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Hitting a HOMER: Epidemiology to the Bedside when Evaluating for
Stereotactic Ablative Radiotherapy

In this issue of the Journal, Martinez-Zayas and colleagues (pp.
212–223) report and validate a novel prediction model (HOMER)
to calculate the probability of patients with non-small cell lung
cancer (NSCLC) having mediastinal lymph node involvement (1).
Determining a patient’s likelihood of lymph node metastasis is
paramount in determining the stage of lung cancer and therefore
appropriate treatment options. Clinical staging, including imaging
modalities and biopsy techniques, remains a challenge and
frequently falls short of surgical staging, depending on how
aggressive the preoperative evaluation is (2). Accurate staging has
been associated with improved survival and remains a huge

emphasis in the care of patients with lung cancer (3). The study by
Martinez-Zayas and colleagues is the first to derive and validate a
risk model aimed at discriminating between the most clinically
useful forms of nodal disease in patients who were both surgical
and nonsurgical candidates: N0, N1, and N2/3 disease.

The authors should be commended for the statistical rigor used
to derive and validate their model. Covariates used to develop the
model were pragmatic, clinically relevant, and appropriately limited
by the last common outcome. By externally validating their
prediction model at other medical centers, the authors offer a model
with the possibility of geographic stability for patients with NSCLC
without T4 tumors or distant metastasis, after adjusting for the local
institution’s population. The authors further supported their model
with temporal validation to show stability over time (4). HOMER
therefore has the potential to be generalizable in both the short
term and the long term for patients with NSCLC seeking treatment
at well-practiced thoracic oncology centers that use systematic
endobronchial ultrasound-guided transbronchial needle aspiration
(EBUS TBNA) lymph node staging. To carry out the systematic
EBUS lymph node staging that the output of HOMER applies to,
an examination of the intrathoracic nodes is required by EBUS,
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beginning with contralateral N3 nodes, followed by N2 and then
N1 lymph nodes. Any lymph node measuring>5 mm in short axis
is sampled, aiming for a minimum of three N2/3 lymph node
stations sampled per procedure (5).

There are several clinically useful applications of HOMER.
Assuming a patient is not a surgical candidate, the preferred treatment
for N0 disease is definitive stereotactic ablative radiotherapy (SABR)
and will not be confirmed surgically. Therefore, making an accurate
clinical prediction of this disease state is crucial (6). Previous work
was not able to discriminate between patients with N0 and
N1 disease (7). HOMER presents two exciting ways to bring
evidence-based decision making to these patients. First, the model
can help predict the pretest probability that an EBUS TBNA will
detect NSCLC, based on widely available clinical and radiographic
data. As pointed out elegantly in the discussion, this can allow a
more objective discussion about the risk and benefit of requiring an
EBUS TBNA before SABR. As the low risk of complication is
approached by the predicted probability of lymph node metastasis
detected by EBUS TBNA, one can more confidently consider
avoiding invasive mediastinal staging. This is especially relevant for
patients at increased risk for complications during bronchoscopy.
This may also be useful for patients with confirmed NSCLC from a
transthoracic needle biopsy with radiographic N2/N3 disease who
are at extremely high risk for bronchoscopy.

The other way HOMER can be used for these patients is to
calculate a posttest probability of N1 disease in a patient being
considered for SABR who has a negative EBUS TBNA. Current
guidelines appropriately lean toward cytologic or pathologic
confirmation for mediastinal staging. They suggest preoperative
invasive mediastinal staging in patients with NSCLC unless the
tumor is T1 (,3 cm) and peripheral, and the mediastinal lymph
nodes are radiographically negative by computed tomography and
positron emission tomography (7). This recommendation is based
on a low false-negative rate (i.e., lymph node metastasis) in this
patient population, as determined by older descriptive studies (8).
Importantly, there are more recent data to support occult lymph
node metastasis and a limited sensitivity for EBUS TBNA in similar
patient populations (9). After making an assumption about the
sensitivity of EBUS TBNA, a clinician can calculate a posttest
probability, using HOMER, as is also demonstrated in the
discussion. The ability to have an objective probability of
N1 disease after a negative EBUS TBNA can assist the
multidisciplinary lung cancer team when weighing the harm of
SABR with occult N1 disease versus the harm of a larger radiation
field and the addition of chemotherapy for presumed N1 disease.

As the authors warn in the discussion, HOMER should not be
used to calculate the sensitivity of EBUS TBNA or the pretest
probability of nodal disease, as there was no gold standard
(i.e., surgical lymph node dissection) to compare with EBUS TBNA.
Therefore, one must often put the model in the context of an
assumed EBUS TBNA sensitivity, which is probably dependent on
technique, lymph node size, necrosis, and tumor cellularity of each
nodal metastasis. As mentioned here, EBUS TBNA may not be
highly sensitive for NSCLC in radiographically normal lymph nodes
(8). Clinicians may need to integrate HOMER with other
observational studies associating standardized uptake value
(SUVmax) of the primary tumor, adenocarcinoma histology,
non-lower lobe tumors, and tumor size with occult lymph node

metastasis after negative preoperative positron emission
tomography/computed tomography (10–13).

HOMER affords the opportunity to integrate data-driven
decision making into our NSCLC staging and treatment decisions,
much in the way we use probability to guide the management of lung
nodules (14). The model’s performance could even be further
refined as more data become available for patients with N1 disease.
There are exciting ways to imagine an extended data set and similar
methods being employed to predict other clinically meaningful
outcomes in NSCLC. For nonsurgical patients, can we model the
probability of long-term clinical response, using SABR, after a
negative systematic EBUS? For surgical patients, can a model to
predict occult lymph node metastasis after a negative systematic
EBUS be similarly derived and validated? HOMER is an excellent
example of using evidence collected from current practice to
rigorously create a novel prediction tool to aid future clinical
decisions. It is an important guide in practice and in principle, as
we continue to strive for more evidence-based and data-driven care
for patients with lung cancer. n
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An Emotional Molecular Pathway in Pulmonary
Hypertension–Alternative Complement System

The article by Frid and colleagues (pp. 224–239) in this issue of
the Journal shows the significance of the alternative complement
system in pulmonary hypertension (PH) (1). The discovery of this
antimicrobial and immune-surveillance system has an emotional
history (2). The classical pathway of complement activation
by antibody–antigen complexes was discovered in the 1890s.
Roughly half a century later, a brilliant biologist and biochemist,
Dr. Pillemer, and his team discovered that the complement
pathway could be activated by properdin in the absence of
antibody–antigen complexes (3). Their discovery soon became very
controversial; however, the Pillemer lab did not have the technical
means to experimentally dispel all criticisms, and perhaps as a
result of this controversy compounding existing mental issues,
Dr. Pillemer died of suicide (2). His original observations were
corroborated in the ensuing decades, and the pathway that he
discovered was termed the alternative pathway (2). The alternative
pathway is the ancient part of the complement system, with critical
components present in insects and echinoderms (4). The lectin
pathway was discovered later and represents yet another way to
activate complement (5). Researchers in basic science are currently
discovering further links between these pathways, such as those
between the lectin and alternative pathways (6). What makes the
complement system so important (5)? In a cascade of proteolytic
activation steps, the complement factors C5b and C6–C9 form the
lytic complex, which is an essential defense mechanism that can
destroy microbes or faulty cells. In addition, many of the
intermediary complement fragments (e.g., C3a and C5a) have
major immune-regulatory effects.

Frid and colleagues investigated the role of complement
cascade activation in regulating proinflammatory and

proproliferative processes during the initiation of experimental
hypoxic PH and tested whether it can serve as a prognostic
biomarker of outcome in human pulmonary arterial
hypertension (PAH; Figure 1). The authors stained lung tissues
from experimental PH models and patients with PAH, analyzed
genetic murine models lacking specific complement components
or circulating immunoglobulins, cultured human pulmonary
adventitial fibroblasts, and performed a network medicine
analysis of plasma from patients with PAH. Pulmonary
perivascular–specific activation of the complement cascade
was identified as a consistent critical determinant of PH/PAH
in experimental animal models and humans. In experimental
hypoxic PH, proinflammatory and proproliferative responses
were complement (alternative pathway and C5) dependent,
and immunoglobulins, particularly IgG, were critical for
activation of the complement cascade in which Csf2/GM-CSF
(granulocyte–macrophage colony–stimulating factor) was
identified as a primary complement-dependent inflammatory
mediator.

In their study, Frid and colleagues used omics to
interrogate the association between the complement system and
PAH. Omics studies are popular because of their potential for
discovering new molecular disease mechanisms or new disease
subgroups (for example, the pulmonary vascular omics network
[7]). Here, the authors used omics to identify three classes of
molecular deviations: 1) disease-causing genes (e.g., hemophilia
caused by defective factor VIII or factor IX genes), 2) disease
risk–increasing genes (e.g., increased risk of PAH in BMPR2
[bone morphogenic receptor 2] mutation carriers), and 3)
molecular pathways that can be critical for disease pathogenesis
(e.g., the complement pathway). The filters used to identify
these three distinct molecular deviations have a decreasing
stringency, with the third, molecular pathways that can
cause disease, having the least-stringent discovery filter.

It is to be remembered that not all PH is caused by
aberrant complement activation. C5-deficient mice can develop
the PH phenotype. The FVB mouse strain is a popular transgenic
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