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The human brain is a complex network of interacting regions. The gray matter regions of

brain are interconnected by white matter tracts, together forming one integrative complex

network. In this article, we report our investigation about the potential of applying brain

connectivity patterns as an aid in diagnosing Alzheimer’s disease and Mild Cognitive

Impairment (MCI). We performed pattern analysis of graph theoretical measures derived

from Diffusion Tensor Imaging (DTI) data representing structural brain networks of 45

subjects, consisting of 15 patients of Alzheimer’s disease (AD), 15 patients of MCI,

and 15 healthy subjects (CT). We considered pair-wise class combinations of subjects,

defining three separate classification tasks, i.e., AD-CT, AD-MCI, and CT-MCI, and used

an ensemble classification module to perform the classification tasks. Our ensemble

framework with feature selection shows a promising performance with classification

accuracy of 83.3% for AD vs. MCI, 80% for AD vs. CT, and 70% for MCI vs. CT.

Moreover, our findings suggest that AD can be related to graph measures abnormalities

at Brodmann areas in the sensorimotor cortex and piriform cortex. In this way, node

redundancy coefficient and load centrality in the primary motor cortex were recognized

as good indicators of AD in contrast to MCI. In general, load centrality, betweenness

centrality, and closeness centrality were found to be themost relevant network measures,

as they were the top identified features at different nodes. The present study can

be regarded as a “proof of concept” about a procedure for the classification of MRI

markers between AD dementia, MCI, and normal old individuals, due to the small and

not well-defined groups of AD and MCI patients. Future studies with larger samples

of subjects and more sophisticated patient exclusion criteria are necessary toward the

development of a more precise technique for clinical diagnosis.
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INTRODUCTION

Alzheimer’s disease (AD), a neurodegenerative disorder
characterized by progressive dementia, is the seventh leading
cause of death in the United States (Heron and National Center
for Health Statistics, 2009). AD is the most common form of
dementia and currently affects over five million Americans.
This number will grow to as many as 14 million by year 2050
(Brookmeyer et al., 2007). AD may affect people in different
ways, but the most common first symptom is the inability
to remember new information (Burns and Iliffe, 2009). The
progression of AD toward other brain regions causes disruption
of the daily life, changes in personality, and withdrawal from
work and social activities. In advanced stages, the individual
is unable to communicate with others and to recognize close
relatives. Finally, difficulty executing motor tasks precedes death
(Alzheimer’s Association, 2011). There is currently no cure for
AD, while most drugs only alleviate the symptoms (Jack et al.,
2008).

The transitional stage in which the patient is not considered
normal, but does not meet the criteria for dementia is called Mild
Cognitive Impairment (MCI). MCI consists of heterogeneous
symptomatology, and includes prodromal AD stages as well as
mild stages of other types of dementing disorders (Dubois and
Albert, 2004). Promodal AD brains have partial similarities to
more severe AD brains, while mild stages of other types of
dementing disorders have different features by which it would
be possible to distinguish non-AD MCI patients from the AD
patients.

According to the International Working Group-2 (IWG-2)
criteria by Dubois et al. (2014), the diagnostic biomarkers for
AD are the clinical phenotype (typical or atypical presentations
of AD related neuropsychological deficits), as well as the
pathophysiologic presence of extracellular amyloid plaques
and intra-neuronal neurofibrillary tangles, as defined by
Alzheimer (1907), which are associated with synaptic loss,
functional neurotransmission deficits, and neuronal death.
The pathophysiologic markers of AD can be accessed by
positron emission tomography (PET; Drzezga et al., 2003) and
cerebrospinal fluid tests (Tapiola et al., 2009). Topographic
biomarkers such as F-2-fluoro-2-deoxy-D-glucose (PET-FDG;
Bohnen et al., 2014) and Magnetic Resonance Imaging (MRI)
hippocampal volumetry (Sarazin et al., 2010) are proposed to
track disease progression.

The diagnosis of MCI due to AD is possible nowadays
(Alzheimer’s Association, 2011; Dubois et al., 2014), based on
cognitive impairments with mild impact on the daily activities,
and considering some excluding clinical criteria. The diagnosis
is also possible based on positive physio-pathologic markers of
AD such as an abnormal level of amyloid beta and/or tau in
the cerebrospinal fluid (CSF), or an abnormal load of amyloid
beta and/or tau in the brain as revealed by PET. Parallel early
evidences of AD are reduction of brain metabolism in the
parietal, temporal and hippocampal regions measured by FDG-
PET, and hippocampal atrophy revealed by structural MRI.

In recent years, structural MRI experiments (e.g., Wolz et al.,
2011; Casanova et al., 2012; Lillemark et al., 2014) have revealed

prospective biomarkers with top achievements reaching values
superior to 80%. However, it is not yet clear if structural MRI
is able to detect earlier biomarkers of AD compared to other
MRI modalities, such as functional and diffusion MRI. Several
studies have investigated the use of resting-state functional
Magnetic Resonance Imaging (rs-fMRI), a non-invasive method
for automatic diagnosis of brain diseases (e.g., Chen et al.,
2011; Brier et al., 2012; Tang et al., 2013; Hoekzema et al.,
2014; Zeng et al., 2014). Chen et al. (2011) achieved accuracy
slightly higher than 80%. In that approach, Pearson’s correlation
coefficient (r) of pairwise regions of interests (ROIs) was used
for distinguishing AD patients from healthy subjects in a
group analysis. However, given that the correlation coefficient
represents only a linear relationship, it follows that if the
underlying ground truth is not linear, the result of such an
analysis will be inaccurate. Furthermore, the above approach
cannot be applied to diagnosing individual patients in a clinical
setting as the correlation analysis is calculated on group data.
Hence, to study the complexities of brain networks and to
identify brain disorders (e.g., AD) only by studying the rs-fMRI
correlation between different brain regions may not be sufficient.
Amore advanced approach is necessary to study the complexities
of brain networks, and the diagnosis of single subject data.

Complex networks can be analyzed efficiently using graph
theory. Graph theory models each brain region as a node and the
relationship between two regions as an edge. Recent studies have
focused on the use of graph theoretical measures on the structural
brain networks (Bassett et al., 2008; Bassett and Bullmore, 2009;
Bullmore and Sporns, 2009; Lynall et al., 2010; Wang et al.,
2010; Várkuti et al., 2011; Zhang et al., 2011; Khazaee et al.,
2015). Depending on the type of data, various graphs can be
constructed. For example, representations of neural networks
can be constructed using microscopic data (e.g., Chatterjee and
Sinha, 2007), where nodes represent neurons and edges axons
connecting neurons to each other. Recent studies have shown
that graph theoretical measures are vital in identifying network
measures of psychiatric and neurological diseases. Graph theory
not only can be used to study various network properties such
as small-world property or efficiency of the information transfer,
but it can also be employed in medical applications and disease
diagnosis. For example, Bassett et al. (2008) used graph theoretic
methods to show that patients suffering from Alzheimer’s disease
and schizophrenia have abnormal network configurations.

Recently, machine learning has been used in the detection
of diseases by recognizing physiological patterns (biomarkers)
of healthy and pathological conditions (Teipel et al., 2008;
Mapstone et al., 2014). There has been a growing interest
in applying machine learning techniques on DTI data of
Alzheimer’s patients (Hahn et al., 2013). Recent studies have
derived connection matrices as well as graph metrics from
DTI data (Lo et al., 2010) of Alzheimer’s patients. Dyrba et al.
(2013) report a machine learning approach for discriminating
between Alzheimer’s disease and healthy controls using fractional
anisotropy (FA) values as input features, achieving 80%
of accuracy. However, these studies have used information
such as Pearson’s product moment correlation coefficient
between brain regions (Wang et al., 2006; Chen et al., 2011),
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regional homogeneity (ReHo), and amplitude of low-frequency
fluctuations (ALFF; Dai et al., 2012; Zhang et al., 2012), and a
limited number of network measures as discriminant features
(Li et al., 2013). Additionally, these studies considered only
global network measures but ignored local network measures.
Local network measures that are indicators of individual network
elements (such as nodes or links) typically quantify connectivity
profiles associated with these elements and reflect the way in
which these elements are embedded in the network. Hence, one
major focus of the current research is to identify more effective
local and global structural properties of the brain network to
enhance the performance of pattern classification.

The purpose of current study is to implement a system
that efficiently classifies AD patients from MCI patients and
healthy subjects (CT). We analyzed DTI data of 15 AD patients,
15 MCI patients, and 15 healthy volunteers, and performed
pattern classification of the three categories of subjects based on
graph measures. We considered pair-wise class combinations of
subjects and defined three separate classification tasks, i.e., AD-
CT, AD-MCI, and CT-MCI. An ensemble classification module
was used to perform the classification tasks. A limitation of this
study is the small sample of amnesic MCI, as those could be a
mix of people with AD and other dementing disorders such as
dementia with Lewy body dementia. Due to the limited sample
size, this study can be regarded as a “proof of concept.”

MATERIALS AND METHODS

The study was performed in three stages: data collection and
processing, feature extraction, and classification. Data acquisition
was performed in an MR scanner, and data processing included
a preprocessing phase containing realignment, coregistration,
normalization, and segmentation of the data. Fractional
anisotropy based tractography, and feature extraction was
performed based on graph theory by calculating local network
centrality measures (Freeman, 1977). Pattern classification was
performed by the method of ensemble classification (Rokach,
2010).

Data Collection and Processing
Subjects and Data Acquisition
Forty-five adults consisting of 15 AD patients, 15 MCI
patients, and 15 healthy volunteers were recruited for DTI data
acquisition. DTI scans were acquired in the Institute D’or (Rio de
Janeiro, Brazil) on a Philips Achieva 3.0 TeslaMR scanner, using a
spin echo (SE) sequence with the following parameters: repetition
time (TR) = 5620 ms, echo time (TE) = 65 ms, flip angle =

90◦, acquisition matrix = 96 × 96 with a spatial resolution of
2.5 × 2.5mm, 60 transversal slices with thickness = 2.5mm, 32
gradient directions, and b-value 1000 s/mm2.

The adults in study were referred for neuropsychological
evaluation by their physicians, because of memory complaints
to discriminate among normal aging, MCI, or dementia.
Participants with tumor, stroke, traumatic brain injury, or
hydrocephalus were excluded from the experiment. AD and
MCI diagnoses were made by consensus among a trained,
a neuropsychologist and a psychiatrist, based on DSM-IV

criteria, MRI overview, clinical data and neuropsychological
tests. The AD patients had mild dementing disorders and
the supportive tests for first AD diagnosis were performed
in parallel to the MR/DTI acquisition. AD diagnoses were
performed considering NINCDS-ADRDA criteria (Knopman
et al., 2001). All individuals underwent a comprehensive
evaluation for diagnostic propose, including the following
tests, whose quantitative results are available in the Appendix
(Table A2) in Supplementary Material:

1. Mini Mental State Evaluation (MMSE),
2. Span (digit and spatial) forward and backward,
3. Clock Drawing Test (CDT),
4. Verbal Fluency (semantic and letter),
5. Family Pictures,
6. Geriatric Depression Scale (Yesavage et al., 1983),
7. Memory Assessment Complaints Questionnaire (Crook et al.,

1992).

The MCI patients were all from the amnestic category. We did
not apply theHachinski Ischemic Scale.We used Petersen criteria
(Petersen et al., 1997, 2001) for MCI diagnosis, including:

1. Memory problems,
2. Objective memory disorder,
3. Absence of other cognitive disorders or repercussions on daily

life,
4. Normal general cognitive function,
5. Absence of dementia.

Healthy volunteers were selected by matching age and education
level to the MCI patients and AD patients (Table 1). A two-
tailed independent t-test was used to determine whether the
differences in age and educational level between the groups
were statistically significant. The results show P-values between
0.9 and 1.0 (Table 2), which confirms no significant difference
(Panagiotakos, 2008) between the groups. The connectivity
regions of participants’ DTI data were defined in terms of
Brodmann areas. A Brodmann area is a region of the cerebral
cortex in the human brain, defined by cytoarchitectonic and
histological analysis of the structure and organization of cells
(Brodmann, 1909).

For each subject, T1-weighted structural images and DTI
images were acquired by a gradient recalled echo (GRE) scanning
sequence, with the following parameters: TR = 7.16ms, TE =

3.41ms, flip angle = 8◦, acquisition matrix = 480 × 480 with
spatial resolution 0.5 × 0.5mm, and 340 sagittal slices with
thickness of 0.5mm.

Data Processing
The DTI data was preprocessed with realignment, coregistration,
and normalization using the software, SPM8 (Friston, 1996), and
segmentation by using the software, DSI Studio (Yeh and Tseng,
2011). FA was calculated for each voxel of each subject’s brain
volume, generating a FA map for each subject. FA is commonly
considered to be an indicator of structural brain connectivity,
since it is sensitive to the axonal structure (Basser and Pierpaoli,
1996). Important factors influencing FA is the integrity of axons
and their myelin sheaths (Damoiseaux et al., 2009). Subsequently,
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TABLE 1 | The 45 participants of the study and their corresponding class, sex, age and educational level.

The 15 control volunteers The 15 Mild Cognitive impairment patients The 15 Alzheimer’s disease patients

Subject

ID

Age

(years)

Education

(years)

Sex Subject

ID

Age

(years)

Education

(years)

Sex Subject

ID

Age

(years)

Education

(years)

Sex

01 85 11 Female 16 80 08 Female 31 74 08 Female

02 81 08 Female 17 81 04 Female 32 73 15 Female

03 76 17 Female 18 68 15 Female 33 77 04 Female

04 74 11 Female 19 73 15 Male 34 68 15 Female

05 74 04 Female 20 88 08 Male 35 68 15 Male

06 78 11 Female 21 84 11 Female 36 71 11 Female

07 74 15 Male 22 70 20 Male 37 74 20 Male

08 83 15 Male 23 67 04 Male 38 84 11 Male

09 62 11 Female 24 71 11 Female 39 75 11 Male

10 67 11 Female 25 71 20 Female 40 86 15 Female

11 77 08 Female 26 80 14 Female 41 73 11 Female

12 78 11 Female 27 77 08 Female 42 80 15 Male

13 72 11 Female 28 70 15 Male 43 61 04 Male

14 61 21 Male 29 66 15 Female 44 72 15 Female

15 77 15 Male 30 69 11 Female 45 81 11 Female

Mean 74.6 12.0 73%F Mean 74.3 11.9 67% F Mean 74.5 12.1 60% F

27% M 33%M 40%M

Standard deviation 6.9 4.1 – Standard deviation 6.8 5.0 – Standard deviation 6.5 4.3 –

TABLE 2 | P-values by age and educational level on binary discrimination.

Binary discrimination Age(p-value) Educational level(p-value)

Control vs. MCI 0.916 1.000

Control vs. Alzheimer 0.957 0.931

MCI vs. Alzheimer 0.957 0.938

tractography (Le Bihan and Breton, 1985), a 3D modeling
technique that visually represents neural tracts using DTI data,
was performed to obtain the Connectome (Sporns et al., 2005).
Tractography (Figure 1) was performed deterministically by
using the entire brain as the seed with the toolbox, DSI Studio
(Kreher et al., 2008; Yeh et al., 2013). This process was performed
according to the following parameters: fractional anisotropy (FA)
threshold = 0.1, number of seed points = 1,000,000, maximum
angle = 60◦, step size = 1.25mm, length constraint = 25–
100mm, and no spatial smoothing1. Connectivity matrices were
obtained and stored accordingly. We considered 41 Brodmann
areas according to the coordinates established in DSI studio (Yeh
et al., 2013). In a connectivity matrix, rows and columns of
the matrix represent different Brodmann areas. Each cell of the
matrix represents a distinct connection between two Brodmann
areas corresponding to specific row and column. Figure 2 shows

1We used 1,000,000 seeds as starting fiber points for each individual brain. This
produces a potential maximum of 1,000,000 deterministic fibers per brain (in
practice we have much less due to minimum length constraint threshold). Using
1,000,000 fibers can balance the deterministic tractography for all the participants.

FIGURE 1 | Sample output of whole brain tractography of DTI data.

Colored lines represent estimates of brain’s structural connectivity. Blue lines

show connections in superior-inferior direction, green lines show

anterior-posterior direction, and red lines represent medial-lateral direction. (A)

Coronal view. (B) Sagittal view.

the different stages of our approach. Each block in the figure
represents a stage in the classification procedure.

Feature Extraction
Graph Generation and Construction of Structural

Brain Networks
In graph theory, a graph is defined as a set of nodes and
edges (Bullmore and Sporns, 2009). Using connectivity matrices
obtained above, we generated the corresponding graphs where
the nodes are brain regions and edges are the bundles of
nerves connecting those regions (Gong et al., 2009). In this
manner, a graph was generated for each subject using the
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FIGURE 2 | The classification approach for diagnosing Alzheimer’s disease. The DTI tractography provides information on brain’s connectivity fibers. The

connectivity matrix is extracted by the discretization of the brain connection fibers, and by representing Brodmann areas as nodes and the white matter bundles

interconnecting different gray matter areas as the edges. The interpretation of the connectivity matrix as a graph allows the extraction of the graph features. These

graph features can then be used in a machine learning framework. The machine learning module includes the following procedures: hyper-parameter setting, feature

selection, and classification based on a nested cross-validation procedure.

connectivity matrices generated in the previous data processing.
The graphs we constructed were all undirected, i.e., the nodes
are connected together by bidirectional edges. Brodmann areas
were represented as network nodes. Based on the 41 Brodmann
areas considered in this analysis, each network was composed by
a total of 41 nodes. An edge was marked between two nodes,
representing two Brodmann areas, if there was at least one fiber
connecting them.Otherwise these two nodes were not considered
directly connected, although they could still be connected via
another node or nodes. We used the weight (Wij) value of the
edge to describe the strength of the connectivity of Brodmann
areas i and j. We constructed the connectivity matrix as a
weighted matrix for each subject. As there were 41 Brodmann
areas, the maximum number of all possible edges was 820 [N (N
− 1)/2;N = 41]. The number of nodes (41) was the same for each
subject since each brain was parcellated using the same scheme.
However, subjects differed in the structure of their graph in terms
of both the number and weighting on the edges. The numbers
of edges were likely to differ for different graphs as the result
of varying strengths and presence/absence of the connectivity of
Brodmann areas in the subjects. Figure 3 shows the graph of an
MCI patient as an example.

Extracting Graph Features
The network properties that we computed included the
following: closeness centrality, betweenness centrality,

eigenvector centrality, Katz centrality, hyperlink-induced
topic search (HITS) centrality, degree centrality, clustering
coefficient centrality, load centrality, and efficiency and node
redundancy coefficient (Figure 4). The definition of the different
network measures are presented below.

Closeness Centrality
Closeness centrality indicates how close a node is to all the other
nodes in a network (Wasserman and Faust, 1994). The centrality
of a given node is the sum of the geodesic distances (shortest
paths from one node to other nodes). Closeness centrality
describes the extent of influence of a node on the network.
Closeness can be regarded as a measure of how long it will take to
spread information from node i to all other nodes sequentially.
Consider a connected weighted undirected graph G = (V, E)
with n vertices and m edges (|V| = n, |E| = m). Let d(v, u)
denote the length of the shortest path between v and u. The
closeness centrality Cv (Sabidussi, 1966) of node v is defined in
Equation (1):

Cv =

n− 1
∑

u∈V d(v, u)
(1)

Betweenness centrality
Betweenness centrality is a measure of the number of times a
node is seen to lie along the shortest path between two other
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FIGURE 3 | An example of a graph for an MCI patient where each circle

represents one node, i.e., a Brodmann area (BA) in the brain, and

connections between nodes represent edges, i.e., white matter

connections. The numbers on the nodes represent the label of the Brodmann

areas. The diameter of each node is proportional to the number of connections

of its corresponding Brodmann areas, and the thickness of each line

represents the weight or connection strength of the edge.

nodes (Brandes, 2001). It is equal to the number of shortest
paths from all vertices to all others that pass through that
node. A node with high betweenness centrality has a large
influence on the transfer of items through the network, under the
assumption that item transfer follows the shortest paths. Studies
have illustrated that the brain uses the shortest path during
information processing to save time and energy (Klyachko and
Stevens, 2003). Hence, we selected closeness and betweenness
centrality as measures reflecting the shortest paths in our model.
For a graph G = (V, E), betweenness centrality CB(v) (Brandes,
2001) is given in Equation (2).

CB(v) =
∑

s,t:s6=t 6=v

σv(s, t)

σ (s, t)
(2)

Here σ (s, t) is the number of shortest paths from s to t, and σv(s,
t) is the number of shortest paths from s to t that pass through v.

Eigenvector centrality
Eigenvector centrality assigns relative scores to all nodes in the
network based on the concept that connections to high-scoring
nodes contribute more to the score of the node in question
than connections to low-scoring nodes. Eigenvector centrality is
calculated by assessing howwell-connected an individual is to the
parts of the network with the greatest connectivity (Gould, 1967).
Recent studies have shown that eigenvector centrality identifies
the most prominent regions in a network (Binnewijzend et al.,

2014). For a weighted, undirected graph G = (V, E) with n
vertices and m edges, connectivity matrix A, Eigen value λ and
corresponding eigenvector × satisfying the condition Ax = λx,
the eigenvector centrality Ce(v) (Newman, 2008) of node v is
given in Equation (3):

Ce(v) =
1

λ(max)

∑n

i = 1
A (v, i) xi (3)

The above equation represents the vth entry in the
eigenvector × corresponding to the largest eigenvalue
λ (max).

Katz centrality
Katz centrality measures the degree of influence of a node in
a network. Unlike typical centrality measures which consider
only the shortest path (the geodesic) between a pair of actors,
Katz centrality measures influence by taking into account the
total number of walks between a pair of nodes. Katz centrality
computes the relative influence of a node within a network by
measuring the number of the immediate neighbors (first degree
nodes) and also all other nodes in the network that connect to the
node under consideration through these immediate neighbors
(Katz, 1953). It is closely related to eigenvector centrality. For
a connected, weighted and undirected graph G = (V, E) with
n vertices, m edges and connectivity matrix A, Katz centrality
Ck(v) (Junker and Schreiber, 2011) of node v is given in
Equation (4).

Ck(v) =
∑∞

k = 1

∑n

u = 1
αk(Ak)uv (4)

In Equation (4), α, the attenuation factor, is a value which is
chosen to be smaller than the reciprocal of the absolute value
of the largest eigenvalue of adjacency matrix A. The powers
of A indicate the presence or absence of edges between two
nodes through intermediaries. For instance in matrix A4 if
the element (a1, a6) = 1, indicates that through some first
and second degree neighbors of node 1, nodes 1, and 6 are
connected.

HITS centrality
HITS centrality measures the hub and authority centrality
scores of a valued network. Hubs and authorities are a natural
generalization of eigenvector centrality. There are two scores for
each node in a network, a hub and an authority score. A high hub
actor points to many good authorities and a high authority actor
receives from many good hubs. The authority score of a vertex
is therefore proportional to the sum of the hub scores of the
vertices on the in-coming ties and the hub score is proportional
to the authority scores of the vertices on the out-going ties.
Theoretically, consider a connected, weighted and undirected
graph G = (V, E) with n vertices and m edges (|V| = n, |E| =
m). The HITS algorithm (Von Ahn, 2008) consists of a series of
iterations with the following steps:

1. Authority update rule: For a given node v, the authority update
score is the summation of hub scores of each node which point
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FIGURE 4 | Illustration of the local graph measures. For each graph measure, a node with high measure value and a node with low measure value are identified.

Note that Load and HITS centralities are not illustrated. The measures are described in detail in the Section Extracting Graph Features.

to node and is denoted in Equation (5):

auth (v) =
∑n

i = 1
hub(i) (5)

2. Hub update rule: For a given node v, update of its hub score
is the summation of authority scores of all nodes pointing to v
which is denoted in Equation (6):

hub (v) =
∑n

i = 1
auth(i) (6)

Degree centrality
Degree (also called valency) of a node in undirected graphs is
the total amount of edges directly connecting that node to any
other node. It is given by the sum of numbers of edges connecting
the nodes. A node with a higher degree of connectivity may be
more relevant to the network in terms of number of connections,
but it does not measure the importance of each of those
connections. Degree has its neurobiological interpretation: a
region with high degree interacts structurally and functionally
with many other regions in a brain network (Sporns and Kötter,
2004). For a connected weighted undirected graph G = (V,
E) with n vertices and m edges (|V| = n, |E| = m), the
degree centrality CD(v) (Freeman, 1979) of node v is defined in
Equation (7).

CD(v) =
deg (v)

n− 1
(7)

In Equation (7), deg (v) is the number of edges incident upon a
node.

Clustering coefficient
The Clustering coefficient of a node in an undirected graph
is a measure that quantifies the fraction of direct connections
between the nearest neighbor nodes that exist out of all possible
direct connections amongst those nearest neighbor nodes (Watts
and Strogatz, 1998). It quantifies the presence of clusters or
groups within a network as a measure of functional segregation
in the brain, and denotes ability for specialized processing to
occur within densely interconnected groups of brain regions.
Therefore, it was also added to our model. For a connected,
weighted and undirected graph G = (V, E) with n vertices
and m edges (|V| = n, |E| = m), the clustering coefficient
centrality Cv (Watts and Strogatz, 1998) of node v is given in
Equation (8).

Cv =
2e

k(k− 1)
(8)

In Equation (8), k is the number of neighbors of v, and
e is the number of connected pairs between all neighbors
of v. Clustering coefficient is a ratio N/M, where N is the
number of edges between the neighbors of v, and M is
the maximum number of edges that could possibly exist between
the neighbors of v.

Efficiency
The Efficiency of a node in a network is a measure of how
efficiently, in terms of path length, information can be exchanged
with other nodes. Thus, the efficiency is inversely related to the
shortest path length between the nodes and is used to evaluate
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how easily a node can be reached from other nodes. Therefore,
the efficiency of a node is the inverse of the harmonic mean of
the distances to other nodes (Latora and Marchiori, 2001).

Page rank
Page rank is a well-known algorithm, originally used by Google
to rank websites for their search engine (Sullivan, 2007). Page
rank is another proxy for evaluating the importance of a node
in a network, by assigning a probability of visiting that node after
many steps and extent of time. Theoretically, first the standard
adjacency matrix is normalized such that the columns of the
matrix sum to 1. Next, page rank values are obtained as the values
in the eigenvector with the highest corresponding eigenvalue of
the normalized adjacency matrix (Page et al., 1999). In our case,
page rank can highlight the Brodmann areas with higher number
of external links, and the ones that aremore frequently addressed.
That is, if a Brodmann area is receiving more links from other
areas, it might have more important role within the brain.

Load centrality
The load centrality of node i in a network is calculated based on
the fraction of all the shortest paths that pass through the node i
(Goh et al., 2001). Load centrality is different from betweenness
centrality, although they are both related to the shortest path
(Brandes, 2008). Theoretically, load centrality is defined based
on a hypothetical flow process. It is assumed that each node
in a network sends a unit amount of a given commodity to
every other node in the network, regardless of any edge or
node capacity limit. Using a priority system, the commodity
is passed to the neighbors of the node that are closest to the
target destination. If there is a tie, i.e., more than one node
candidate, the commodity is divided equally among them. The
load of a node is calculated as the total amount of commodity
passing through it, within the whole process (Goh et al., 2001).
Load centrality is a potential alternative to betweenness centrality
which provides a complementary view over the flow structures in
the network.

Node redundancy coefficient
The redundancy coefficient of node i is calculated based on the
fraction of pairs of neighbors of node i that are also connected to
other nodes in the network. This measure captures the nodes that
are of lower importance and can be induced by other nodes in the
network. For any node i, the node redundancy coefficient of node
i, RCi, is defined as in Equation (9).

RCi =

∣

∣

∣

{

{

j, k
}

⊆ N (i) , ∋ i
′
6= i,

(

i
′
, j
)

∈ E and (i
′
, k) ∈ E

}
∣

∣

∣

|N(i)|(|N(i)| − 1)
2

(9)

In Equation (9), N(i) is the set of neighbor nodes for node i, and
E is the set of edges of the network (Latapy et al., 2008). The
redundancy coefficient ranges from 0 to 1, where larger numbers
for a node mean higher redundancy. Despite the differences
in definitions, node redundancy coefficient can be considered
as a generalization of clustering coefficient to squares, i.e., C4,
introduced by Lind et al. (2005), which calculates the probability
of a situation in which a node in the network has two neighbors

where these two neighbors have another neighbor in common. If
a network is fully connected (where all nodes are connected to all
other nodes), redundancy coefficient will be extremely high, since
a damage in removal of a node does not affect the network, due
to the existence of parallel pathways. In case of brain networks, it
could be useful to evaluate the damage caused by illness known
to affect gray matter connections such as Schizophrenia.

The above mentioned 11 network properties were computed
for each node (i.e., 41 Brodmann areas) in the graph to form a
vector of 451 features. Feature selection was then performed on
the feature vector.

Classification Model
We used nested cross validation for tuning the hyper-parameters
of the model, selecting the features, and evaluating the model. In
machine learning, hyper-parameter tuning refers to the problem
of finding the best set of parameters for a model (Bergstra and
Bengio, 2012). As seen in Figure 5, the module automatically
performs an exhaustive search over various parameter values for
an estimator and finds the best performing set of parameters
for the given estimator, using the grid search approach (Chang
and Lin, 2011). In this approach, a (multi-dimensional) grid of
parameters is defined for the estimator and the cross validation
technique is used for searching over the grid, and identifying the
best performing set of parameters. After finding the best set of
parameters for the estimator, we selected the best set of features
automatically; using another five-fold nested cross validation
module, and performed the classification tasks, i.e., AD-CT, AD-
MCI, MCI-CT. In five-fold cross validation, the classification is
performed in five iterations, separately for each pair-wise class
combination of patients, i.e., AD-CT, AD-MCI, MCI-CT. Each
iteration was divided into three steps: feature selection/hyper-
parameter tuning, classifier training and classification. Feature
selection/hyper-parameter tuning and classifier training was
performed using (5 − 1 = 4) data folds per class, leaving out
one-fold per class for subsequent classification. This process was
done five times in order to apply classification to all the subjects.
We implemented a five-fold nested cross validation (NCV) as
the training phase included setting the hyper-parameters of the
model and selecting the features. Through NCV (Figure 5),
an outer cross validation was used to evaluate the accuracy
and performance of an inner cross validation in which the
hyper-parameters were tuned or the features were selected for
the learning process. Thus, NCV helps to obtain an unbiased

FIGURE 5 | Representation of the Nested Cross Validation (NCV). An

outer cross validation module is used to evaluate the accuracy/error of an

inner cross validation. In the inner cross validation module, the

hyper-parameters are tuned or the features are selected.
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estimation of the true error and performance of the estimator
(Varma and Simon, 2006).

Hyper-Parameter Setting
Hyper-parameter tuning is a crucial step in the model selection
procedure. The task is to determine the best set of hyper-
parameters for a given learning algorithm, through optimizing
a performance measure, e.g., accuracy or error (Bergstra
and Bengio, 2012). We used grid search method for hyper-
parameter tuning. In the grid search method, a search is
performed on a grid of parameters created based on a pre-
defined subset of hyper-parameter space of a learner, in an
aim to find the set of hyper-parameters that maximizes the
performance of the learning algorithm. The grid search was
implemented as part of a five-fold nested cross validationmodule,
explained before, through which the accuracy of the learner was
evaluated.

Feature Selection
Feature (attribute) selection is an approach to identify relevant
features and reduce the noise in order to increase signal-to-noise
ratio and reduce overfitting, by constructing a generalized model
through the selections of a subset of features from the original
feature set (Bermingham et al., 2015). The central assumption
when using a feature selection technique is that the data contains
many redundant or irrelevant features. Redundant features are
those which are repeated and provide no extra information
compared to the currently selected features, while irrelevant
features are those which do not provide any useful information.
Feature selection techniques are often used in domains where
there are many features and comparatively few samples, as
is our problem. We implemented a nested cross validation
module to test various feature selection methods for all the
three classification tasks, i.e., AD-CT, AD-MCI, and CT-MCI.
Amongst all the tested feature selection approaches, the K-best
features outperformed others. In K-best feature selection, the
features are ranked based on their power in performing the
classification, and then the top K features are selected for the
given estimator. The features were ranked based on the ANOVA
F-value between features. The number of top features, i.e., K,
should be manually defined. We tested various Ks and evaluated
the classification accuracy in each of the three classification tasks,
Figure 6, shows the classification accuracy vs. the best number of
features to include in the classifier (K), for different classification
tasks. As seen, K = 430 maximizes the classification accuracy in
both AD-CT and AD-MCI classification tasks. And, K = 110 was
found to be the best number of top features to include in theMCI-
CT classifier. The features were selected based on their score and
p-value. The selected top-K features for each of the classification
tasks were considered in the respective classifier, which will be
explained in detail in the next part.

Classification
As mentioned, we considered pair-wise class combinations of
subjects and defined three separate classification tasks, i.e., AD-
CT, AD-MCI, and CT-MCI. After tuning the hyper-parameters
and selecting the most informative features, the classification

FIGURE 6 | Classification accuracy vs. feature selection threshold, i.e.,

the number of features selected (K). For AD-CT and AD-MCI classification

task, the best K = 430, features maximize the accuracy of the classifier. The

best K-value found for MCI-CT classification was K = 110.

was done using the ensemble classification method. In ensemble
learning, multiple classifiers are used such that the ensemble
classification system outperforms all of the constituent classifiers
(Opitz and Maclin, 1999; Dietterich, 2000). Ensemble classifiers
become even more advantageous if classifiers with different
decision boundaries are used, allowing for more flexibility
through promoting diversity among the models (Brown et al.,
2005). The ensemble learning is very similar to human behavior
in making important decisions. Especially in case of medical
diagnosis, humans prefer to increase the reliability of their
decision through asking the opinion of various doctors (Sesmero
et al., 2015). We simulated the same process in our system
by generating a diverse set of base classifiers whose decision
boarders complement each other, and combining their outputs
such that the accuracy of the classification was improved
(Figure 7). Thus, the ensemble learner was built in two phases:
(1) generating a set of diverse base classifiers, and (2) combining
the decisions made by the base classifiers to obtain one decision.

The diversity of the base classifiers is of high importance. The
diversity of two given classifiers is high if they result in errors at
different samples (Sesmero et al., 2015). If a pair of classifiers is
not diverse, then the decision made by each of them might be
similar, therefore, the final ensemble decision will not improve.
But if the decision boarders of a pair of classifiers complement
each other, we can expect an improved performance for the
ensemble classifier. Although the diversity of base learners is a
mandatory condition for a good ensemble, there is no consensus
on quantifying the diversity (Kuncheva and Whitaker, 2003).
We considered pair-wise combinations of the base classifiers
candidates and calculated the Q metric as a proxy for diversity.
Equation (10) shows the definition of the Q metric (Sesmero
et al., 2015).

Q =
N11N00 − N01N10

N11N00 + N01N10
. (10)
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FIGURE 7 | The ensemble classifier design. The data is provided to a set of diverse base classifiers and their decisions are then combined through a voting

procedure to obtain the final classification result. The whole process was performed within a nested five-fold cross validation module.

In Equation (10), Nij is the number of samples that were
classified correctly (i = 1) or incorrectly (i = 0) by the first
classifier in the pair, and correctly (j = 1) or incorrectly (j = 0)
by the second classier in the pair. The lower the Q is for a
pair of base classifiers, the more diversity the pair has. We
tested various combinations of base learners and found that the
combination of logistic regression, random forest, gaussian naïve
bayes, 1-nearest neighbor, and support vector machines performs
the best for the defined classification tasks. We then used voting
for combining the decisions made by the base classifiers and
obtaining the final classification result (Figure 7). In voting
approach, the final classification decision on a new sample, i.e.,
C(x), is made through voting on all the base classifiers (BCi),
each having a weight of wi, as stated in Equation (11) (Rokach,
2010).

C(x) = sign

(

n
∑

i = 1

wi . BCi

)

. (11)

In Equation (11), n is the number of base classifiers (in
our case, n = 5). The preliminary weights of the base
classifiers were first generated within the hyper-parameter setting
procedure. We then refined the weights by testing various
combinations of weights and determined the best weighting
set for each of the classification tasks. Intuitively, we assigned
larger weights to more accurate classifiers, or set of classifiers
with complementary decision boarders. The entire classification
process was performed within a nested five-fold cross validation
module, as explained before in the cross validation section. The
classification module generates a positive (+1) or negative (−1)
label for each subject corresponding to the input labels, e.g., AD
= +1 and CT = −1 in AD-CT task. After that, this output can
be compared with the input label (neuropsychological diagnosis)
in order to measure the success level of the approach. Success
in classification is achieved when the output label from the

classifier is equivalent to the input label. Accuracy of classification
is the percentage of correctly predicted (or detected) output
labels for all subjects from both positive and negative input
classes.

RESULTS

We evaluated our model on 45 subjects, comprising 15 AD
patients, 15 MCI patients, and 15 healthy volunteers. A
total number of 451 features was calculated for each subject
from which 430, 430, and 110 features were selected as the
most informative features for AD-CT, AD-MCI, and MCI-CT
classification tasks, respectively. Table 3 shows the performance
metrics calculated for the base classifiers as well as the ensemble
technique with and without feature selectionmodule. The feature
selection module was considered for all the base classifiers
during the evaluation stage, as it improved their performance.
As seen in Table 3, the ensemble framework with feature
selection outperforms all the other listed classifiers, and shows a
promising performance. The ensemble framework with feature
selection resulted in a classification accuracy of 83.3% for AD
vs. MCI, 80% for AD vs. CT, and 70% for MCI vs. CT.
Accuracy of the classification was defined as the number of
correct predictions divided by the total number of predictions.
We also checked for the recall metric defined as the number
of true-positives divided by the number of true-positives and
false-negatives, i.e., Recall = TP/(TP + FN). According
to Table 3, the recall is 80, 80, and 50% for AD-CT, AD-
MCI, and MCI-CT classification tasks, respectively. Recall can
be considered as a measure of completeness of a classifier
such that a low recall can indicate the high number of false-
negatives. Recall can be also regarded as a sensitivity measure
since it evaluates the effectiveness of a classifier in identifying
the positive labels (Sokolova and Lapalme, 2009). Finally, we
checked the F-1 score of the classifiers. The F-1 score is useful
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TABLE 3 | Performance results of the base classifiers as well as the ensemble in AD-CT, AD-MCI, and MCI-CT classification tasks.

Base Classifiers Classification Task

AD-CT AD-MCI MCI-CT

Acc. Recall F-1 Acc. Recall F-1 Acc. Recall F-1

Logistic Regression 0.733 0.867 0.767 0.7 0.8 0.729 0.667 0.667 0.667

Gaussian Naïve Bayes 0.567 0.6 0.566 0.6 0.6 0.584 0.633 0.6 0.58

Support Vector Machines 0.767 0.8 0.779 0.7 0.733 0.72 0.533 0.533 0.518

Random Forests 0.43 0.2 0.26 0.633 0.467 0.491 0.567 0.533 0.542

1-Nearest Neighbor 0.633 0.533 0.58 0.667 0.467 0.531 0.6 0.6 0.578

Ensemble 0.733 0.733 0.731 0.767 0.733 0.758 0.5 0.467 0.48

Ensemble with Feature Selection 0.8 0.8 0.798 0.833 0.8 0.825 0.7 0.5 0.667

All the listed classifiers were tested within a five-fold cross validation module.

Feature selection was used for all the base classifiers as it improved their performance.

The best results for each column were bolded.

TABLE 4 | Accuracy metric 95% confidence intervals for the ensemble classifier with feature selection in AD-CT, AD-MCI, and MCI-CT classification

tasks.

Classification task

AD-CT AD-MCI MCI-CT

Median [95% Confidence Interval] Accuracy 0.75 [0.743, 0.757] 0.767 [0.759, 0.774] 0.667 [0.662, 0.671]

Recall 0.8 [0.792, 0.808] 0.73 [0.718, 0.742] 0.6 [0.589, 0.611]

Specificity 0.67 [0.617, 0.723] 0.67 [0.626, 0.714] 0.43 [0.384, 0.476]

F-1 0.77 [0.763, 0.777] 0.74 [0.729, 0.751] 0.56 [0.553, 0.567]

ROC AUC 0.76 [0.754, 0.767] 0.78 [0.775, 0.785] 0.56 [0.557, 0.563]

if we want to select a classification model such that it holds
a balance between precision and recall. Theoretically, the F-
1 score is defined as the harmonic mean of precision and
recall, i.e., 2(Precision ∗ Recall)/(Precision + Recall), in which
the precision is the number of true-positives divided by true-
positives and false-positives. As it is seen in Table 3, the F-1
score of the ensemble framework with feature selection is 79.8,
82.5, and 66.7% for AD-CT, AD-MCI, andMCI-CT classification
tasks.

We further investigated the performance of the ensemble
classifier with feature selection by calculating the confidence
intervals of various performance metrics. We ran the cross
validated ensemble classifier for 100 times for each performance
metric, i.e., accuracy, recall (sensitivity), specificity, F-1 score,
and receiver operating characteristic area under the curve (ROC
AUC), and each of the classification tasks, i.e., AD-CT, AD-MCI,
and MCI-CT, and stored the result. Next, we checked whether
the performance metric is normally distributed. As expected, we
observed that none of the metrics for the classification tasks are
normally distributed. Therefore, we used the statistical median
for calculating the confidence intervals2. Table 4 presents the
results for 95% confidence intervals. It shows that we can be
95% confident that the true median of the population is in the

2To calculate the confidence interval for a mean, we either need a large sample size
or a normally distributed population (Dean and Dixon, 1951; Moore, 2007).

range of [0.743, 0.757], [0.759, 0.774], and [0.662, 0.671] for
AD-CT, AD-MCI, and MCI-CT classification tasks, respectively.
Although the highest accuracy is still observed for AD-MCI
classification task, it is very close to the confidence interval of AD-
CT classification. Additionally, it was observed that the model is
the best in detecting the positive events for AD-CT classification
with recall of 0.8.

We checked for the top-5 features that were detected within
the ensemble classification process for each of the classification
tasks, separately. For AD-CT classification task, betweenness
centrality at Brodmann Area 2 (primary somatosensory
cortex), eigenvector centrality at Brodmann Area 1 (primary
somatosensory cortex), load centrality at Brodmann Areas 2
(primary somatosensory cortex) and 27 (piriform cortex), and
closeness centrality at Brodmann Area 1 (primary somatosensory
cortex) were detected as the top-5 most important features. Katz
centrality at Brodmann Area 3 (primary somatosensory
cortex), degree and closeness centrality at Brodmann Area 5
(somatosensory association cortex), node redundancy coefficient
and load centrality at Brodmann Area 4 (primary motor
cortex) were found as the most important features for AD-MCI
classification. For MCI-CT classification, we observed the hit
centrality, page rank, betweenness centrality, and load centrality
at Brodmann Area 6 (premotor cortex) along with hub centrality
at Brodmann Area 1 (primary somatosensory cortex) to be the
most important features.
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DISCUSSION

Our results indicate that complex graph measures can be used as
makers to diagnose Alzheimer’s disease. Moreover, these results
indicate that Alzheimer’s disease affects Brodmann areas in
the sensorimotor cortex and piriform cortex, where we found
abnormalities in out measures. The piriform cortex, whose load
centrality has been shown as a good discriminative feature for
Alzheimer’s disease diagnosis by our results, has an important
role in olfactory perception (Howard et al., 2009). The piriform
cortex is located at the junction of the temporal and frontal
lobes and is the neighbor of the entorhinal cortex (Mai et al.,
2008). The entorhinal cortex is known in the literature as one of
the first affected areas in Alzheimer disease (Khan et al., 2013).
Additionally, the primary motor cortex is significantly involved
in late and terminal stages of Alzheimer’s disease (Suva et al.,
1999).

In our study, node redundancy coefficient and load centrality
in the primary motor cortex were recognized as good indicators
of Alzheimer’s disease in contrast to MCI. In relation to these
findings in the primary motor cortex (and in other brain
regions), it is important to point out that abnormalities in
node redundancy coefficient and load centrality do not mean
variations in the connectivity at that exact location. Degree is the
only network measure that is directly correlated to connectivity
changes in the specific node (in this case primary motor cortex).
As Degree is not one of the abnormal measures, it indicates that
abnormal connectivity patterns at primary motor cortex are not a
relevant feature for ADdiagnosis. The relevant networkmeasures
revealed here (node redundancy coefficient and load centrality)
indicate that connectivity abnormalities on AD are occurring in
parallel (in circuit terms) in brain pathways that cross primary
motor cortex, which together generate these network patterns
found at the primary motor cortex. In other words, the primary
motor cortex does not represent the primary effect, rather than
the secondary effect of the pathology.

Our findings identified measures in the primary sensory
cortex (betweenness centrality, eigenvector centrality,
load centrality, closeness centrality, and Katz centrality),
somatosensory association cortex (degree and closeness
centralities) and primary motor cortex (node redundancy
coefficient and load centrality) as good discriminative features
for Alzheimer’s disease diagnosis, while measures at the premotor
cortex (HITS centrality, page rank, betweenness centrality, and
load centrality) were identified as good discriminative features
for MCI diagnosis3.

Therefore, load centrality, betweenness centrality and
closeness centrality were found to be the most relevant
network measures in our study, as they were the top identified
features at different nodes. Other measures, as eigenvector
centrality, Katz centrality, degree centrality, node redundancy
coefficient, HITS centrality, page rank and hub centrality
were also recognized as relevant features for classifications

3Please see Table A1 for statistical comparison of the key DTI biomarkers at the
group level.

among Alzheimer’s disease patients, MCI patients, and healthy
controls.

The accuracy value achieved in our study can be compared
to what other researches performed using other modalities of
MRI, such as structural (Wolz et al., 2011; Casanova et al.,
2012; Lillemark et al., 2014), functional (Chen et al., 2011) and
voxel-based diffusion (Dyrba et al., 2013). All those studies, as
well as ours, achieved accuracies in the range of 80–90%. While
structural MRI can reveal localized deformations, diffusion MRI
based network analysis has the potential to help the development
of new pathologic brain segmentation atlases grouping brain
matter according to their network patterns. In this way, our paper
shows that the use of graph measures as feature of diffusion MRI
data can run in parallel to the application of other modalities
toward finding biomarkers of AD. The combination of features
from these different modalities may considerably increase the
potential of the AD diagnosis. Therefore, the development of
methods which efficiently combines these multimodal features is
a field to be explored by next studies. Nevertheless, our results
indicate that complex graph measures may effectively be used to
diagnose Alzheimer’s disease.

A limitation of this study is the small sample size (15
subjects for each of the three classes). Therefore, this study is
a “proof of concept” about a procedure for the classification
of MRI markers between AD dementia, MCI, and normal old
individuals. The reliability of these results can be tested later
in a complementary study based on a larger sample size (at
least 100 subjects per class). It is also important to remark that
the small sample of amnesic MCI could be a mix of people
with AD and other dementing disorders, such as dementia
with Lewy body dementia. Due to these facts, the moderate
classification between control subjects and MCI in this study
does not mean an ability of the procedure to disentangle
between normality and the prodromal stages of AD. However,
although the sample size is small, it is quite encouraging that
the proposed ensemble classification framework which included
a well-tuned feature selection component and was validated
within a five-fold cross validation module, resulted in quite good
classification performance. We expect larger sample would help
the system to better distinguish between the AD and non-AD
groups. A longitudinal study can assign at what time-point in
the evolution of the disease each region is more likely to be
affected by Alzheimer’s disease. Moreover, longitudinal studies
may have the potential to reveal first evidences of prodromal
Alzheimer’s disease. Finally, supervised classification approach
requires a set of labeled observations (Bishop, 2007), thus
making it highly dependent on the ground truth provided by the
diagnosis of the clinicians. Assuming that there is a possibility of
misdiagnosis, unsupervised classification techniques, such as K-
Means clustering (Lloyd, 1982; Jain et al., 1999), can be used to
improve the reliability of classifications.
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APPENDIX

We statistically compared the key DTI biomarkers at the group
level, i.e., AD vs. MCI, AD-CT, and MCI-CT. In particular, we
performed the two-sample t-test (Snedecor and Cochran, 1989),
for each of the key DTI biomarkers (e.g., primary somatosensory
cortex-betweenness centrality) in each group (e.g., AD-CT
group), to determine if the mean of the examined biomarker is
equal for both samples (e.g., AD vs. CT). The results are shown in
Table A1.

TABLE A1 | Statistical comparison of the key DTI biomarkers at the group level.

Classification task

AD-CT AD-MCI MCI-CT

AD-CT Key Biomarker t-statistic AD-MCI Key Biomarkers t-statistic MCI-CT Key Biomarkers t-statistic

Null Hypothesis: There

is no difference

between the average of

the key DTI biomarker

in both samples.

Primary somatosensory

cortex -betweeness centrality

−2.41* Primary somatosensory

cortex -katz centrality

−1.59 Premotor cortex-HITS

centrality

−3.6**

Primary somatosensory

cortex-eigenvector centrality

−2.37* Somatosensory association

cortex-degree centrality

−1.54 premotor cortex -page rank −3.44**

Primary auditory cortex-load

centrality

−2.36* Somatosensory association

cortex-closeness centrality

−1.51 Premotor cortex

-betweenness centrality

−2.55*

Primary somatosensory

cortex -load centrality

2.26* Primary motor cortex-node

redundancy

−1.49 Premotor cortex -load

centrality

−2.54*

Primary somatosensory

cortex -closeness centrality

−2.22* Primary motor cortex-load

centrality

1.42 Primary somatosensory

cortex-HITS centrality

−2.32*

*p < 0.05, **p < 0.01.

AD diagnoses were performed considering NINCDS-
ADRDA criteria (Knopman et al., 2001). All individuals
underwent a comprehensive evaluation for diagnostic propose,
which included Mini Mental State Evaluation (MMSE), Span
(digit and spatial) forward and backward, Clock Drawing
Test (CDT), Verbal Fluency (semantic and letter), Family
Pictures, Geriatric Depression Scale (Yesavage et al., 1983),
Memory Assessment Complaints Questionnaire (Crook et al.,
1992). The quantitative results for these tests are in the
Table A2.
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TABLE A2 | Quantitative results for diagnostic propose of AD and amnesic MCI.

Patient CDT Span forward Span backward Fluency MMSE Crook Yesavage Family pictures Diagnosis

Sub 01 10 4 4 16 28 30 6 30 Normal

Sub 02 10 5 4 12 26 21 2 29 Normal

Sub 03 10 6 4 14 26 32 5 26 Normal

Sub 04 10 6 4 21 25 35 10 26 Normal

Sub 05 10 5 3 8 22 29 1 24 Normal

Sub 06 10 4 2 11 21 31 4 20 Normal

Sub 07 10 5 4 24 29 27 0 30 Normal

Sub 08 10 6 3 12 29 21 4 29 Normal

Sub 09 10 3 3 19 29 31 8 27 Normal

Sub 10 10 4 4 12 26 29 11 30 Normal

Sub 11 8 7 5 19 25 29 7 25 Normal

Sub 12 10 5 3 11 29 26 4 23 Normal

Sub 13 10 4 4 16 28 33 3 27 Normal

Sub 14 10 6 5 21 29 27 0 27 Normal

Sub 15 9 4 3 11 25 23 5 24 Normal

Sub 16 10 5 4 15 26 31 6 28 Amnestic MCI

Sub 17 10 5 4 13 27 35 12 30 Amnestic MCI

Sub 18 10 5 4 10 27 31 13 30 Amnestic MCI

Sub 19 10 4 3 13 30 26 4 22 Amnestic MCI

Sub 20 8 4 4 6 20 30 2 27 Amnestic MCI

Sub 21 4 6 4 9 25 27 3 18 Amnestic MCI

Sub 22 10 5 4 19 27 28 1 30 Amnestic MCI

Sub 23 10 5 3 13 24 34 6 22 Amnestic MCI

Sub 24 10 4 2 17 27 23 4 24 Amnestic MCI

Sub 25 10 6 3 18 29 31 3 26 Amnestic MCI

Sub 26 10 4 2 10 24 25 3 23 Amnestic MCI

Sub 27 7 4 4 16 25 24 8 17 Amnestic MCI

Sub 28 2 5 3 13 28 26 11 17 Amnestic MCI

Sub 29 10 6 4 10 26 21 11 18 Amnestic MCI

Sub 30 10 4 3 13 23 27 12 15 Amnestic MCI

Sub 31 9 4 3 9 17 24 4 16 AD dementia

Sub 32 7 4 4 10 21 35 8 13 AD dementia

Sub 33 3 3 0 6 14 28 0 13 AD dementia

Sub 34 5 4 3 9 25 26 2 23 AD dementia

Sub 35 10 7 4 15 25 30 4 15 AD dementia

Sub 36 10 5 4 10 26 30 3 19 AD dementia

Sub 37 10 5 3 9 24 22 0 21 AD dementia

Sub 38 3 5 3 5 23 25 1 15 AD dementia

Sub 39 2 5 2 5 15 9 2 16 AD dementia

Sub 40 10 4 2 11 22 32 7 15 AD dementia

Sub 41 4 4 3 9 21 21 0 19 AD dementia

Sub 42 10 3 3 7 23 23 3 13 AD dementia

Sub 43 10 5 3 14 28 35 7 21 AD dementia

Sub 44 3 4 2 0 12 23 2 16 AD dementia

Sub 45 9 4 3 12 25 34 4 20 AD dementia
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