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Follicular CD4+ T helper (TFH) cells interact with B cells in follicular germinal centers and 
play a prominent role in promoting effective humoral immune responses to pathogens, 
providing help for B cell development and antibody affinity maturation. Recent studies 
indicate TFH cells are expanded in HIV/SIV chronic infection, or depleted in terminal 
stages of disease, yet relatively maintained in elite controllers when compared with unin-
fected controls. A better understanding of the mechanisms behind these immunologic 
abnormalities may lead to more effective vaccination and therapeutic strategies. Here, 
we review recent findings of TFH cells in HIV/SIV infection and discuss the correlation 
of changes and function of TFH cells with host immunity. Dysregulation or depletion of 
CD4+ TFH cells likely plays a major role in the inability of HIV-infected patients to mount 
effective immune responses.
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iNTRODUCTiON

T follicular helper T cells are specialized CD4+ T cells that promote antigen-specific B  cell 
development and maturation. TFH cells represent a heterogeneous cell population including 
non-GC (germinal center) and GC TFH cells (1–4). Non-GC TFH cells include circulating 
TFH cells and “immature” PD-1INT TFH cell precursors in lymph nodes, the latter are mostly 
distributed in interfollicular zones where their differentiation to fully functional GC TFH cells is 
initiated (5, 6). However, non-GC TFH cells still possess some B-cell helper functions, although 
they are less efficient than GC TFH cells (7–10). The GC is the crucial niche for the optimal 
expansion and survival of CD4+ TFH cells and for processes such as somatic hypermutation 
and selection of high-affinity B cells (11). Mature GC TFH cells (PD-1HIGH CXCR5+CD4+ 
T cells) are only found in GCs of organized lymphoid tissues such as gut associated lymphoid 
tissues (GALT), lymph nodes, spleen, and tonsils and are rare or absent in peripheral blood (10). 
Immature TFH migrate into GCs where they mature and co-localize with follicular dendritic cells 
(FDC) and B cells (12, 13). Mature GC TFH cells interact with GC B cells by stable cell-to-cell 
contacts or/and cytokine production such as IL-21 and promote development and maturation 
of antigen-specific B cells or antibody-secreting plasma cells, thereby ensuring effective, long-
term humoral immune responses (14, 15). Mature TFH cells express high levels of CXCR5, 
PD-1, SLAM-associated protein (SAP), GL7, ICOS, and transcriptional factor Bcl-6  (8,  16). 
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Although peanut agglutinin (PNA) staining is often used to 
define GC-derived TFH cells in mice and macaques (17), we 
have found it not specific for TFH in macaque lymph nodes by 
confocal image analysis. Definitive identification of GC TFH 
cells in lymphoid tissues is best demonstrated by CXCR5+ 
PD-1HIGH expression on CD4+ T cells by immunohistochem-
istry in  situ (10, 18–20). Interestingly, PD-1 has also been 
described as a potent T cell inhibitory receptor of CD8+  
T cells associated with T-cell “exhaustion” (21, 22); however, 
its high expression on GC CD4+ TFH cells is involved in 
the regulation and survival of GC B cells through interaction 
with its ligands expressed on the latter (13, 23), thus PD-1 is 
a critical functional molecule for GC TFH cells.

ARCHiTeCTURAL DAMAGe OF 
LYMPHOiD TiSSUe iN Hiv iNFeCTiON

In early HIV/SIV infection, marked lymphoid follicular hyperpla-
sia and dysplasia are observed, and, eventually, massive depletion 
of CD4 T cells occurs in chronic stages of infection stage. With 
disease progression, there is generalized lymphoid destruction, 
as indicated by reduction in GC size and number, loss of the 
stromal fibroblastic reticular cell (FRC) network, emergence of 
fibrosis, collagen deposition, and follicular involution (24–27). 
These features have been shown to gradually result in an inability 
to mediate antibody production and antigen-specific T cell 
responses (28–30). Absence of TFH also leads to B-cell apoptosis 
during priming, thereby preventing B cell differentiation and 
maturation (31). Thus, loss of CD4+ GC TFH cells in lymphoid 
tissues is believed to be a major factor in the impairment of B cell 
responses in HIV infection.

iNFeCTiON OF GC TFH AND 
eSTABLiSHMeNT OF PeRSiSTeNT 
ReSeRvOiRS iN LYMPHOiD TiSSUeS 
iN Hiv/Siv

Organized lymphoid tissues are the major sites for HIV rep-
lication and latency (32–34). These and other studies indicate 
follicular CD4+ T cells in GC in particular may be the major 
persistent reservoir in patients on ART, which may be directly 
related to the impairment of effective antibody responses (35). 
Infected TFH cells residing within these GC “sanctuaries” might 
be shielded from virus-specific cytotoxic T cell (CTL) responses, 
allowing them to persist in GC, even when plasma viral loads 
are completely suppressed by ART (36), p. 1562 (19, 34, 37–42). 
Further, lower concentrations of antiviral drugs have been dem-
onstrated in lymphoid tissues compared to blood, which may 
contribute to the persistent viral replication and latent infection 
in these tissues (43).

Mature GC TFH cells are clearly infected in HIV/SIV (12, 39). 
We have found that extracellular CCR5 is predominantly 
expressed on PD-1INT TFH cell precursors, but downregulated 
on PD-1HIGH GC TFH cells in lymph nodes of uninfected or 
SIV-infected macaques (12). Since GC TFH cells also do not 
express other known alternative SIV co-receptors (CXCR6 and 

GPR15) (39), we have proposed that TFH precursors in the man-
tle zones or/and T-cell zones might be the major targets for direct 
viral infection. These immature TFH cell precursors (PD-1Neg/INT 
CD4+ T cells) in lymph nodes from normal macaques are able 
to differentiate into mature PD-1HIGH GC TFH cells when stimu-
lated with proinflammatory cytokines, such as IL-6 and IL-21, 
in  vitro. When TFH cell precursors, sorted from SIV-infected 
macaques, differentiate into GC TFH cells stimulated by these 
cytokines, SIV DNA is detectable in these GC TFH cells, sup-
porting the hypothesis that virus-infected GC TFH cells may 
develop from migrating TFH precursors that are infected in the 
non-GC regions, where they express CCR5 (12). Further, our 
data indicate that SIV RNA/SIV p28 protein levels are relatively 
lower in GC regions compared with the cortex, paracortex, and 
medulla of SIV-infected macaques, whereas higher levels of SIV 
proviral DNA and, to some extent, SIV RNA in GC TFH cells are 
still detected, suggesting that GC TFH cells are both latently and 
productively infected by HIV/SIV (12, 34).

It is well known that abundant cytokines and chemokines 
are induced as proinflammatory responses to viral infection 
in acute and chronic HIV/SIV infection (44). Persistently high 
levels of cytokines such as IL-6, IL-21, and IFN-γ in lymph 
nodes lead to abnormal accumulations of GC TFH cells (5, 45). 
In addition, persistent antigen presentation may promote GC 
TFH cell development (4, 46, 47), and even redirect Th1 cells 
to differentiate into TFH cells during persistent viral infections 
such as LCMV infection (37). Recent studies indicate the viral 
reservoir is rapidly established during the “eclipse” phase, prior to 
SIV viremia (48), and this may be associated with increased cell 
activation, aberrant TFH cell differentiation, and proinflamma-
tory responses at this stage. Together, these findings suggest TFH 
cell precursors are infected as they migrate toward GCs, where 
mature GC TFH cells display productive and latent infection. 
Thus, persistent HIV/SIV replication and infection and chronic 
systemic immune activation (49) accompanied with elevated 
proinflammatory cytokine responses, and persistent antigen 
stimulation, drives TFH precursor activation, migration to and 
infection within the T-cell zones, and subsequent migration into 
the GC where GC TFH fully mature, lose CCR5 expression, and 
persist as productively and latently infected cellular reservoirs 
for HIV/SIV infection. Finally, these GC TFH cells may persist 
in what may be an immune privileged site, which may not be 
accessible to ART or antiviral cellular responses. Eliminating 
virus from these “sanctuary” sites may be a significant hurdle for 
vaccination and cure strategies.

CHANGeS iN TFH CeLLS DePeND ON 
THe CONSeQUeNCe OF Hiv iNFeCTiON 
AND HOST iMMUNiTY

Previous studies indicate that TFH cells in lymph nodes are 
expanded in HIV- or SIV-infected individuals (17, 50), whereas 
others reported that TFH cell are significantly depleted during 
HIV infection in peripheral blood and spleen (13, 51–54). 
By examining large numbers of SIV-infected macaques, our 
studies show that GC TFH cells are significantly depleted by 
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14 dpi, and then gradually accumulate in the chronic stage of 
infection. However, we do not find consistent expansions of GC 
TFH in all chronically SIV-infected macaques. Further analysis 
indicate that GC TFH cells accumulate in chronic SIV/HIV 
infection in adult animals infected with pathogenic SIVmac 
(asymptomatic chronic), whereas there were little to no changes 
in these cells in animals inoculated with less pathogenic viruses 

or those associated with control of viremia (i.e., Mamu-A*01+ 
rhesus macaques) when compared with uninfected macaques. 
Of note, adult animals with AIDS (opportunistic infections or 
neoplasia) show marked losses of GC TFH cells and higher levels 
of turnover, activation, and apoptosis correlating with chronic 
inflammation (13). Effective immune responses ultimately 
resolve viral infections, whereas immune deficiencies fail to 

FiGURe 1 | Schematic of possible changes in TFH cells in lymph nodes in pathogenic Hiv infection. Rapid flux of GC B cells between the dark and light 
zones facilitates several iterative rounds of mutation and selection, resulting in the generation of memory B cells and plasma cells with high-affinity antibodies. In HIV/
SIV infection, follicular dendritic cells (FDC) in lymph nodes are exposed/infected during HIV infection and secrete high levels of proinflammatory cytokines, which, in 
combination with viral antigens, promote GC TFH and TFR cell expansion in chronic stage or ultimate depletion of GC TFH cells by direct lysis or/and apoptosis at 
later stages. Loss of help or dysfunction of TFH cells leads to impairment of B cell function and germinal center reaction and prevents long-term effective humoral 
immune responses to HIV infection.
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