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Abstract Mammalian hibernation is associated with multiple physiological, biochemical, and

molecular changes that allow animals to endure colder temperatures. We hypothesize that long

non-coding RNAs (lncRNAs), a group of non-coding transcripts with diverse functions, are differ-

entially expressed during hibernation. In this study, expression levels of lncRNAs H19 and TUG1

were assessed via qRT-PCR in liver, heart, and skeletal muscle tissues of the hibernating

thirteen-lined ground squirrels (Ictidomys tridecemlineatus). TUG1 transcript levels were signifi-

cantly elevated 1.94-fold in skeletal muscle of hibernating animals when compared with euthermic

animals. Furthermore, transcript levels of HSF2 also increased 2.44-fold in the skeletal muscle in

hibernating animals. HSF2 encodes a transcription factor that can be negatively regulated by

TUG1 levels and that influences heat shock protein expression. Thus, these observations support

the differential expression of the TUG1–HSF2 axis during hibernation. To our knowledge, this study

provides the first evidence for differential expression of lncRNAs in torpid ground squirrels, adding

lncRNAs as another group of transcripts modulated in this mammalian species during hibernation.
Introduction

Many small mammals undergo hibernation when confronted
with unfavorable environmental conditions such as cold tem-
peratures. Hibernation is characterized by a marked reduction

in metabolism, prolonged periods where body temperatures
(Tb) are significantly reduced (Tb � 4 �C), a substantial reduc-
tion in heart rate, as well as resistance to skeletal muscle atro-

phy [1–4]. Activity of several metabolic pathways are tightly
controlled under these conditions notably via reversible pro-
tein phosphorylation of key regulatory enzymes [5]. Regula-

tion of ATP-consuming processes such as gene transcription
and protein translation is also a common theme observed in
mammalian hibernation [6–8]. Molecular levers that are uti-

lized to impact these two processes include, for example, his-
tone deacetylases (HDACs) [9] and microRNAs (miRNAs)
[10]. Nevertheless, the complete characterization of molecular

players underlying mammalian hibernation is ongoing.
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Long non-coding RNAs (lncRNAs) are non-coding RNAs
(ncRNAs) typically longer than 200 nucleotides that affect
diverse cellular functions including gene transcription and pro-

tein translation. lncRNAs have been notably shown to impact
histone modifications [11], modulate transcription factor–
promoter interaction [12], and influence mRNA stability [13].

Interestingly, several lncRNAs were shown to contain miRNA
binding sites that could promote miRNA sequestration and
subsequent inhibition of miRNA-mediated target recognition

and expression [14,15]. Differential expression of lncRNAs
have been reported in a variety of conditions and processes rel-
evant to hibernation including fasting and lipid metabolism
[16,17]. However, identification of torpor-associated lncRNAs

has not been fully explored.
Since lncRNAs are involved in regulating crucial processes

impacted during mammalian hibernation, the current study

was conducted to evaluate the expression of two lncRNAs,
H19 and taurine up-regulated gene 1 (TUG1), in liver, heart,
and skeletal muscle tissues of the hibernating thirteen-lined

ground squirrels (Ictidomys tridecemlineatus). H19 is one of
the earliest lncRNAs identified [18], while TUG1 can influence
the expression and activity of transcription factors relevant to

hibernation [19,20]. We report up-regulation of lncRNA
TUG1 levels in the skeletal muscle of hibernating thirteen-
lined ground squirrels and discuss the potential significance
of this modulation in mammalian hibernation.

Results

Amplification of lncRNAs in thirteen-lined ground squirrels

Consensus sequences of H19 and TUG1 in mammalian species
were generated for primer design. Target lncRNAs were subse-
quently amplified in liver, heart, and skeletal muscle tissues of
ground squirrels via RT-PCR. The products PCR were

confirmed by sequencing and the resulting H19 and TUG1
sequences were submitted to GenBank (GenBank accession
Nos. KT305775 and KT305776). Figure S1 shows the nucleo-

tide sequences of H19 and TUG1 aligned with the sequences
for the human, mouse and rat lncRNAs. The partial H19
nucleotide sequence of ground squirrels displayed 75% homol-

ogy with that of humans over the amplified region, respectively
(Figure S1A). Similarly, the partial TUG1 nucleotide sequence
was 86% homologous with that of humans over the amplified

fragment. BLAST alignment of the full length human TUG1
(GenBank accession No. NR_110492.1) and thirteen-lined
ground squirrel genome (SpeTri2.0 reference Annotation
Release 101) revealed 74% conservation between sequences

from humans and thirteen-lined ground squirrels (GenBank
accession No. NW_004936523.1, scaffold 00055).

H19 and TUG1 expression in tissues of hibernating ground

squirrels

H19 and TUG1 transcript levels were examined in liver, heart,

and skeletal muscle tissues of euthermic and hibernating
ground squirrels. Relative levels of both transcripts were quan-
tified in each tissue using qRT-PCR by normalization against

that of a-tubulin in each sample. Figure 1 shows the ratio of
normalized H19 and TUG1 transcript levels in the three tissues
examined. Compared to euthermic animals, expression levels
of TUG1 in the skeletal muscle of hibernating ground squirrels
were 1.94 ± 0.17-fold of that from euthermic animals, which

represents a significant increase (P < 0.005). On the other
hand, although there is a trend of increased expression of
H19 in hibernating animals, the changes are not significant

due to the huge variations.

HSF2 expression in tissues of hibernating ground squirrels

The transcription factor heat shock factor 2 is encoded by
HSF2, which is potentially modulated by TUG1 via miR-144
[21]. We thus measured HSF2 expression in liver, heart and

skeletal muscle tissues of euthermic and hibernating animals
using qRT-PCR by normalization against that of a-tubulin as
above. Figure 2 shows the ratio of normalized HSF2 transcript
levels in all tissues. HSF2 levels increased by 2.44 ± 0.22-fold

in hibernating versus euthermic skeletal muscle tissues
(P < 0.005). Compared to euthermic animals, expression
levels of HSF2 in the skeletal muscle of hibernating animals

were 2.44 ± 0.22-fold of that from euthermic animals, which
represents a significant increase (P < 0.005), whereas the
expression in heart and liver samples were comparable between

euthermic and hibernating animals.

miR-144 expression in skeletal muscle of hibernating ground

squirrels

Previous work indicated that TUG1 can affect HSF2 expres-
sion via miR-144 in glioma cells [21]. Transcript levels of
miR-144 were quantified in skeletal muscle tissues of ground

squirrel using qRT-PCR. Expression of miR-144 in hibernat-
ing animals was 1.31 ± 0.30-fold of that in euthermic animals.
However, this change was not statistically significant

(P > 0.05).

miR-144 binding site in human and ground squirrel TUG1

sequences

The miR-144 binding site in human TUG1 has been reported
previously [21]. Interestingly, there is 74% homology between
full length human TUG1 sequence and the whole genome shot-

gun sequence of the ground squirrels (contig043218; GenBank
accession No. AGTP01043218.1). Sequence alignment also
revealed a conserved (82.6%) miR-144 binding site in the

ground squirrel sequence (Figure S2), suggesting there might
exist TUG1–miR-144 interaction in the ground squirrels as
for humans.

Discussion

Differential expression of ncRNAs in animal models of cold

adaptation has garnered significant interest in the field over
recent years. Modulation in expression of ncRNAs, in
particular miRNAs, at low temperatures has been reported

in small mammalian hibernators [22,23], cold-hardy insects
[24], and freeze-tolerant wood frogs [25]. Unlike miRNAs,
lncRNAs have not been explored extensively in models of cold

adaptation. Pioneering work in this area has revealed reduced
levels of, a natural antisense lncRNA transcript of the gene
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Figure 1 Relative expression of H19 and TUG1 in hibernating ground squirrels

Histogram shows the ratios of normalized lncRNA expression levels against levels of a-tubulin measured via qRT-PCR in tissues from

hibernating animals compared to euthermic animals. Data are standardized transcript levels (mean ± SEM, n = 6 biological replicates) in

tissues from hibernating animals relative to those of the same lncRNA in tissues from euthermic animals. Significant difference from

euthermic samples is indicated with an asterisk (t-test; P < 0.005).
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Figure 2 Relative expression of HSF2 in hibernating ground

squirrels

Histogram shows the ratios of normalized transcript levels of

HSF2 against levels of a-tubulin measured via qRT-PCR in tissues

from hibernating animals compared to euthermic animals. Data

are standardized transcript levels (mean ± SEM, n= 6 biological

replicates) in tissues from hibernating animals relative to those in

tissues from euthermic animals. Significant difference from

euthermic samples is indicated with an asterisk (t-test; P < 0.005).
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encoding hypoxia inducible transcription factor-1 alpha
(HIF-1a), aHIF, in skeletal muscle of torpid little brown bats
(Myotis lucifugus) [26] and has highlighted the potential trans-

lational regulation of HIF-1a during torpor by aHIF. Never-
theless, expression data on additional lncRNAs in bats and
in other models of cold adaptation is lacking. In this study,
we investigated the expression of lncRNAs H19 and TUG1

during hibernation in the thirteen-lined ground squirrel and
reported differential expression of H19 in torpid skeletal
muscle tissues.
This study reports for the first time H19 amplification and
quantification in a mammalian hibernator. The lncRNA H19

is a 2.3-kb cytoplasmic transcript that, despite being capped,
spliced and polyadenylated, is not translated into a protein
[18]. PartialH19 sequence amplified in this study demonstrated

appreciable sequence homology with known H19 sequences
amplified from mammalian models.H19 can act as a molecular
decoy to sequester and regulate the levels of let-7 [15], a miRNA

that regulates several target genes in the insulin–PI3K–mTOR
pathway such as INSR encoding insulin receptor and IGF1R
encoding the insulin-like growth factor 1 receptor [27,28].

Through let-7 modulation, H19 levels have also been reported
to influence glucose homeostasis in human and rodent models
[29]. Interestingly, modulation of the insulin–PI3K–mTOR sig-
naling cascade has been previously reported in torpid ground

squirrels and little brown bats [30,31]. However, our study
revealed no significant change in H19 levels between euthermic
and hibernating ground squirrels in liver, heart, and skeletal

muscle samples examined. This observation appears to not sup-
port H19 involvement in mammalian hibernation.

TUG1 amplification and quantification were also under-

taken for the first time in a hibernating model. Early work
on TUG1 reported substantial expression in adult rodent tis-
sues and demonstrated its likely involvement in retinal devel-
opment [32]. Recently, there is accumulating evidence

supporting TUG1 implication in various types of cancer
including hepatocellular [20], esophageal squamous cell [33],
and non-small cell lung [19] carcinomas. Interestingly, TUG1

was strongly expressed in glioma vascular endothelial cells
and modulated expression of HSF2 by acting as a competitive
RNA, or decoy, for miR-144 [21]. Our current work reported

TUG1 up-regulation in hibernating ground squirrel skeletal
muscle tissues when compared with euthermic samples. Nota-
bly, HSF2 transcript levels were also increased, pointing

toward a potential modulation of a TUG1–HSF2 axis in the
skeletal muscle of torpid ground squirrels. HSF2 can transcrip-
tionally regulate expression of different heat shock proteins
(HSPs) [34] and there exists interplay between HSF2 and
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Figure 3 Proposed working model of the TUG1–HSF2 axis

Torpor leads to up-regulation of TUG1 and HSF2 expression in

the skeletal muscle of hibernating ground squirrels. miR-144 levels

remain unchanged under the same conditions suggesting that

TUG1 impact in torpor is likely via a miR-144-independent

mechanism. HSP, heat shock protein.
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HSF1, a key driver of HSP expression [35]. Interestingly, ele-
vated HSP levels have been reported in various models
exposed to cold temperatures including the freeze-tolerant gall

fly (Eurosta solidaginis) and the larvae of the freeze-tolerant
midge (Belgica antarctica) [36,37]. To figure out whether
TUG1 differential expression impacts HSF2 levels via miR-

144, we measured miR-144 transcript levels in skeletal muscle
tissues of hibernating ground squirrels. However, no signifi-
cant change in miR-144 expression was observed, suggesting

that HSF2 up-regulation likely occurs in a miR-144-
independent manner (Figure 3).

It is important to point out that the miR-144 binding site
observed in human TUG1 [21] appears to be conserved in

ground squirrel TUG1 (Figure S2). While this observation sup-
ports the likely capability of TUG1 to act as a molecular decoy
for miR-144, such interaction might not necessarily lead to the

differential expression of miR-144 during torpor in ground
squirrels. Regulation of miR-144 levels by TUG1 in ground
squirrel thus warrants further investigation. In general, it will

be interesting to build upon these results by investigating the
likely molecular effectors that are affected by TUG1 differen-
tial expression and that are modulated downstream of a

TUG1–miR-144 axis during torpor including miRNAs with
predicted TUG1 binding sites.

Overall, the current work is one of the first studies to report
lncRNA differential expression during torpor. Results gath-

ered here thus provide novel insights into the function of
ncRNAs, and especially lncRNAs, in mammalian models of
hypometabolism. Future work will concentrate on the analysis

of additional lncRNAs with potential relevance to cold adap-
tation as well as on the elucidation of the role of TUG1 in
mammalian hibernation.

Materials and methods

Animals

Experimental procedures on thirteen-lined ground squirrels

were performed as described before [38]. Squirrels weighing
150–300 g were captured by a trapper (TLS Research,
Bloomingdale, IL) and transported to the National Institutes
of Health (NIH) facility (Bethesda, MD) of the United States.

Animals were kept in shoebox cages maintained at 21 �C and
fed ad libitum until they accumulated sufficient lipid stores to
enter torpor. Experimental procedures conducted on ground

squirrels were reviewed and approved by the National Institute
of Neurological Disorders and Stroke (NINDS) Animal Care
and Use Committee. A sensor chip was injected subcuta-

neously in anaesthetized animals. Squirrels were moved to a
dark cold room maintained at 4 �C–6 �C to induce hiberna-
tion. Tb and respiration rate were regularly monitored to iden-
tify the stage of torpor-arousal cycle. The animals constituting

the hibernating group were sacrificed following a torpor period
of at least five days (Tb 5 �C–8 �C), while the control animals
had demonstrated stable Tb readings (34 �C–37 �C) for at least
three days. All squirrels were sacrificed by decapitation.
Tissues were shipped on dry ice to Université de Moncton in
New Brunswick and stored at �80 �C until use.

Total RNA isolation and cDNA synthesis

Total RNA was isolated from 100 mg of liver, heart, and skele-

tal muscle tissues of ground squirrels using TRIzol reagent
(Thermo Fisher Scientific, Ottawa, ON, Canada) as described
previously [39]. RNA concentration and purity were evaluated
with a NanoVue Plus Spectrophotometer (VWR International,

Mississauga, ON, Canada) and RNA samples were kept at
�80 �C until use. First strand synthesis was next performed
with 1 lg of total RNA using M-MLV reverse transcriptase

(Thermo Fisher Scientific) and following manufacturer’s
instructions. Serial dilutions of the synthetized cDNA were
prepared in water and were used for PCR amplification of

the different targets.

qRT-PCR amplification

Primers for target transcripts in ground squirrels were
conceived using a consensus alignment sequence of known
corresponding mammalian transcripts. Primer sequences are
displayed in Table S1. H19, TUG1, and HSF2 were amplified

via RT-PCR as described before [39] and PCR products were
validated by sequencing. Subsequently, qRT-PCR was
performed using iTaq Universal SYBR Green (Bio-Rad,

Mississauga, ON, Canada) as described previously [40].
Amplification consisted of an initial step at 95 �C for 5 min,
followed by 40 cycles at 95 �C for 15 s, optimal annealing

temperature for 30 s and 72 �C for 60 s. a-tubulin was used
as a housekeeping control. miR-144 transcript levels were
quantified by qRT-PCR as described before, using miR-107

transcript levels as housekeeping control [10].

Quantification and statistical analysis

Quantification cycle (Cq) values were collected using the Bio-

Rad CFX Manager software. Levels of target transcripts were
normalized against those of a-tubulin amplified from the same
cDNA sample. Transcript quantification was performed using

the 2�DDCt method [41]. Ratios of normalized transcript levels
in hibernating samples to normalized transcript expression in
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euthermic samples were obtained. Significant differences
(P < 0.005) between the two groups were evaluated with
Student’s t-test.
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