviations: CNV, copy number variation; MSBB, JJ Peters VA Medical

Center Brain Bank; ROSMAP, Religious Orders Study/Memory and Aging

Project.

were 1411 samples left in total (MSBB: 284 samples, ROSMAP: 1127

samples; Methods 3.1, Tables S1-S3 in supporting information). By

integrating results from four different and complementary CNV call-

ing approaches (CNVnator,24 Pindel,25 Delly2,27 and MetaSV26), we

generated a set of CNVs for each cohort (Figure 1 and Figure 2,

Table 1, Figure S1 in supporting information, Tables S4-S6 in supporting

information, and Methods 3.4). The robustness of these CNVs was

further evaluated by the consensus among the four CNV calling

approaches (Table S4). Consensus Class I includes the CNVs identi-

fied by only one calling method, and Consensus Class II consists of

the CNVs determined by only two methods, while Consensus Class III

contains the CNVs identified by three or more methods. We focused

on the CNVs in the Consensus Class III in the subsequent analyses

to exclude method bias. The Consensus Class III includes 7150 and

9902 CNVs in the MSBB and ROSMAP cohorts, respectively (Table 1,

Figure 2A, and Tables S4-S6). Two CNVs with a reciprocal overlap

(RO) of 50% or greater in their genomic locations are considered to

have significant overlap and are treated as the same CNV. The median

individual CNV counts of the two cohorts are similar (i.e., 987 CNVs

per individual in the MSBB, and 1052 in the ROSMAP cohort). The

two cohorts share 3687 CNVs based on the RO threshold of 50%

(Figure 2B and Table S7 in supporting information). To estimate our

CNV calling pipeline’s replication rate, we randomly picked four sam-

ples (i.e., three AD cases and one NL control) from the MSBB cohort,

sequenced the corresponding genomes twice, and compared the CNV

calling results from two batches. Our CNV calling pipeline’s replica-

tion rate ranged from 97.30% to 98.63% (Table S8 in supporting infor-

mation). We further compared our consensus CNV sets to four pub-

lic CNV datasets based on large populations (i.e., Decipher,29 DGV,30

the 1000 Genome project,31 and GnomAD32). More than half of our

CNVs were validated in the four public CNV datasets (Table S9 in sup-

porting information). The overlaps between our consensus CNV sets

and these public CNV datasets were generally greater than the over-

laps between the public datasets. For example, the overlaps of the

MSBB and ROSMAP CNV datasets and the GnomAD CNV dataset

were approximately 74% and 59%, respectively, whereas the over-

laps between GnomAD and DECIPHER, 1KGP, and DGV were approx-

HIGHLIGHTS

∙ We systematically identified 3012 rare Alzheimer’s dis-

ease (AD)-specific copy number variations (CNVs) based

on the whole genome sequencing data from 1411 individ-

uals in two cohorts.

∙ AD-specific CNVs have distinct molecular functions com-

pared to the normal control-specific CNVs.

∙ CNV-correlated gene expressions are involved in major

histocompatibility complex class II receptor activity and

interferon-gammamediated signaling.

∙ CNV-correlated gene networks pinpoint a novel CNV as a

key regulator for the immune response pathway in AD.

RESEARCH INCONTEXT

1. Systematic review: A few rare copy number variations

(CNVs) have been implicated in Alzheimer’s disease (AD),

but there is no systematic study of CNVs in AD based on

whole genome sequencing (WGS) data.

2. Interpretation: We analyzed the WGS data of 1411

North American White individuals from two AD cohorts

and identified 3012 rare AD-specific CNVs. Rare AD-

specific CNVs were involved in cellular glucuronidation

and neuron projection. We further revealed the func-

tional contexts of the identified CNVs by integration with

matched transcriptomic, clinical, and pathological data.

3. Future directions: The functional impact of the

above-identified AD-specific CNVs and common CNV-

correlated RNAs need to be experimentally validated in

future studies. Another important direction to pursue is

whether somatic CNV mutation rates differ across brain

regions or at disease states.

imately 39%, 51%, and 31%, respectively. The consensus CNV sets

of the two cohorts were uploaded to the UCSC genome browser

track, which can be viewed through the link: http://genome.ucsc.edu/s/

c6ming2/AMPAD.CNVs. The full CNVmatrixes of the two cohorts and

scripts used to generate CNVs can be downloaded from theADKnowl-

edge Portal (http://doi.org/10.7303/syn26254632).

2.2 Distinct molecular functions of AD- and mild
cognitive impairment–specific CNVs

We further categorized all samples of theMSBB and ROSMAP cohorts

into three clinical diagnostic groups (i.e., the AD group, the mild cogni-

tive impairment (MCI) group, and the normal control (NL) group) based

http://genome.ucsc.edu/s/c6ming2/AMPAD.CNVs
http://genome.ucsc.edu/s/c6ming2/AMPAD.CNVs
http://doi.org/10.7303/syn26254632
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F IGURE 1 Genomic copy number variation (CNV) distribution in the two cohorts (MSBB and ROSMAP). Track 0: Human genome cytoband.
Track 1: Deletions in ROSMAP. Track 2: Duplications in the ROSMAP. Track 3: multi-allelic CNVs in ROSMAP. Track 4: Alzheimer’s disease
(AD)-specific CNVs in the ROSMAP. Track 5: Deletions inMSBB. Track 6: Duplications inMSBB. Track 7: multi-allelic CNVs inMSBB. Track 8:
AD-specific CNVs inMSBB. Orange and blue lines represent deletion and duplication, respectively. Green lines represent multi-allelic CNVs

on the disease severity measurement Clinical Dementia Rating (CDR).

In the MSBB cohort,22 there are 224 AD samples with CDR > 0.5, 27

MCI samples with CDR = 0.5, and 33 NL samples without cognitive

impairment (CDR = 0). The ROSMAP cohort23 includes 477 AD sam-

ples, 285 MCI samples, and 365 NL samples. In total, there are 701

LOAD, 312MCI, and 398NL samples (Tables S1-S2). In the subsequent

analyses, we focused on studying the effect of CNVs in the clinical diag-

nostic AD group.

Each CNV was assigned to a clinical diagnostic group to which

the respective sample belonged (Figure 3A). Group-specific CNVs are

defined as CNVs that are only observed in one specific group but not

in any other group (Figure 3B). For example, the AD-specific CNVs

are CNVs only observed in the AD cases in the two cohorts under

study but not in the NL and MCI cases. If the frequency of a CNV

in the AD group is greater than 0 and its frequency in the non-AD

groups (i.e., the MCI and NL groups) is zero, this CNV is called an

AD-specific CNV. Similarly, the MCI-specific CNVs are only observed

in the MCI cases, while the NL-specific CNVs are only observed in

the NL cases (Figure 3B). By excluding the CNVs detected in any

of the 710 non-AD cases (i.e., the 312 MCI cases and 398 NL),

we identified 3012 unique AD-specific CNVs in the 701 AD cases

from the MSBB and ROSMAP cohorts (MSBB: 2185, ROSMAP: 891;

Figure 3C, Table S10 in supporting information). Among these AD-

specific CNVs, 64 were conserved in the two cohorts (Figure 3C,
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F IGURE 2 Overall features of the copy number variations (CNVs) identified inMSBB and ROSMAP, including composition of CNV types, site
frequency spectrum (SFS). (A) Pie chart of the CNV composition in each cohort. The exact numbers can be found in Table 1. (B) CNV sharing
pattern across the two cohorts. The exact numbers can be found in Table S7. The CNV proportion in each category is based on the boundary of
each cohort separately. The overlapping criteria is defined as the reciprocal overlap ratio larger than 0.5. (C) SFS of deletions and duplications in
theMSBB and ROSMAP cohorts

Figure 4E, and Table S10). The AD-specific CNVs were observed at

low population frequencies (≤ 6.25% in MSBB, ≤ 1.26% in ROSMAP,

Figure 3D). There was no significant difference in the total CNV

length or the total CNV count per individual between the AD, MCI,

and NL groups in MSBB or ROSMAP, based on the Quasi-Poisson

regression model (QPRM; Methods 3.5, and Table S11 in support-

ing information). In MSBB, the mean number (17.19) of the AD-

specific CNVs per AD case is significantly higher than that (6.7) of

the MCI-specific CNVs per MCI case (QPRM Padj= 5 ∗ E−2 ) and that

(6.64) of the NL-specific CNVs per NL case (QPRM Padj = 2.67 ∗

E−2 ; Table S12 and Figure S2 in supporting information). A simi-

lar trend was observed in ROSMAP. In QPRM, the clinical diagnos-

tic group is the main predictor variable, the response variable is “the

total CNV count” or “the total CNV length” or “the group-specific

CNV count” per individual, while sex and age of death are co-variants

(Methods 3.5).

One of the 64 AD-specific CNVs conserved across the two cohorts

resides within the duplication region encompassing the APP gene

(chr21:14,714,507-29,216,662: nsv1398044; Figure 4E). The other

63 conserved AD-specific CNVs have not been associated with AD
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green shadow regions represent the AD-specific, MCI-specific, and NL-specific CNV sets. All the samples in the two cohorts are considered here.
(C) Intersection of the diagnostic group-specific CNV sets inMSBB and ROSMAP. The numbers are based on the cross-cohort comparison. (D) Site
frequency spectrum of AD-specific deletions and duplications. DEL andDUP represent deletion and duplication, respectively

and thus are novel (Figure 4E, and Table S13 in supporting informa-

tion). Interestingly, the majority of these conserved AD-specific CNVs

(61 out of 64) are reported in other published CNV datasets, which

are based on large populations without mental or neuropathological

trait records (i.e., Decipher,29 DGV,30 the 1000 Genome project,31 and

GnomAD32; Table S13). Their frequency ismuchhigher in theADgroup

than the general populationwith European ancestry based on theGno-

mAD database (Table S13).

Genes whose transcriptional regions reside in the genomic regions

of AD-specific CNVs are defined as AD-CNV genes in the subsequent



1852 MING ET AL.

0.0 1.0 2.0 3.0 4.0 5.0

Flavonoid glucuronidation

Cellular glucuronidation

Xenobiotic glucuronidation

Uronic acid metabolic process

Multicellular organismal signaling

Flavonoid metabolic process

Plasma membrane region

Neuron projection

Extrinsic component of plasma membrane

Synapse

Catenin complex

Synaptic membrane

Glucuronosyltransferase activity

(A) AD-specific-CNV genes

Molecular function

Biological process

Cellular component

-log10(Padj)

(C) MCI-specific-CNV genes
0 0.5 1 1.5

Ligase activity forming carbon sulfur bonds

Ligase activity forming carbon sulfur bonds

-log10(Padj)

(D) NL-specific-CNV genes
-log10(Padj)

(B) Genes overlapping with multiple AD-specific CNVs -log10(Padj)

0.0 5.0 10.0 15.0

Immunoglobulin complex

Regulation_of_complement_activation

b l b l

0 0.5 1 1.5 2 2.5 3 3.5

Neuron Development

Neuron Recognition

Neuron Differentiation

Cell Projection Organization

Neurogenesis

Regulation Of Neuron…

Cell Part Morphogenesis

Cell Morphogenesis

Axon

Neuron Projection

Regulation of Neuron Projection Development

F IGURE 4 Functional analysis of Alzheimer’s disease (AD)-, mild cognitive impairment (MCI)-, and normal (NL)-specific copy number variation
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glucuronidation, neuron projection, uronic acid metabolic process, extrinsic component of plasmamembrane, synapse, catenin complex, and
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F IGURE 4 Continued

analyses (Figure S3 in supporting information). The AD-CNV genes are

significantly enriched for important biological processes such as cel-

lular glucuronidation, neuron projection, uronic acid metabolic pro-

cess, extrinsic component of plasmamembrane, synapse, catenin com-

plex, and multicellular organismal signaling (Figure 4A, Table 2, Fig-

ure S3, and Table S14 in supporting information). Furthermore, the

genes overlapping with multiple AD-specific CNVs are enriched in

many neuron-related pathways such as neuron development, neuron

recognition, neuron differentiation, cell projection organization, neu-

rogenesis, axon, and neuron projection (Figure 4B, Table 2, Figure S3,

and Table S14). The genes residing in the genomic regions of the MCI-

specific CNVs (termed MCI-CNV genes) are associated with ligase

activity forming carbon-sulfur bonds (Figure 4C, Table 2, Table S14). In

contrast, the genes residing in the genomic regions of the NL-specific

CNVs (termed NL-CNV genes) are enriched for immunoglobulin com-

plex (Figure 4D, Table 2, Table S14). These results reveal distinctmolec-

ular functions of AD- and MCI-specific CNVs compared to the NL-

specific ones.
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TABLE 2 Pathways enriched in the group-specific CNV genes

Group GO term FET_Pa Padj

Fold

enrichmentb

AD-CNV genes PlasmaMembrane Region 1.85E-09 5.80E-05 1.67

Flavonoid Glucuronidation 3.13E-09 9.80E-05 13.39

Cellular Glucuronidation 1.02E-08 3.20E-04 8.29

Xenobiotic Glucuronidation 5.08E-08 1.60E-03 10.96

Neuron Projection 8.00E-08 2.50E-03 1.56

Uronic AcidMetabolic Process 1.98E-07 6.20E-03 6.63

Extrinsic Component of PlasmaMembrane 2.12E-07 6.60E-03 2.76

Synapse 3.78E-07 1.20E-02 1.54

Catenin Complex 4.51E-07 1.40E-02 5.65

Multicellular Organismal Signaling 5.27E-07 1.60E-02 2.52

Glucuronosyltransferase Activity 9.67E-07 3.00E-02 5.32

SynapticMembrane 1.09E-06 3.40E-02 2.05

FlavonoidMetabolic Process 1.56E-06 4.90E-02 8.04

Genes overlapping withmultiple

AD-specific CNVs

NeuronDevelopment 5.06E-08 5.30E-04 3.17

Neuron Recognition 7.36E-08 7.70E-04 19.09

NeuronDifferentiation 8.38E-08 8.70E-04 2.87

Cell ProjectionOrganization 1.98E-07 2.10E-03 2.64

Neurogenesis 3.85E-07 4.00E-03 2.57

Axon 5.18E-07 5.40E-03 3.85

Neuron Projection 1.75E-06 1.80E-02 2.66

RegulationOf Neuron Projection

Development

1.77E-06 1.80E-02 4.40

Cell PartMorphogenesis 2.05E-06 2.10E-02 3.51

Cell Morphogenesis 4.76E-06 5.00E-02 2.87

MCI-CNV genes Ligase Activity Forming Carbon Sulfur Bonds 1.31E-06 4.10E-02 12.40

NL-CNV genes Immunoglobulin Complex 4.14E-15 1.30E-10 8.45

aFisher’s exact test (FET) P value.
bThe details of enriched genes can be found in Table S14.

Abbreviations: AD. Alzheimer’s disease; CNV, copy number variation; GO, GeneOntology;MCI, mild cognitive impairment.

2.3 Replication of previously identified
AD-associated CNVs

Two AD-specific CNVs were reported in previous studies33 (Table

S15 in supporting information), and 29 AD-specific CNVs were found

to be within the duplication region encompassing the APP gene

(chr21:14,714,507-29,216,662:nsv1398044)17,18,34 (Figure 4F, Table

S16 in supporting information).

Previous studies2,29,33,35–43 have identified 31 CNVs possibly asso-

ciated with AD (Table S15). Among these 31 CNVs, 20 are from

AD cases and 2 shared by AD and MCI cases, while the rest

showed differences in frequency between the AD and NL groups

based on GWAS studies (Table S15). Two of the 20 known AD-

specific CNVs significantly overlap our AD-specific CNVs, under an

RO threshold ≥ 50% (Table S15). For the two overlapping AD-

specific CNVs, EVC2/EVC/CRMP1-DUP is replicated in our study

(DUP14974.ROSMAP), but KANK1/DMRT1-DEL, a previously iden-

tified deletion, is duplicated in our study (DUP28866.ROSMAP). A

previously identified AD-specific CNV, HAS1/FPR1/FPR2/FPR3-DUP

was detected not only in the AD cases but also in the MCI and NL

cases in our study. DOPEY2-DUP, one of the two previously identi-

fied CNVs shared by AD and MCI, was also observed in AD, MCI, and

NL cases in our current study. Moreover, HAS1/FPR1/FPR2/FPR3-DUP

and DOPEY2-DUP were observed in healthy controls curated in the

DGV database,30 suggesting that they are not AD/MCI-specific (Table

S15). In summary, several AD-associated CNVs were replicated in our

study.

Duplication of APP has been identified as a causal factor for

early-onset familial Alzheimer’s disease (FAD).17,18 We found 29 AD-

specific CNVs within the APP duplication region (chr21:14,714,507-

29,216,662: nsv1398044; Figure 4F and Table S16). Among the 29

AD-specific CNVs within this APP duplication region (Figure 4F),
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TABLE 3 Summary of the CNV-gene pairs with significant correlation in AD cases in five different brain regions

Brain region

Sample size of the

AD groupa
Significantly correlated

CNV-gene expression pairsb CNVs Genes lncRNAc

BM-10 (MSBB) 151 190 157 95 18

BM-22 (MSBB) 141 148 124 80 14

BM-36 (MSBB) 119 125 100 66 10

BM-44 (MSBB) 126 141 114 79 14

DLPFC (ROSMAP) 301 293 136 104 19

aThis column shows the number of AD cases withmatchedwhole genome sequencing data and transcriptomic data in each cohort.
bThe significant threshold is 0.05 after FDR correction of all CNV-gene expression correlation tests for each brain region.
clncRNA information comes from the Lncipedia database (version 5.2).57

Abbreviations: AD. Alzheimer’s disease; CNV, copy number variation; DLPFC, dorsolateral prefrontal cortex;MSBB, JJ Peters VAMedical Center Brain Bank;

ROSMAP, Religious Orders Study/Memory and Aging Project.

one is conserved in two cohorts (chr21:25,258,373-25,263,454,

DEL18858.MSBB/DEL47421.ROSMAP; Figure 4E; Table S13).

2.4 Distinct impact of CNVs on gene transcription
in AD and MCI compared to NL

To further interrogate the effect of CNVs on transcription in ADbrains,

we performed Kendall’s 𝜏 b correlation analysis44 of all CNVs and

the transcriptomic data of the AD group from five different brain

regions in the MSBB and ROSMAP cohorts (MSBB: the frontal pole

[BM-10], the superior temporal gyrus [BM-22), the parahippocampal

gyrus [BM-36], and the inferior frontal gyrus [BM-44]; ROSMAP: the

DLPFC; Methods 3.6; the demographic information of samples can

be found in Table S2). At a false discovery rate (FDR) of 5%, CNVs

were significantly correlated with 95, 80, 66, and 79 genes in the BM-

10 (abs(𝜏) ∈ [0.332,0.711]), BM − 22(abs(𝜏) ∈ [0.338,0.697]), BM-36

(abs(𝜏) ∈ [0.367,0.735]), and BM-44 (abs(𝜏) ∈ [0.363,0.698]) regions,

respectively (Table 3 and Table S17 in supporting information). In the

ROSMAPcohort, 104 genes in theDLPFCwere significantly correlated

with 136CNVs (abs(𝜏) ∈ [0.234,0.670]) (Table 3 and Table S17). Above

gene-correlated CNVs are common CNVs with population frequency

higher than 3%.

The five CNV-correlated gene sets significantly overlap based on

the Super Exact Test45 (Figure S4 in supporting information). This sug-

gests that the effect of the AD-related CNVs on gene expression is not

sporadic, that is, these CNVs tend to affect a specific set of genes in dif-

ferent brain regions of ADpatients. Notably, in theMSBB cohort, there

were 95 CNV-gene pairs with significant correlations across the four

brain regions, where the respective correlation coefficients are very

consistent (Table S18 in supporting information). These four region-

consistent CNV-gene significant pairs take up about 45.02% of all

CNV-gene pairs in theMSBB cohort. This evidence suggests that most

CNVs have consistent regulatory effects on gene expression across dif-

ferent brain regions.

For the AD cases, the gene sets significantly correlated with

the identified CNVs in all five brain regions are enriched for the

immune response associated MHC class II receptor activity based

on Fisher’s exact test46 using the Molecular Signatures Database

(MSigDB) v7.447,48 (Figure 5A, Table S19 in supporting information and

Methods 3.6). The CNV-correlated genes in the BM-10, BM-36, and

BM-44 regions are also enriched for response to interferon-gamma.

Moreover, the enrichment signal of the DLPFC region contains glu-

tathione transferase activity, and the enrichment signal of the BM-10

region contains homophilic cell adhesion via plasma membrane adhe-

sion molecules (Figure 5A, Table S19, and Methods 3.6). As the MCI

group in ROSMAP has a sufficiently large number of samples, we per-

formed the same CNV-gene correlation analysis and found that the

genes correlated with the CNVs in the MCI samples fall into the same

MHC class II receptor activity pathway as those in the AD group.

However, the genes correlated with the CNVs in the NL samples in

ROSMAP are associated with regulation of transporter activity (Fig-

ure 5B, Table 4). Increased immune response in AD has been reported

in many studies,28,49–53 and gene expression of several HLA genes was

found to be associated with AD risk variants.54,55 These results not

only confirm the previous findings about the involvement of immune

response in AD but also pinpoint novel CNVs as potential upstream

regulators.56

Among the CNV-correlated genes, at least 15.15% are long non-

coding RNAs (lncRNAs), based on the Lncipedia database (version

5.2)57 (Table 3).

Among these CNV-correlated genes, 23 genes were differentially

expressedbetweendifferent diagnostic groups in specific brain regions

(Tables S20-S21 and Figure S5A in supporting information, and Meth-

ods 3.7). Furthermore, 44 CNV-correlated genes are significantly cor-

related with various AD pathological traits (i.e., CDR score, Plaque

Mean, Consortium to Establish a Registry for Alzheimer’s Disease

[CERAD] score, Braak stage score, physician’s overall cognitive diag-

nostic category at time of death [cogdx], and clinical diagnosis of cog-

nitive status at last valid level [dcfdx_lv]) after genome-wide FDR cor-

rection (Table S22 and Figure S5B in supporting information). The

CNV-correlated HLA genes such as HLA-DRB5, HLA-DQB1, and HLA-

DQB2 are not only differentially expressed between AD and NL but

also correlated with AD-related traits. The union of the two gene sets

(i.e., the genes differentially expressed between different diagnostic

groups and the genes significantly correlatedwith varying traits of AD)

is defined as AD-related genes (Figure S6 in supporting information).

These CNV-correlated genes in AD are associated with MHC class II
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F IGURE 5 Functional analysis of copy number variation (CNV)-correlated genes. (A) Pathways enriched in the CNV-correlated genes in five
different brain regions of AD cases. (B) Pathways enriched in the CNV-correlated genes in the Alzheimer’s disease (AD), mild cognitive impairment
(MCI), and normal (NL) groups in the Religious Orders Study/Memory and Aging Project

receptor activity and antigen processing and presentation (Table S23

in supporting information). These findings reveal CNVs as potential

genetic regulators of AD-related genes.

Three known AD-risk genes (HLA-DRB1, HLA-DRB5, and KANSL1)

identified from AD GWAS6,8,58 and a microglial phagocytic modula-

tor gene SIRPB1.59 are significantly correlated with some CNVs in the

AD cases (Table S24 in supporting information). Especially, the cor-

relation between HLA-DRB5 expression and two CNVs (i.e., DEL6593

and mCNV6614) are very consistent across all five brain regions

(Figure 6A-6K and Table S25 in supporting information). HLA-DRB5

encodes one of the MHC class II beta chain proteins. Its encoding

protein presents extracellular peptides in antigen-presenting cells and

plays an important role in the immune system.60 HLA-DRB5 is upreg-

ulated in the severe AD group (Plaque Mean > 12) in the BM-36

region compared to normal controls in MSBB (Plaque Mean = 0; Fold

change = 1.50, Padj= 0.031; Figure 6L). Furthermore, its expression

level is positively correlated with neuritic plaque level defined by

CERAD score after genome-wide FDR correction (correlation coef-

ficient = 0.19, Padj= 0.032) (Figure 6M). CERAD score is a semi-

quantitative measure of neuritic plaques in AD brains.61 The corre-

lations among CNVs (i.e., DEL6593 and mCNV6614), HLA-DRB5, and

AD traits (i.e., PlaqueMean and CERAD score), illustrate how common

CNVs affect AD pathological traits by regulating the expression of AD-

related genes, mainly immune response–related genes.

2.5 CNV-gene-trait correlation network in AD
cases

To explore how CNVs affect clinical and pathological traits of the AD

cases at different omics levels, we constructed CNV-gene-trait cor-

relation networks by integrating CNVs, gene expression, and clinical

and pathological traits in MSBB (Figure 7A) and ROSMAP (Figure 7B)
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F IGURE 6 Correlation analysis of two copy number variations (CNVs; i.e., DEL6593 andmCNV6614),HLA-DRB5 gene expression, and
Alzheimer’s disease (AD) traits. (A) Illustration of the genomic location of the two CNVs, that is, DEL6593 andmCNV6614 in JJ Peters VAMedical
Center Brain Bank (MSBB). The counterpart of DEL6593 is DEL21513 in Religious Orders Study/Memory and Aging Project (ROSMAP). The
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TABLE 4 Pathways enriched in the CNV-correlated genes in the AD,MCI, and NL groups in ROSMAP

Group

Brain

region GOTerm FET_Pa Padj

Fold

enrichment

AD DLPFC MHCClass II Receptor Activity 2.71E-09 7.50E-05 185.06

AD DLPFC Glutathione Transferase Activity 3.64E-07 1.00E-02 64.77

AD DLPFC Peptide Antigen Binding 4.49E-07 1.20E-02 61.69

MCI DLPFC MHCClass II Receptor Activity 5.24E-07 1.40E-02 168.23

NL DLPFC RegulationOf Transporter Activity 4.38E-07 1.20E-02 1.62

NL DLPFC RegulationOf Transport 5.36E-07 1.50E-02 1.23

NL DLPFC Cell ProjectionOrganization 5.69E-07 1.60E-02 1.23

NL DLPFC Synaptic Signaling 1.23E-06 3.40E-02 1.35

NL DLPFC Guanyl Nucleotide Binding 1.76E-06 4.90E-02 1.49

aFisher’s exact test (FET) P-value.

Abbreviations: AD. Alzheimer’s disease; CNV, copy number variation; DLPFC, dorsolateral prefrontal cortex; GO,GeneOntology;MCI,mild cognitive impair-

ment; MHC, major histocompatibility complex; MSBB, JJ Peters VAMedical Center Brain Bank; NL, normal; ROSMAP, Religious Orders Study/Memory and

Aging Project.

(Methods 3.8 and Table S26-S27 in supporting information). Func-

tional analysis of CNV-centered subnetworks reveals that one novel

CNV (DEL6619.MSBB) is responsible for immune response–related

pathways (Table S28 in supporting information). Moreover, this finding

was further replicated in ROSMAP (i.e., mCNV21544.ROSMAP; Fig-

ure 7B and Tables S28-S29 in supporting information). The other nine

CNV-centered subnetworks in the DLPFC region in ROSMAP are also

enriched for immune response and glutathione transferase activity

(Table S28).

In the DLPFC region, three CNVs (mCNV233, mCNV236, and

mCNV11665) are significantly correlated with the Braak score (Fig-

ure 7B, and Table S30 in supporting information). As the Braak score

reflects the severity and distribution of neurofibrillary tangles, these

CNVsmay contribute to neurofibrillary tangle aggregation, though the

predicted regulatory relationships need further experimental valida-

tion. Interestingly, the integrative analysis further identified several

lncRNAs that are correlated with AD traits. For example, KANSL1-AS1

is correlated with the Braak score in the BM-36 region (Figure 7A).

AC023490.1 is correlated with the CERAD score in both BM-36 and

DLPFC regions (Figure 7B). These results indicate the potential role of

lncRNAs in the pathogenesis of LOAD. Most of these target genes in

the CNV-gene-trait correlation networks are novel.

The CNV-gene-trait correlation network analysis suggests CNVs

as upstream genetic regulators of RNA expression underlying clini-

cal and pathological traits of AD patients, especially through immune

response.

3 DISCUSSION

To systematically identify CNVs in LOAD and study their functional

impact, we integrated thematchedWGS, RNA-seq, clinical, and patho-

logical data in two large multi-omics studies of LOAD (MSBB and

ROSMAP). We identified CNVs across the entire genome from the

WGS data of 1,411 subjects. Of the 13,327 CNVs identified, 3,012

occur only in the 701 LOAD cases but not in any of the 710 non-AD

cases and thus they are specific to AD. The genes residing on these rare

AD-specific CNVs are enriched in a broad rangeof biological processes,

including cellular glucuronidation, neuron projection, uronic acid

metabolic process, extrinsic component of plasmamembrane, synapse,

catenin complex, and multicellular organismal signaling. Meanwhile,

the MCI-specific CNVs were also identified, and their corresponding

genes were enriched for ligase activity forming carbon-sulfur bond

genes. A host of common CNVs were also identified and their corre-

sponding genes are involved in activating the immune response inmul-

tiple brain regions. To understand the functional impact of these CNVs

in AD, CNV-gene-trait correlation networks were constructed by inte-

grating CNVs with matched gene expression, and clinical and patho-

logical data. Gene expression associated with one key CNV conserved

in MSBB and ROSMAP (DEL6619.MSBB/mCNV21544.ROSMAP) are

enriched for immune response. These findings highlight novel genetic

factors that potentially regulate immune-related pathways in LOAD.

To our knowledge, this is the first genome-wide CNV study focused on

LOAD using large-scale matched multi-omics data. We have provided

counterpart of mCNV6614 is mCNV21541 in ROSMAP. The light blue shade represents the location of theHLA-DRB5 gene. (B-F) Correlation
between copy number dosage of the sequence in the DEL6593 locus and the expression level ofHLA-DRB5 in different brain regions. (G-K)
Correlation between copy number dosage of the sequence in themCNV6614 locus and the expression level ofHLA-DRB5 in different brain
regions. x= 0means the individuals carry homologous deletions in this locus, while x= 1means the individuals carry heterozygous deletion. x= 2
means the individuals have two copies of the sequence, suggesting no deletion. x= 3means the individuals carry three copies of the sequence,
which is heterozygous duplication. (L) Differential expression ofHLA-DRB5 based on the PlaqueMean group in the BM-36 region. (M) The
expression ofHLA-DRB5 is positively correlated with the Consortium to Establish a Registry for Alzheimer’s Disease score in the BM-36 region
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F IGURE 7 Integrative network analysis of matched copy number variation (CNV), gene expression, and trait data in the JJ Peters VAMedical
Center Brain Bank (MSBB) and the Religious Orders Study/Memory and Aging Project (ROSMAP). A network comprised of CNV-gene, CNV-trait,
and gene-trait pairs with significant correlations is constructed from each cohort and is termed as a CNV-gene-trait correlation network. All CNVs
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these LOAD-related CNV tracks through the UCSC genome browser

(http://genome.ucsc.edu/s/c6ming2/AMPAD.CNVs).

Of the 3,012 AD-specific CNVs, two (EVC2/EVC/CRMP1-DUP and

KANK1/DMRT1-DEL) were reported in the previous studies33 and 64

are conserved across MSBB and ROSMAP. Most previously reported

AD-specific CNVs2,29,33,35–43 are much longer than our AD-specific

CNVs. The difference in length may be explained by differences in

the CNV detection techniques. Compared to the methods based on a-

CGHandmicroarray,WGS-basedCNVdetectionmethodshave amuch

higher resolution, offering an opportunity to detect smaller, rareCNVs.

Previous studies showed that there was no difference in individ-

ual CNV burden between AD and NL subjects.38 This is supported by

our data showing no significant difference in total CNV count or CNV

length per individual between AD and NL. However, in our study, we

separated the AD-specific CNVs from the common CNVs that were

shared by different clinical diagnostic groups. Given the higher reso-

lution provided by theWGSdata, we observed themean number of the

AD-specific CNVs perADcasewas higher than that of theMCI-specific

CNVs per MCI case and that of the NL-specific CNVs per NL case. We

further observed that AD-specific CNVs were enriched in regulatory

regions of genes that are in turn associated with important biological

functions, such as cellular glucuronidation, neuron projection, andmul-

ticellular organismal signaling. Genes overlapping with multiple AD-

specific CNVs are enriched in specific neuron-related pathways, for

example, neuron development, neuron recognition, and neuron differ-

entiation. These findings implicate the functional importance of AD-

specific CNVs in LOAD. We hypothesize that both rare AD-specific

CNVs and common CNVs play important roles in modulating critical

biological processes underlying ADpathogenesis and progression. Just

as with common single nucleotide variations associated with diseases

likeAD, our data support thatwhile the pathological effect of any single

CNVmay be small, the accumulation of many CNVswithmodest effect

sizesmay lead to the profound disease pathology. For CNVs associated

with AD, this hypothesis is further supported by our observation that

there is an excess of AD-specific CNVs around the APP gene. Further

experiments are needed to validate this hypothesis.

Of the 64 AD-specific CNVs conserved across MSBB and ROSMAP,

an interesting CNV is the AD-specific deletion (chr7:43,379,821-

43,384,071: DEL7695.MSBB: DEL24401.ROSMAP) around the gene

HECW1. This CNV is in the intron and CTCF motif regions of HECW1.

HECW1 has important functions in the central nervous system, includ-

ing SMAD signaling and ubiquitin-proteasome-dependent proteolysis.

HECW1 was predicted to be involved in several biological processes,

such as neuron cell–cell adhesion, vocalization behavior, and short-

term neuronal synaptic plasticity regulation, based on the ARCHS

database.62 A previous GWAS 63 showed that HECW1 was associ-

ated with the rate of cognitive decline in AD. Further experiments are

needed to validate the regulatory effect of this AD-specific deletion on

HECW1 in LOAD.

Although our CNV analyses have led to a number of novel genetic

and functional genomic findings, this study has several limitations.

First, our results indicate a difference in the ratio of cohort-specific

CNVs. The ratio of ROSMAP-unique CNVs is higher than the ratio of

MSBB-unique (62.38% vs. 48.43%). Despite the larger number of sam-

ples in ROSMAP (1127 samples in ROSMAP vs. 284 in MSBB), the

cohort-specific CNV proportions in MSBB and ROSMAP are relatively

close.Differences in theproportions could result fromdifferent sample

sizes as larger sample size increases the samplingpower to identify rare

CNVs. Second, it is underpowered to detect the association between

rare AD-specific CNVs and gene expression. Much bigger sample size

and more powerful statistical tools are needed to predict the regula-

tory targets of rare AD-specific CNVs.

Our study also raises some interesting questions for future

research. One important consideration is whether somatic CNVmuta-

tion rates differ across brain regions or in response to disease states.

We cannot distinguish somatic CNV mutations from germline muta-

tions based on brain tissues only. Thus, to address this question, pairing

blood and brain samples in future studies is desirable. Another inter-

esting question is the pathological effect of lncRNAs co-regulatedwith

other transcriptomic traits in theCNV-gene-trait correlation networks

of LOAD. Many lncRNAs were correlated with clinical and pathologi-

cal traits, but we know little about the regulatory pathways involving

these lncRNAs. Furthermore, it would be very interesting to investi-

gate how CNVs interact or regulate other types of omics. Our study

shows that CNVs can affect clinical and pathological traits by regulat-

ing mRNA expression. However, CNVs may impact other omics levels

such as splicing regulation, proteomic regulation, and epigenomicmod-

ification. The regulatorymechanisms of CNVs need further experimen-

tal investigation. Finally, it would be interesting to performCNV-based

GWAS to pinpoint candidate risk factors for AD.

In summary, we carried out a comprehensive genomic CNV study of

LOAD by integratingWGS data with clinical, pathologic, and transcrip-

tomic data. We provided the first LOAD-related CNV tracks through

the UCSC genome browser. The findings not only support the known

roles of immune response in AD pathogenesis but also offer novel

insights into the genetics of the increased level of immune response in

AD. The AD-specific CNVs offer a new perspective on the mechanism

of LOAD. The identified CNVs and their downstream gene networks

provide a blueprint for studying the genetic mechanisms of LOAD

toward personalizedmedicine.

discovered in the two cohorts are considered while constructing the network, including Alzheimer’s disease (AD)-specific CNVs and
non-AD-specific CNVs. (A) CNV-gene-trait correlation network fromMSBB. B, CNV-gene-trait correlation network fromROSMAP. In both
network plots, the orange square, light-blue circle, and purple triage shape of a node represent CNV, gene, and trait, respectively. The intensity of
edge color is proportional to correlation coefficient, while red and blue colors represent positive and negative correlations, respectively. Blue and
red labels represent down- and upregulated genes, respectively. Known AD genome-wide association study genes aremarkedwith a star symbol.
The detailed correlationmatrix is shown in Tables S26-S27.

http://genome.ucsc.edu/s/c6ming2/AMPAD.CNVs
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4 METHODS

4.1 Data

The whole-genome sequencing data in the MSBB cohort22 are avail-

able at theAMP-ADknowledgeportal (synapse ID: syn10901600). The

WGS data in MSBB were generated from 353 individuals, of which

341 had clinical and pathological data (i.e., age of death, CDR, Plaque

Mean, CERAD score, and Braak stage score [bbscore]). We used the

284 North AmericanWhite samples. We classified these subjects with

CDR scores larger than 0.5 as AD, those with CDR equal to 0.5 asMCI,

and those with CDR equal to zero as healthy controls (NL). Under this

classification scheme, there are 224ADcases, 27MCI cases, and 33NL

cases. Themean sequencing depth of all samples is 36.58X. There is no

significant difference in sequencing depth among the three groups.22

There are 1200 individualswithWGSdata in theROSMAP23 cohort

(synapse ID: syn10901595).We excluded outliers that containedmore

than 6000 deletions or 1000 duplications in the individual scanning

stage and other dementia cases. The filtering process identified 71out-

liers. We further excluded non-White samples and used 1127 White

samples in the analysis. We classified the subjects into three diagnos-

tic groups based on their final Clinical ConsensusDiagnosis (AD: 4 or 5;

MCI: 2 or 3; NL: 1). Under this definition, there are 477 AD, 285 MCI,

and 365NL subjects.

4.2 Transcriptomic data

The RNA-seq–based transcriptomic data in MSBB are also available

at the AMP-AD portal (synapse ID: syn3157743). The samples were

extracted from the BM-10, BM-22, BM-36, and BM-44 regions. Infor-

mation about the MSBB samples and sequencing data can be found

in a previous publication.22 RNA-seq data normalization and covari-

ate correction were detailed in Wang et al.64 RNA-seq data in MSBB

were adjusted for covariates, includingpostmortem interval (PMI), RNA

integrity number (RIN), race, age of death (AOD), batch effect, and sex.

The RNA-seq transcriptomic data in the DLPFC region of the

ROSMAP cohort was downloaded from the AMP-AD portal (synapse

ID: syn3388564). We performed the read alignment, gene expression

quantification, normalization, and covariate correction using the same

pipeline as the MSBB data.22,64 Briefly, the reads were mapped to

human genome hg19 using the STAR aligner (v2.3.0e), and then gene-

level expression was quantified by featureCounts (v1.6.3) based on

Ensembl genemodel GRCh37.70. Next, gene-level count data was nor-

malized usingR/limma’s voom function and subsequently corrected for

known covariates, including sequencing batch, PMI, AOD, sex, and RIN

by amixedmodel.65

4.3 Clinical and pathological trait data

The clinical and pathological trait data in MSBB, which is available at

the AMP-AD portal (synapse ID: syn6101474) includes the informa-

tion about PMI, race, age of death, sex, apolipoprotein E (APOE) geno-

type, CERAD score, mean neocortical plaque density, Braak score, and

CDR for the 341WGS samples.

The clinical trait data in ROSMAP, which are available at the AMP-

ADportal (Synapse ID:syn3157322) contain the informationabout sex,

education, race, Spanish origin, APOE genotype, age at last visit, age at

death, Mini-Mental State Examination (MMSE) score at first diagnosis

of AD, MMSE score at last visit, clinical diagnosis of cognitive status

at last valid level (dcfdx_lv), PMI, Braak score, CERAD score, and final

clinical consensus diagnosis at time of death (cogdx).More information

regarding ROSMAP can be found at www.radc.rush.edu.

We only used the trait data of the North American white samples

fromMSBB and ROSMAP in this study. In the correlation analysis, the

CERAD score of the two cohorts was re-coded as 1 for No AD, 2 for

Possible AD, 3 for Probable AD, and 4 for Definite AD. The cogdx value

and the dcfdx_lv value of ROSMAP were re-coded as 1 for NL, 2 for

MCI (previous 2 and 3), 3 for AD (previous 4 and 5). The samples with

cogdx value of 6 (i.e., other dementia) were excluded in cogdx-related

correlation analysis. Likewise, the samples with dcfdx_lv as 6 were also

excluded in dcfdx_lv-related correlation analysis.

4.4 Building a population-level CNV set

To build a comprehensive population-level CNV set with high accuracy

and high sensitivity, as previous studies suggested,26,31,66,67 we took

advantage of results from multiple complementary CNV calling meth-

ods, including CNVnator,24 Pindel,25 Delly2,27 and MetaSV26 (Figure

S1). CNVnator24 is based on RD analysis68–72 and uses the mean-

shift approach to detect abnormal read depth regions resulting from

deletion or duplication events.24 CNVnator has a very high sensitiv-

ity in calling CNVs larger than 1 kb. Pindel25 uses a pattern-growing

approach to locate breakpoints by re-aligning the unmapped end of

split reads (SR). With an outstanding resolution of breakpoints in the

single nucleotide level, Pindel has been used in several large human

population sequencing projects (i.e., the 1000 Genomes Project,31

the Genome of the Netherlands project,73 and the Cancer Genome

Atlas74). MetaSV,26 an integrated structure variation caller, merges

calling results of the same individual from different strategic methods

and then re-assembled alignment aroundbreakpoints, leading tohighly

efficient integration with a high precision of breakpoints. Delly2 is an

updated version of Delly,27 which combines pair-end mapping (PEM)

and SR approaches.

We first performed individual-level CNV calling on each sample

using CNVnator and Pindel (Method 3.4.1, Figure S1). Then MetaSV

is used to integrate results from CNVnator and Pindel of each sam-

ple (Method 3.4.1, Figure S1). Delly2 is later used to generate the

second individual-level CNV set (Method 3.4.2). These two lists were

further merged into an integrated individual-level CNV set (Method

3.4.3, Figure S1). The CNV files of all samples were further inte-

grated to build the population-level CNV location list. CNVnator

was further used to re-genotype the copy number dosage of each

locus in each sample. Merging details can be found in the following

subsections.

http://www.radc.rush.edu
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4.4.1 Create the first individual-level CNV set by
integrating CNVnator, Pindel, and MetaSV

CNVnator

CNVnator analysis was performed according to the standard proce-

dure and parameters suggested on its official GitHub page (https://

github.com/abyzovlab/CNVnator). For each sample, read mapping

informationwas extracted from thebamalignment file, whichwas used

to generate a RDhistogram for computing the statistics of RD distribu-

tion at an optimal bin size of 100-bp suitable for 20–30x coverage. RD

signal was corrected for GC content bias. A mean-shift technique was

used to partition the RD signaling. Subsequently, CNV was called by

a one-sample t-test comparing the mean of the RD signal within each

partitioned segment to the genomic average.

Pindel

We used Pindel25 (version 0.2.5b9) with an insert size of 450 bp

for both MSBB and ROSMAP. To speed up the computation process,

Pindel was performed on each chromosome of each sample inde-

pendently. The reference genome was downloaded from the 1000

Genome Project75 FTP (human_g1k_v37.fasta). Genomic gap regions

were excluded for further inference. The bed file of gap location was

downloaded from the UCSC genome browser75 (http://genome.ucsc.

edu/). Six threads were assigned to each job (-T 6). Sensitivity was set

to 0.9 (-E 0.9). Germline filtering was turned on (-N true).

Scanning results in thedefault Pindel formatwere further converted

into variant call format (VCF) files by using pindel2vcf. Chromosome

output files of the same individual were further concatenated by vcf-

concat.76

MetaSV

Integration. MetaSV26 was used to integrate individual calling results

fromCNVnator andPindel. Gap regions75 were excluded from the inte-

gration procedure. Only standard contigs (autosomes, chromosome X,

and chromosome Y) were considered here. CNVs smaller than 500 bp

or larger than 500Mb were excluded. Deletions and duplications were

integrated separately.

Filtering. The results that met one of the following two criteria

were kept in the subsequent analyses: (1) Consensus calling results

with “PASS” label, whichwere supported by bothCNVnator andPindel,

or (2) CNVnator-specific CNVs with length greater than 1 kb, e-val2

≤0.05, andq0≤0.05,where e-val2was calculated fromaGaussian dis-

tribution to evaluate read-depth significance24 and q0 is the fraction of

reads with very poormapping quality (= 0).24

This procedure led to the first set of individual-level CNVs.

4.4.2 Generate the second set of individual-level
CNVs using Delly2

CNV calling. Individual-level CNV calling was made first, with the min-

imum paired-endmapping quality as 20 (-q 20) and insert size cutoff as

15 (-s 15, duplications only). Then the individual calling outputs were

further merged to generate a population CNV location set.27 Themax-

imum breakpoint offset was set as 500 (-b 500). The minimum ROwas

set as 0.5 (-r 0.5). Other parameterswere set as default. The population

location set was used to further re-genotype CNVs for each sample.

The re-genotyping results were merged using bcftools and filtered by

the germline filter function in Delly2. Deletions and duplications were

generated separately.

Filtering. To further guarantee the accuracy of CNV calling, the VCF

file of deletion call set and the VCF file of duplication call set were fur-

ther filtered by the consistency between estimated genotype and read

depth. As the author of Delly2 suggested,27 estimation based on read-

depth ismore reliable than genotyping results based onPE/SR for large

CNVswith length greater than1 kb. Thus, the genotypes of large incon-

sistent loci were manually corrected based on read-depth estimation.

For smaller fragments, low-quality genotypes, shown as “LowQual” in

the “Per-sample genotype filter” field generated by Delly2, were man-

ually corrected by considering different read depths.

This procedure generated the second set of individual-level CNVs.

4.4.3 Generation of a final set of individual-level
CNVs by integrating the first and second CNV sets

All the non-overlapping CNVs were included the final CNV set. Two

overlapping CNVs with RO less than 50% were treated as two inde-

pendent regions, while a CNV pair with RO greater than 50% were

merged into one CNV region. CNVs with conflicted types at the same

genomic region for the same individual were excluded. The boundary

of amergedCNVpair from above two individual-level CNV sets for the

same sample was decided based on the more precise record. If one of

the merged CNVs had a break point estimation from Delly2, we used

the estimated break point from Delly2. If neither of the merged CNVs

had any estimation fromDelly2, we used the break point fromMetaSV.

Genotype information from both the first and second CNV sets was

kept for the same individual duringmerging.

4.4.4 Generation of the population-level CNVs

Individual-level CNVs of all the samples in each cohort were further

merged into a set of population-level CNVs. If two CNVs from differ-

ent individuals had anRO in in their genomic locations larger than 50%,

they were merged into one CNV region. The boundary of a merged

CNV from two overlapping CNVswith different boundaries was deter-

mined as follows: (1) the boundary supported by more samples was

used if the two overlapping CNVs were detected in different numbers

of supporting samples; (2) the boundary supported by SR was used if

the two overlapping CNVs were detected in the same number of sam-

ples by different approaches (the SR approach has higher breakpoint

precision than the RD approach); (3) the union of the two overlapping

CNVs’ boundaries was used if they were called in the same number of

https://github.com/abyzovlab/CNVnator
https://github.com/abyzovlab/CNVnator
http://genome.ucsc.edu/
http://genome.ucsc.edu/


MING ET AL. 1863

samples by the same number ofmethods. This procedure led to a set of

population-level CNVs. Each CNV record includes information about

the boundary, the number of supporting methods, and the genotype of

each sample.

4.4.5 Re-genotyping copy number dosage for each
individual based on the final population CNV set

During the aforementioned merging procedures, the predicted CNV

boundaries may shift for some individuals. To maintain accuracy and

robustness, we performed in silico genotyping of the copy number

dosage of each CNV in each sample by applying the genotype func-

tion in CNVnator to the population-level CNVs. Moreover, to ensure

the high quality of CNV calling, we only kept the consensus CNVs

detected by three or more CNV calling methods for the downstream

analyses.

By leveraging information from different CNV calling methods, we

generated a very comprehensive and consensus population CNVs con-

taining both rare CNVs and high-frequency regions.

4.5 The Quasi-Poisson regression model

We used the QPRM to compare three separate metrics across the

three clinical diagnostic groups: (1) the total number of CNVs (CNV

count) per sample, (2) the total length of all CNVs (CNV length) per

sample, (3) the number of group-specific CNVs per sample. Consider-

ing the extreme skewness of the CNV count distribution, we used the

followingQPRMto compare theproperties of theCNVsets in different

diagnostic groups of interest:

CNV metric ∼ diagnostic group + subject sex + age of death

The R77 function glm (family= ”quasipoisson”) was used to perform

all regression analyses. The logistic regression coefficient, 95% con-

fidence interval (CI), and significance level (P-value) were calculated

using the glm function. P-values were further adjusted by the FDR cor-

rection procedure.78 The odds ratio (OR) was calculated by taking the

exponential of the logistic regression coefficient. The response variable

is “the totalCNVcount” or “the totalCNV length” or “thegroup-specific

CNV count” per individual. When comparing the total CNV count or

the total length per individual, all genome-wideCNVswere considered,

and theNLgroup is treated as the base category. Comparing the group-

specific CNV count per individual, only group-specific CNVs were con-

sidered. The AD-specific CNVs were compared with the NL-specific

and theMCI-specific CNVs separately. Thediagnostic group is themain

predictor variable. Sex and age of death are co-variants. The categori-

cal variable “DiagnosticGroup” has three levels, includingAD,MCI, and

NL. In theQPRM, the diagnostic group and sex variables are treated as

factor. The age of death is a numeric variable. TheQPRMconsiders dis-

persion parameter in the estimation process.

4.6 Kendall’s tau-b correlation analysis,
Spearman’s correlation analysis, FDR correction, and
GO enrichment analysis

Kendall’s tau-b correlation analysis44 was used to calculate the cor-

relation coefficient between copy number dosage and different omics

data (i.e., transcriptional data and clinical traits). It has the advantage

of adjustment for highly tied ranking pairs, which is suitable for CNVs.

This was implemented by using the “Kendall” R package.77,79 Spear-

man’s correlation analysis was used to calculate the correlation coef-

ficient of the continuous type of omics data using the “stats” R pack-

age. All genome-wide P-values were adjusted by the FDR correction

procedure.78 The pairswith adjustedP-values less than0.05were used

for further analysis.

GO term enrichment analysis was based on Fisher’s exact test.46

Given a background of X genes, a GO term of Y genes, a target list of

M geneswhich includesN genes in theGO term, the P-value of Fisher’s

exact test is calculated as:

p =

(
M

N

)(
X −M

Y − N

)
(
X

Y

)

The fold enrichment (FE) is calculated as:

FE =

N

M
Y

X

MSigDB v7.447,48 is an annotated gene set reference. The back-

ground is set as the RNA-seq gene list.

4.7 Differential expression analysis

Differential gene expression analysis was performed to identify genes

up- or downregulated with respect to four LOAD-related neuropatho-

logic and cognitive traits in each brain region. We grouped the sam-

ples in each brain region into multiple disease severity stages for each

neuropathologic/cognitive trait, and compared the gene expression

between every two groups using limma’s moderated t-test analysis.80

Specifically, for CDR, the samples were classified into cognitively nor-

mal (non-demented; CDR = 0), MCI (CDR = 0.5), and demented (CDR

≥ 1). For Braak score, the samples were classified into NL when Braak

score ≤ 2 and AD when Braak score > 2. For plaque mean den-

sity (PlaqueMean), the samples were classified into four categories,

namely normal (PlaqueMean= 0), mild (0< PlaqueMean ≤ 6), medium

(6< PlaqueMean≤ 12), and severe (PlaqueMean> 12) groups. For the

CERAD score, two types of sample classification schemes were used.

First, the samples were classified into NL (CERAD = 1), definite AD

(CERAD=2), probableAD (CERAD=3), and possible AD (CERAD=4).

Second, samples were classified into two groups: NLwhen CERAD= 1,
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andADwhenCERAD>1. Toadjust formultiple tests, theFDRwasesti-

mated using the Benjamini-Hochberg (BH) method.78 Genes showing

at least 1.2-fold change (FC) and FDR less than 0.05 were considered

differentially expressed.

4.8 Constructing CNV-gene-trait correlation
network and functional enrichment analysis of
CNV-centered subnetworks

CNV-gene-trait correlation network was constructed by combining

significant CNV-gene, CNV-trait, and gene-trait correlation pairs from

each cohort. Five brain regionswere considered (i.e., theMSBB cohort:

the BM-10, BM-22, BM-36, and BM-44 regions, the ROSMAP cohort:

the DLPFC region). All CNVs discovered in the two cohorts were con-

sidered while constructing the networks, including AD-specific CNVs

and non-AD-specific CNVs. Significant correlation pairs were used as

edges to link the respective nodes (Tables S26-S27). Then Cytoscape

(v3.8)81 was used to visualize correlation networks. In the network

plots, orange squares, light-blue circles, and purple triangles represent

CNVs, genes, and traits, respectively. The intensity of edge color is pro-

portional to the correlation coefficient,while red andblue colors repre-

sent positive and negative correlations, respectively. The red and blue

labels represent up- and downregulated genes. The size of a node is

proportional to the number of edges directly connected to the node.

All the genes directly connected with a CNV were used for path-

way enrichment analysis to annotate the functions of the CNV based

on Fisher’s exact test46 andMSigDB v7.4.47,48
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