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Background and Goals. To identify a multigene signature model for prognosis of non-small-cell lung cancer (NSCLC) patients, we
first found 2146 consensus differentially expressed genes (DEGs) in NSCLC overlapped in Gene Expression Omnibus (GEO) and
TCGA lung adenocarcinoma (LUAD) datasets using integrated analysis. We constructed a weighted gene coexpression network
(WGCN) using the consensus DEGs and identified the module significantly associated with pathological M stage and consisted
of 61 genes. After univariate Cox regression analysis and subsequent stepwise model selection by the Akaike information criterion
(AIC) and multivariate Cox hazard model analysis, an mRNA signature model which calculated prognostic score was generated:
prognostic score� (− 0.2491×EXPRRAGB) + (− 0.0679×EXPRSPH9) + (− 0.2317×EXPRPS6KL1) + (− 0.1035×EXPRXFP1) + 0.1571×

EXPRRM2 + 0.1104× EXPRTL1, where EXP is the fragments per kilobase million (FPKM) value of the mRNA included in the model.
/e prognostic model separated NSCLC patients in the TCGA-LUAD dataset into the low- and high-risk score groups with
a median prognostic score of 0.972. Higher scores predicted higher risk. /e area under ROC curve (AUC) was 0.994 or 0.776 in
predicting the 1- to 10-year survival of NSCLC patients. /e prognostic performance of this prognostic model was validated by an
independent GSE11969 dataset of NSCLC adenocarcinoma with AUC values between 0.822 and 0.755 in predicting 1- to 10-year
survival of NSCLC. /ese results suggested that the six-gene signature functioned as an independent biomarker to predict the
overall survival of NSCLC adenocarcinoma.

1. Introduction

Lung cancer (LC) is one of the leading causes of cancer-
associated deaths worldwide [1, 2]. Non-small-cell lung
cancer (NSCLC) accounts for 85% of all lung cancer cases
[3]. Approximately 50%NSCLC is adenocarcinoma and 40%
NSCLC belong to squamous cell carcinoma. Complete
surgical resection is the most effective therapy for patients in
the early stage, and adjuvant chemotherapy (ACT) is the
standard treatment for patients in stage II-III. However, the
relapse and death rates remain high. A multiparameter
molecular signature provides wider insights into the

heterogeneous nature of cancer including NSCLC and may
more reliably predict survival and benefit from chemo-
therapy of cancer patients than a single prognostic bio-
marker and/or staging system. It is important to establish
prognostic gene signatures that reflect the nature of NSCLC
from multiple tiers of mechanisms.

Prognostic signatures based on gene expression profiles
for NSCLC have been generated in several studies. A 14-gene
signature can predict survival in resected nonsquamous
NSCLC [4], identify patients at high risk of mortality despite
small, node-negative lung tumors [5], improve identification
of patients at risk for recurrence in early-stage NSCLC [6],
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and predict benefit from adjuvant chemotherapy for very
early stage NSCLC, which is superior over current National
Comprehensive Cancer Network (NCCN) criteria at iden-
tifying high-risk patients [7]. A 15-gene signature can dif-
ferentiate high- and low-risk subgroups with significantly
different overall survival and is prognostic for both ade-
nocarcinoma and squamous cell carcinoma cases [8].
GeneFx® Lung is a multigene RNA expression signature that
classifies early-stage NSCLC patients as high-risk or low-risk
for disease recurrence and predicts overall survival [9]. A 6-
gene signature including ABCC4, ADRBK2, KLHL23,
PDS5A, UHRF1, and ZNF551 is identified to be the in-
dependent prognostic factor for overall survival [10]. A 10-
gene Yin Yang expression ratio signature (YMR) based on
two groups of genes with opposing function significantly can
separate high- and low-risk patients with stage IA or IB
adenocarcinoma and squamous cell carcinomas of all stages.
/e YMR signature can also predict the benefit of adjuvant
chemotherapy in high-risk patients with stage I NSCLC [11].
A 17-gene panel consisting of genes involved in epithelial-
mesenchymal transition (EMT), hypoxia response, glyco-
metabolism, and epigenetic modifications for non-small-cell
lung cancer prognosis has recently been identified through
integrative epigenomic-transcriptomic analyses. It can
clearly stratify NSCLC patients with significant differences in
overall survival [12]. /ese gene signatures contribute to
preclinical and clinical treatment of NSCLC. However,
additional gene signatures are needed for accurate prognosis
of NSCLC because of its complexity.

In this study, we first identified genes significantly
associated with pathological M stage based on weighted
gene coexpression network analysis (WGCNA) using
differentially expressed genes overlapped in both Gene
Expression Omnibus (GEO) datasets and the TCGA-
LAUD dataset. We then selected genes significantly cor-
related with the overall survival of NSCLC patients among
above genes according to a univariate Cox regression
analysis and identified a 6-gene signature for prognosis of
NSCLC based on a multivariate Cox hazard model analysis.
We characterized the prognostic performance of the 6-gene
signature using TCGA-LAUD dataset and validated it in an
independent GSE dataset of NSCLC adenocarcinoma. Our
findings suggested that the 6-gene signature is a prognostic
marker for NSCLC adenocarcinoma.

2. Methods

2.1. Datasets and Workflow of Data Analysis. A total of 14
Gene Expression Omnibus (GEO) datasets regarding
NSCLC were collected, including GSE19188, GSE30219,
GSE10072, GSE7670, GSE2514, GSE32863, GSE21933,
GSE40275, GSE12472, GSE80796, GSE8500, GSE85841,
GSE19027, and GSE11969. /e TCGA-LUAD RNAseq data
and clinical data (level 3) of the NSCLC and ANT (adjacent
normal tissue) samples were downloaded from the TCGA
data portal (up to June 29, 2018) (Table 1) [13–15]. /ese
datasets were processed and analyzed by following the
workflow in Figure 1. /is workflow was set up based on the
published literature [16, 17].

2.2. GEODatasets Processing and IntegratedAnalysis. /e 13
raw GEO datasets (GSE19188, GSE30219, GSE10072,
GSE7670, GSE2514, GSE32863, GSE21933, GSE40275,
GSE12472, GSE80796, GSE8500, GSE85841, and GSE19027)
were subjected to a quantitative and objective quality control
using the MetaQC software package according to stan-
dardized mean ranks and principal component analysis
(PCA) biplots [18, 19]. /e resultant GEO datasets were
designated as the training set. /e training dataset was
processed individually using the LIMMA (linear models
within the microarray analysis) software package with log2
transformation and annotated by converting different probe
IDs to their respective gene symbols. Duplicate gene ex-
pression values were averaged. Datasets from studies that
screened differentially expressed mRNAs between human
NSCLC and ANT samples were selected and combined. /e
MetaOmics software package (http://www.pitt.edu/
∼tsengweb/MetaOmicsHome.htm) was used to integrate
and analyze the GEO datasets [18].

/e DEGs between NSCLC and ANT were identified by
analyzing the training set using the MetaDE software
package by setting the mean and standard deviation (SD)
filter thresholds at 10% to filter minor changes in gene
expression levels [20]. Meta-analysis was performed using
Fisher’s method. /e modified t test and the permutation
method by summarizing − log (P value) across studies and
running 300 permutations (NPermutations � 300) were used to
extrapolate the P values [21]. P values less than 0.05 were
considered statistically significant for the DEGs. /e heat-
maps were generated to illustrate the expression patterns of
DEGs [20].

2.3. TCGA-LUAD Dataset Processing and the Consensus
DEGs. /e TCGA-LUAD dataset was used as the test set to
verify the results from the training set. Clinical in-
formation (American Joint Committee on Cancer path-
ological TNM stage, gender, age at initial pathological
diagnosis and histological type, especially survival status,
and time to latest follow-up) was screened to remove cases
with incomplete clinical traits or gene expression in-
formation and resulted in 515 cases. /e TCGA-LUAD
DEGs were analyzed using an empirical Bayes approach
within the LIMMA software package. /e DEGs of the test
set with a |log2 fold change (FC)| ≥ 0.5 and an adjusted P

value less than 0.05 were selected for subsequent analysis.
An overlapping gene set by selecting common official gene
symbols in both the training and test sets was created as the
consensus DEGs.

2.4. Weighted Gene Coexpression Network Construction.
/e consensus DEGs were subjected toWGCNA [14, 22, 23].
/e scale-free gene coexpression networks were constructed
using the clinical features and prognostic information of
TCGA-LUAD dataset and the WGCNA software package
[15].

/e appropriate soft threshold power was automatically
estimated and generated for the standard scale-free network.
/e weighted adjacency matrix was constructed using
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the power function ADJmn � |CORmn|β (CORmn �Pearson’s
correlation between gene m and gene n, where
ADJmn � adjacency between gene m and gene n and β is the
soft thresholding parameter, which was used to transform
adjacencies and correlations into a topological overlap
matrix (TOM). /e corresponding dissimilarity was calcu-
lated as 1-TOM. Module identification was carried out with
the dynamic tree cut method by hierarchically clustering the
genes using 1-TOM as the distance measure with a deep split
value of 2 and a minimum size cutoff 50 for the resulting
dendrogram. Highly similar modules were marked by
clustering and merged with a height cutoff 0.25.

2.5. Identification of Clinical Feature Modules and Efficacy
Evaluation of Pathological Stage Hub Genes. Module
eigengenes (MEs), which are the first principal components
in the PCA for each gene module, summarized the ex-
pression patterns of all genes into a single characteristic
expression profile within a given module. /e dynamic
decision-making tree, node splitting method, and cluster
analysis of the squared Euclidean distance were used to
identify MEs related to these clinical features, especially

those involved in the progression and prognosis of NSCLC.
Modules with similar expression profiles were identified
using the dynamic tree cut method. Highly similar modules
were merged. Spearman’s correlation analysis was carried
out to confirm the object module, which was the most
relevant module between the MEs and clinical traits.
Depending on these, the module that had the highest ab-
solute Spearman’s correlation coefficient (PCC) value for the
pathological stage and MEs was defined as the pathological
stage module.

2.6. Identification, Characterization, and Validation of an
mRNA Prognostic Model for NSCLC Patients. Association of
genes in the pathological stage modules with survival of
NSCLC patients was analyzed using a univariate Cox re-
gression analysis. /e genes with P value <0.05 were se-
lected. A stepwise model selection by the Akaike information
criterion (AIC) was further performed to avoid overfitting to
select a final list of genes. A multivariate Cox hazard model
analysis was performed to generate an mRNA prognostic
signature model, which calculated the prognostic score as
follows: prognostic score� 􏽐(C×EXPmRNA), where EXP is

Table 1: Characteristics of the public microarray datasets used in this study.

Study Species/array platform Samples Number of samples Set

GSE19188 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array(GPL570)

NSCLC vs. control
tissue

NSCLC� 91 (LUAD 45, LUSC 46), control
tissue� 65, total� 156

Training
set

GSE30219 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array(GPL570)

NSCLC vs. control
tissue

NSCLC� 293, control tissue� 14,
total� 307

Training
set

GSE10072 [HG-U133A] Affymetrix Human Genome
U133A Array (GPL96)

NSCLC vs. control
tissue

NSCLC� 58 (LUAD 58), control
tissue� 49, total� 107

Training
set

GSE7670 [HG-U133A] Affymetrix Human Genome
U133A Array (GPL96)

NSCLC vs. control
tissue

NSCLC� 28 (LUAD 28), control
tissue� 30, total� 58

Training
set

GSE2514 [MG_U74Av2] Affymetrix Murine
Genome U74A Version 2 Array (GPL81)

NSCLC vs. control
tissue NSCLC� 20, control tissue� 19, total� 39 Training

set

GSE32863 Illumina HumanWG-6 v3.0 expression
beadchip (GPL6884)

NSCLC vs. control
tissue

NSCLC� 58 (LUAD 58), control
tissue� 58, total� 116

Training
set

GSE21933 Phalanx Human OneArray (GPL6254) NSCLC vs. control
tissue NSCLC� 21, control tissue� 21, total� 42 Training

set

GSE40275 Human Exon 1.0 ST Array (GPL15974) NSCLC vs. control
tissue NSCLC� 41, control tissue� 43, total� 84 Training

set

GSE12472
Agilent-012391 Whole Human Genome
Oligo Microarray G4112A (Feature

Number version) (GPL1708)

NSCLC vs. control
tissue

NSCLC� 35 (LUSC 35), control tissue� 28,
total� 63

Training
set

GSE80796
[HuGene-1_0-st] Affymetrix Human Gene
1.0 ST Array [transcript (gene) version]

(GPL6244)

NSCLC vs. control
tissue

NSCLC� 309, control tissue� 196,
total� 505

Training
set

GSE8500 Human 3.0 A1 (GPL3991) NSCLC vs. control
tissue NSCLC� 40, control tissue� 8, total� 48 Training

set

GSE85841
Agilent-067406 Human CBC

lncRNA+mRNA microarray V4.0
(GPL20115)

NSCLC vs. control
tissue NSCLC� 8, control tissue� 8, total� 16 Training

set

GSE19027 [HG-U133A] Affymetrix Human Genome
U133A Array (GPL96)

NSCLC vs. control
tissue NSCLC� 21, control tissue� 39, total� 60 Training

set
TCGA-
LUAD Human Illumina HiSeq 2000 LUAD vs. control

tissue LUAD� 517, control tissue� 59, total� 576 Test set

GSE11969 Agilent Homo sapiens 21.6 K custom array
(GPL7015) Overall survival LUAD� 94, Overall survival

information� 94
Validation

set
GSE, Gene Expression Omnibus accession number; TCGA, the Cancer Genome Atlas; NSCLC, non-small-cell lung cancer; LUAD, lung adenocarcinomal;
LUSC, lung squamous cell carcinoma.
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the fragments per kilobase million (FPKM) value of the
mRNA and C is the regression coefficient for the corre-
sponding mRNA in multivariate Cox hazard model analysis.
/emedian prognostic score of the training dataset was used
to differentiate high-risk group and low-risk group. Higher
scores predicted higher risk. /e prognostic performance of
the mRNA signature model was measured using receiver
operating characteristic (ROC) curves by comparing the area
under the respective ROC curves (AUC). /e mRNA sig-
nature was examined for its association with patient survival.
Finally, the mRNA signature model was validated with an
independent data set GSE11969 of NSCLC adenocarcinoma.
All reported P values were two-sided. All analyses were
carried out via the R/BioConductor (version 3.5.1). Survival
curves and ROCs were generated by ggplot2, survival, and
survivalROC packages.

3. Results

3.1. Identification of Consensus NSCLC DEGs in the Training
Set and the Test Set. A total of 7 GEO datasets (GSE10072,
GSE19188, GSE21933, GSE30219, GSE32863, GSE40275,
and GSE7670) were selected from the 13 raw datasets after
MetaQC quality control for subsequent analysis (Table 2 and
Figure 2(a)). /ese datasets contained 590 NSCLC and 280
ANTs and were designated as the training set. In the training
set, a total of 7373 DEGs were identified after filtering
through the mean and standard deviation (SD) thresholds. A
list of 7076 DEGs were subsequently obtained, and we
eliminated batch effect after Fisher’s t test and 300 per-
mutations (Figure 2(b)). Hierarchical clustering of the seven
datasets in the training set using the 7076 DEGs distin-
guished NSCLC from ANT samples (Figure 3(a)). In the
TCGA-LUAD dataset which contained 20501mRNAs in 517
NSCLC samples and 59 ANT samples, a total of 3592 DEGs
were identified and designated as the test set. /e DEGs in
the test set distinguished NSCLC from ANT samples in the
2-way hierarchical cluster (Figure 3(b)). A total of over-
lapped 2146 DEGs between the training set and the test set
were identified and designated as the consensus DEGs
(Figure 3(c)).

3.2. Coexpression Network Construction and Identification of
Modules Associated with Clinicopathological Features. We
constructed a weighted gene coexpression network
(WGCN) using the 2146 consensus DEGs and clinical traits
and prognostic information from 515 NSCLC patients in the
TCGA-LUAD test set. /e results showed that the con-
nections between the genes in the WGCN were in line with
a scale-free network distribution (Figures 4(a)–4(d)).
Modules with similar expression profiles were identified
using the dynamic tree cut method (Figures 5(a) and 5(b)).
Highly similar modules were merged (Figure 5(b)). A total of
14 WGCN modules ranging from 54 to 607 genes in each
module were generated (Figure 5(c)). We further analyzed
association of modules with clinicopathological features to
identify pathological stage modules using Spearman’s cor-
relation andModule eigengenes analysis./e results showed
the lightcyan module was most significantly associated with
pathological M stage (R� 0.12, P � 0.009), and this module
contained 61 genes (Figure 5(c)).

3.3. Construction of an mRNA-Signature Prognostic Model
and Characterization of Its Prognostic Performance Using
NSCLC-LUAD. To investigate potential genes significantly
associated with the survival of NSCLC patients, we per-
formed a univariate Cox regression analysis using the
lightcyan module genes. /e results showed that the twelve
genes RRM2, RPS6KL1, RTL1, RXFP1, RRM1, RTCD1,
RRAGB, RSPH10B2, RRM2B, RSPH9, RXFP2, and RUNX1
were significantly correlated with the overall survival of
NSCLC patients (Table 3). We further performed a stepwise
model selection by the Akaike information criterion (AIC),
and six genes RRAGB, RSPH9, RPS6KL1, RXFP1, RTL1, and
RRM2 were selected. Multivariate Cox hazard model

7 datasets (870 samples) from GEO
as training set 

Data normalization (LIMMA) 

Probe-to-mRNA profile and filter

Meta-analysis by combining P value

300 permutation tests

FDR < 0.05

Validation in TCGA-LUAD dataset as test
set consisting of 576 samples for DEGs

TCGA-LUAD dataset consisting of 515
LUAD samples for WGCNA analysis

Stage module genes

MetaQC 

7076 DEGs

Pearson’s correlation analysis between
gene modules and clinical features

Survival analysis and ROC curve
for overall survival to screen the

candidate markers

Validation of the prognostic marker
in an independent validation set

(GSE11969)

MetaDE 

Download 1601 NSCLC and normal
samples in 13 datasets from GEO

2146 DEGs

6 mRNAs

Clinical traits

Figure 1: Workflow of the integrated analysis and WGCNA
analysis of the NSCLC datasets. Figure 1 was reproduced from Sun
et al. [16].
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analysis of association of these six genes with survival
showed that RPS6KL1 and RXFP1 were independent factors
associated with good overall survival in NSCLC patients,
while RTL1 and RRM2 were independent factors associated
with poor overall survival in NSCLC patients (Table 4). We
generated an mRNA signature model which calculated the
prognostic score: prognostic score� (− 0.2491×EXPRRAGB)
+ (− 0.0679×EXPRSPH9)+ (− 0.2317×EXPRPS6KL1) + (− 0.1035×

EXPRXFP1) + 0.1571×EXPRRM2+0.1104×EXPRTL1, where EXP
is the FPKM value of the mRNA included in the model.

We characterized the prognostic performance of the six-
mRNA signature model using the TCGA-LUAD dataset.
According to prognostic scores, themedian score was 0.972 and
we separated NSCLC patients into the low-risk group (n� 253)
and the high-risk group (n� 253) (Figure 6(a)). /e high-risk
group had significantly shorter survival time or lower survival

Table 2: Quality control of the training datasets.

No. Datasets IQC EQC CQCg CQCp AQCg AQCp Rank
1 GSE19188 8.56 2∗ 307.65 160.1 0.79∗ 54.72 2.33
2 GSE30219 4.43 2∗ 307.65 182.57 0.76∗ 71.49 2.58
3 GSE10072 9.76 2∗ 307.65 178.14 0.14∗ 49.61 3.67
4 GSE7670 6.48 1.7∗ 307.65 133.26 0.2∗ 43.06 4.75
5 GSE2514 3.66 1.53∗ 307.65 111.14 0.4∗ 22.46 5.67
6 GSE32863 5.73 1.7∗ 307.65 63.92 0.08∗ 32.71 5.75
7 GSE21933 4.43 1∗ 307.65 52.67 0.37∗ 23.99 6.08
8 GSE40275 3.96 1.53∗ 8.68 34.36 0.29∗ 21.19 7.50
9 GSE12472 0.24∗ 1.53∗ 7.06 44.83 0.32∗ 12.49 8.33
10 GSE80796 2.08∗ 1.05∗ 0.27∗ 2.32∗ 0.28∗ 1.38∗ 10.00
11 GSE8500 3.51 0.4∗ 0.38∗ 4.02 0.26∗ 0.06∗ 10.67
12 GSE85841 0.04∗ 0.62∗ 0.71∗ 0.31∗ 0.04∗ 0.26∗ 11.67
13 GSE19027 1.35∗ 0.39∗ 0∗ 7.83 0.03∗ 0.24∗ 12.00
NSCLC, non-smal-cell lung carcinoma; GSE, GEO dataset; IQC, internal quality control indexes; EQC, external quality control indexes; CQCg and CQCp,
consistency of differential expression quality control indexes for genes and pathways; AQCg and AQCp, accuracy quality control indexes for genes and
pathways. ∗P value not significant after Bonferroni correction.
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Figure 2: Meta-analysis of differentially expressed genes involved in NSCLC by combining P values. (a) Principal component analysis
(PCA) biplot of quality control measures in thirteen NSCLC studies. (b)/e number of differentially expressed genes plotted as a function of
false discovery rate (FDR) in the analysis of four different datasets and four different meta-analysis algorithms (maxP, minP, roP, and
adaptively weighted statistic). Figure 2 was reproduced from Sun et al. [16].
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probabilities than the low-risk group did (HR, 2.298; 95%
CI, 1.711–3.086; log-rank test P � 9.181 × 10− 9)
(Figure 6(b)). /e area under ROC curve (AUC) was 0.994
or 0.776 in predicting the 1- to 10-year survival of NSCLC
patients (Figure 6(c)). High expression of RRAGB, RSPH9,
RPS6KL1, and RXFP1 and low expression of RTL1 and
RRM2 predicted good survival (Figures 6(d)–6(i)). /e

results suggested that the six-mRNA signature could
predict the prognosis of NSCLC-LUAD.

3.4.Validationof thePrognosticPerformanceof theSix-mRNA
Signature in NSCLC Adenocarcinoma. To validate the
prognostic performance of the six-mRNA model for
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Figure 3: Identification of consensus DEGs in the training and the test datasets of NSCLC patients. (a) Heat map and two-way hierarchical
clustering based on 7076 DEGs that were differentially expressed between NSCLC and ANTsamples of the training set. ANT (green label)
and NSCLC (red label) samples fell into separate clusters. (b) /e 3592 DEGs NSCLC (red label) vs. ANT (blue label) of the TCGA-LUAD
test set. Each column represents a sample, and each row represents the mRNA level./e color scale represents the raw Z-score ranging from
blue (low expression) to red (high expression). Dendrograms beside each heat map correspond to the hierarchical clustering of the 3592
DEGs by the expression level. (c) A Venn diagram showing the overlap of DEGs detected in the training and test sets. Figure 3 was
reproduced from Sun et al. [16].

6 BioMed Research International



NSCLC, we measured the prognostic performance of this
model using the validation dataset GSE11969 of NSCLC
adenocarcinoma. /e results showed that the patients
were divided into the high-risk group (n � 47) and the
low-risk group (n � 47) according to the risk scores and
the median cutoff point (Figure 7(a)). /e high-risk group
had significantly shorter survival time or lower survival
probabilities than the low-risk group did (HR, 3.286; 95%
CI, 1.79–6.03; log-rank test P � 0.00013) (Figure 7(b)).
/e area under ROC curve in predicting 1- to 10-year
survival of NSCLC was between 0.822 and 0.755
(Figure 7(c)). High expression of RRAGB, RSPH9,
RPS6KL1, and RXFP1 and low expression of RTL1 and
RRM2 expression predicted good survival of NSCLC
patients (Figures 7(d)–7(i)). /ese results were consistent
with those of the test set (compare Figures 6 and 7),
supporting that the six-mRNA signature could predict the
prognosis of NSCLC adenocarcinoma.

3.5. Relative Expression Levels of RRAGB, RSPH9, RPS6KL1,
RXFP1, RRM2, andRTL1 inNSCLCTissues and theHigh- and
Low-RiskGroups. Examination of the expression patterns
of these signature mRNAs revealed that RRAGB, RSPH9,
and RXFP1 mRNA levels were significantly lower and
RPS6KL1, RTL1, and RRM2 mRNA levels were signifi-
cantly decreased in NSCLC of TCGA-LUAD, compared
with the normal control (Figure 8(a)). /e expression
levels of RRAGB, RSPH9, RPS6KL1, and RXFP1 were
significantly lower and RTL1 and RRM2 mRNA levels
were significantly higher in the high-risk group
than those in the low-risk group in NSCLC of TCGA-
LUAD (Figure 8(b)). /e expression levels of RRAGB,
RSPH9, RPS6KL1, RXFP1, and RTL1 mRNA were
significantly lower and the RRM2 mRNA level was sig-
nificantly higher in the high-risk group than those in the
low-risk group in NSCLC adenocarcinoma of GSE11969
(Figure 8(c)).
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Figure 4: Determination of parameter β of the adjacency function in the weighted gene correlation network analysis (WGCNA) algorithm.
(a) Analysis of the scale-free fit index for various soft thresholding powers β. (b) Analysis of the mean connectivity for various soft
thresholding powers. (c) Histogram of connectivity distribution when β� 19. (d) Checking the scale-free topology when β� 19. Figure 4 was
reproduced from Sun et al. [16].
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Figure 5: Network construction of the weighted coexpressed genes and their associations with clinical traits. (a) Hierarchical clustering tree
of the TCGA-LUAD samples based on the DEGs. Dendrogram tips are labeled with the TCGA-LUAD unique name and experiment
identifier. In the hierarchical dendrogram, lower branches correspond to higher coexpression (height�Euclidean distance). Identical colors
in the ten bands below the dendrogram depict the TCGA-LUAD clinical traits. (b) Heat map view of topological overlap of coexpressed
genes in different modules. /e heat map was generated from the topological overlap values between genes. /e genes were grouped into
modules labeled by a color code, which are given under the gene dendrogram on both sides. /e topological overlap was high among genes
of same module. (c) Module-trait relationships for gender, histological type, lymphatic invasion, tumor status, treatment condition, and
pathologic stage. Numbers shown represent Pearson correlations between the modules and traits. P values are in parentheses. Numbers on
the color bar refer to the strength of the correlation in the table (red� 1, blue� − 1). T, extent of the tumor; N, extent of spread to the lymph
nodes; M, presence of metastasis. Figure 5 was reproduced from Sun et al. [16].
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Table 3: Univariate Cox regression analysis of lightcyan module genes and overall survival∗.

Genes
Overall survival

HR CI (95% CI) P value
RRM2 1.291 1.152–1.448 <0.001
RPS6KL1 0.798 0.709–0.897 <0.001
RTL1 1.132 1.054–1.215 0.001
RXFP1 0.864 0.787–0.949 0.002
RRM1 1.438 1.121–1.845 0.004
RTCD1 1.489 1.100–2.014 0.010
RRAGB 0.706 0.537–0.929 0.013
RSPH10B2 0.909 0.842–0.981 0.014
RRM2B 0.784 0.641–0.958 0.017
RSPH9 0.901 0.826–0.983 0.019
RXFP2 0.734 0.562–0.960 0.024
RUNX1 0.798 0.645–0.988 0.038
HR, hazard ratio; CI, confidence interval. ∗Association of the 61 genes of the lightcyan module with survival was analyzed using univariate Cox regression
analysis. Presented in the table were those which showed significant association (P< 0.05).

Table 4: Multivariate Cox regression analysis of lightcyan module genes and overall survival∗.

Genes β HR selogHR z CI (95% Cl) P

RRAGB − 0.2491 0.7795 0.1360 − 1.83 0.5971–1.0176 0.06700
RSPH9 − 0.0679 0.9344 0.0462 − 1.47 0.8535–1.0230 0.14201
RPS6KL1 − 0.2317 0.7932 0.0608 − 3.81 0.7042–0.8935 0.00014#

RTL1 0.1104 1.1167 0.0380 2.91 1.0367–1.2030 0.00364#

RXFP1 − 0.1035 0.9016 0.0497 − 2.08 0.8180–0.9939 0.03720#

RRM2 0.1571 1.1701 0.0626 2.51 1.0350–1.3229 0.01209#
∗/e listed genes were selected by the Akaike information criterion (AIC) model from the significant genes after the univariate Cox regression analysis
(Table 3). Multivariate Cox regression analysis of association of the listed genes with survival was performed to reveal the independent predictor for survival
and generate a prognostic risk score model. β, regression coefficient; HR, hazard ratio; CI, confidence interval; #P< 0.05.
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4. Discussion

In the current study, we have identified a six-gene prognostic
model for NSCLC adenocarcinoma by calculating
prognostic score using the formula: prognostic score�

(− 0.2491×EXPRRAGB) + (− 0.0679 ×EXPRSPH9) + (− 0.2317×

EXPRPS6KL1) + (− 0.1035 ×EXPRXFP1) + 0.1571 ×EXPRRM2 +
0.1104 ×EXPRTL1, where EXP is the FPKM value of the
mRNA included in the model. Characterization of prog-
nostic performance revealed that the model separates
NSCLC patients in the TCGA-LUAD dataset into the low-
risk score group and the high-risk score group with me-
dian prognostic score 0.972. Higher scores predicted
higher risk. /e area under ROC curve (AUC) was 0.994 or
0.776 in predicting the 1- to 10-year survival of NSCLC
patients. /e expression of each gene in the signature
differentiates survival of NSCLC patients. /e results were

similar in the independent GSE11969 dataset of NSCLC
adenocarcinoma. All these results support that the six-
gene signature is an independent biomarker for prediction
of overall survival of NSCLC adenocarcinoma.

Several expression-based gene signatures for NSCLC
prognosis in the previous studies have been identified./e 8-
gene signature (STAT1, CLU, GTSE1, NUSAP1, ABCA8,
TNNT1, ENTPD3, and CPA3) can significantly stratify
patients into low- and high-risk groups and predict patients
in stage II-III benefiting from adjuvant chemotherapy [24].
/e independent prognostic six-protein signature (c-SRC,
Cyclin E1, TTF1, p65, CHK1, and JNK1) is identified for
ADC and five-protein signature (EGFR, p38α, AKT1, SOX2,
and E-cadherin) for SCC [25]. /e 15-gene signature
(ATP1B1, TRIM14, FAM64A, FOSL2, HEXIM1, MB,
L1CAM, UMPS, EDN3, STMN2, MYT1L, IKBKAP,
MLANA, MDM2, and ZNF236) can differentiate high- and

HR = 2.024 (1.502 − 2.726)
Logrank P = 0

Optimal cutoff value = 11.02

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (years)

Su
rv

iv
al

 ra
te

Group
RRM2 lowExp
RRM2 highExp

Survival curve

(d)

HR = 0.4823 (0.3418 − 0.6805)
Logrank P = 0

Optimal cutoff value = 5.875

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (years)

Su
rv

iv
al

 ra
te

Survival curve

Group
RPS6KL1 highExp
RPS6KL1 lowExp

(e)

HR = 1.561 (1.106 − 2.204)
Logrank P = 0.005

Optimal cutoff value = 0.8256

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (years)

Su
rv

iv
al

 ra
te

Group
RTL1 highExp
RTL1 lowExp

Survival curve

(f )

0.25

0.50

0.75

1.00

Su
rv

iv
al

 ra
te

0 5 10 15 20
Time (years)

HR = 0.6722 (0.5018 − 0.9006)
Logrank P = 0.01

Optimal cutoff value = 3.729

Group
RXFP1 highExp
RXFP1 lowExp

Survival curve

(g)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 ra
te

0 5 10 15 20
Time (years)

HR = 0.5626 (0.4062 − 0.7791)
Logrank P = 0

Optimal cutoff value = 8.281

Group
RRAGB highExp
RRAGB lowExp

Survival curve

(h)

0 5 10 15 20
Time (years)

HR = 0.6734 (0.5036 − 0.9004)
Logrank P = 0.007

Optimal cutoff value = 5.098

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 ra
te

Group
RSPH9 lowExp
RSPH9 highExp

Survival curve

(i)

Figure 6: /e prognostic performance of the six-gene signature in the TCGA-LUAD test cohort. (a) Risk score analysis of the six-gene
signature of NSCLC. Risk score of gene signature (top); duration of cases (middle); low and high score groups for the six genes (bottom). (b)
Survival analysis of the high-risk group and the low-risk group using Kaplan–Meier curves. (c) /e prognostic efficiency of the six-gene
signature for survival time. ROC curves of the six-gene signature for predicting 1- to 10-year survival were analyzed. (d–i) /e independent
prognostic efficiency of individual mRNA in the six-gene signature of the test set. (d) RRM2; (e) RPS6KL1; (f ) RTL1; (g) RXFP1; (h) RRAGB;
(i) RSPH9. Horizontal axis, overall survival time. Vertical axis, overall survival.
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low-risk subgroups with significantly different overall sur-
vival and is prognostic for both adenocarcinoma and
squamous cell carcinoma cases [8]. /e multigene RNA
expression signature GeneFx® Lung classifies early-stage
NSCLC patients as high-risk or low-risk for disease re-
currence and predicts the overall survival [9]. /e 50-gene
signature novel scoring system is identified for tumor-in-
filtrating immune cells with strong correlation with clinical
outcome of stage I/II non-small-cell lung cancer [26]. /e 6-
gene signature (ABCC4, ADRBK2, KLHL23, PDS5A,
UHRF1, and ZNF551) is identified for independent prog-
nosis of overall survival [10]. /e Yin Yang Expression Ratio
Signature containing 10 functionally opposing genes
(GRM1, IGFBP5, NRAS, and RECQL4 in the Yin group and
CRIP2, CD83, GATA2, HOXA5, SOSTDC1, and TNNC1 in
the Yang group) significantly separates high- and low-risk
patients with stage IA or IB adenocarcinoma and squamous
cell carcinomas of all stages and can predict the benefit of
adjuvant chemotherapy in high-risk patients with stage I
NSCLC [11]. /e 14-gene signature (11 cancer-related genes
BAG1, BRCA1, CDC6, CDK2AP1, ERBB3, FUT3, IL11, LCK,
RND3, SH3BGR, and WNT3A and three reference genes
ESD, TBP, and YAP1) predicts survival in resected non-
squamous, non-small-cell lung cancer [4], identifies patients
at high risk of mortality despite small, node-negative lung
tumors [5], improves identification of patients at risk for
recurrence in early-stage none small cell lung cancer [6], and
predicts benefit from adjuvant chemotherapy for very early
stage NSCLC and is superior over current NCCN criteria at
identifying high-risk patients [7]. /e 17-gene panel con-
sisting of genes involved in epithelial-mesenchymal tran-
sition (EMT), hypoxia response, glycometabolism, and
epigenetic modifications for non-small-cell lung cancer
prognosis is identified through integrative epigenomic-
transcriptomic analyses and clearly stratifies NSCLC

patients with significant differences in overall survival [12].
Our six-gene prognostic signature for NSCLC adenocarci-
noma include RRAGB, RSPH9, RPS6KL1, RXFP1, RRM2,
and RTL1 genes which are not contained in the previous
gene signatures. /erefore, our six-gene signature is likely
a novel tool for NSCLC adenocarcinoma prognosis.

Our data indicated that high expression of RRAGB,
RSPH9, RPS6KL1, and RXFP1 and low expression of RTL1
and RRM2 predicted good survival. Among these six
genes, we found that RRM2 (ribonucleotide reductase
regulatory subunit M2 and ribonucleoside-diphosphate
reductase subunit M2) is overexpressed in NSCLC tissues.
/e RRM2 mRNA levels are higher in the high-risk group
than those in the low-risk group and may differentiate the
survival of NSCLC patients. Studies have shown that
RRM2 is known as a marker that may be involved in
predicting clinical response to gemcitabine plus docetaxel
[27] and predicting the treatment response to platinum-
based chemotherapy and survival [28, 29] in non-small-
cell lung cancer patients. /e expression levels of RRM2
and differences between primary tumors and infiltrated
regional lymph nodes were correlated with relapse-free
survival (RFS) and overall survival (OS) in patients with
resectable non-small-cell lung cancer [30]. RRM2 regu-
lates antiapoptotic protein Bcl-2 in head and neck and lung
cancers [31, 32]. BRCA1-regulated RRM2 expression
protects glioblastoma cells from endogenous replication
stress and promotes tumorigenicity [33]. RRM2 is regu-
lated by the transforming growth factor beta regulator 4
(TBRG4) gene which affects tumorigenesis in human
H1299 lung cancer cells [34]. It is likely that RRM2 plays
an essential role in NSCLC development and progression
and may serve as a key marker for NSCLC prognosis.

/e model signature genes RSPH9, RPS6KL1, RXFP1,
and RTL1 have been revealed to be involved in cancer
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Figure 7: /e prognostic performance of the six-gene signature in the GSE11969 validation cohort. (a) Risk score analysis of the six-gene
signature of NSCLC. Risk score of gene signature (top); duration of cases (middle); low and high score groups for the six genes (bottom). (b)
Survival analysis of the high-risk group and the low-risk group using Kaplan–Meier curves. (c) /e prognostic efficiency of the six-gene
signature for survival time. ROC curves of the six-gene signature for predicting 1- to 10-year survival were analyzed. (d–i) /e independent
prognostic efficiency of individual mRNA in the six-gene signature in the validation set. (d) RRM2; (e) RPS6KL1; (f ) RTL1; (g) RXFP1; (h)
RRAGB; (i) RSPH9. Horizontal axis, overall survival time. Vertical axis, overall survival.

12 BioMed Research International



Group

Normal

LUAD

P = 0.00046 P ≤ 2e – 16 P = ≤ 2e – 16 P = 1.3e – 10 P = 0.04136 P ≤ 2e – 16

RRAGB RRM2 RSPH9 RTL1 RXFP1RPS6KL1

0

3

6

9

Lo
g 2

 F
PK

M
 v

al
ue

(a)

P = 1.4e – 14 P = 1.0e – 10P < 2e – 16 P = 1.5e – 06 P = 2.0e – 15P < 2e – 16

0

3

6

9

Lo
g 2

 F
PK

M
 v

al
ue

RRAGB RRM2 RSPH9 RTL1 RXFP1RPS6KL1

Group

High risk

Low risk

(b)

Group

High risk

Low risk

P = 2.4e – 08P = 2.3e – 14 P = 2.7e – 05 P = 2.2e – 05 P = 1.4e – 05P = 5.1e – 05

–0.8

–0.4

0.0

Lo
g 2

 ex
pr

es
sio

n 
va

lu
e

RXFP1 RRM2 RPS6KL1 RSPH9 RTL1RRAGB

(c)

Figure 8: /e relative levels of RRAGB, RSPH9, RPS6KL1, RXFP1, RRM2, and RTL1 in NSCLC adenocarcinoma. (a) Compared with the
normal control, RRAGB, RSPH9, and RXFP1mRNA levels were significantly decreased and RPS6KL1, RTL1, and RRM2mRNA levels were
significantly increased in NSCLC of TCGA-LUAD. (b) /e expression levels of RRAGB, RSPH9, RPS6KL1, and RXFP1 were significantly
lower and RTL1 and RRM2mRNA levels were significantly higher in the high-risk group than those in the low-risk group of TCGA-LUAD.
(c)/e expression levels of RRAGB, RSPH9, RPS6KL1, RXFP1, and RTL1 were significantly lower and RRM2mRNA levels was significantly
higher in the high-risk group than those in the low-risk group in NSCLC adenocarcinoma of GSE11969.
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activity. RSPH9 (radial spoke head 9 homolog) was sig-
nificantly hypermethylated and downregulated in the he-
patocellular carcinoma (HCC) and epigenetic silencing of
RSPH9 may be associated with hepatocellular carcinoma
[35]. In multivariate regression analysis, hypermethylation
of RSPH9 was an independent predictor of non-muscle
invasive bladder cancer (NMIBC) recurrence and progres-
sion, and RSPH9 could be of value for the assessment of
disease recurrence and progression and for clinical decision-
making regarding treatment [36]. RPS6KL1 (ribosomal
protein S6 kinase-like 1) mutation hot spots were confirmed
and validated in colorectal cancers with microsatellite in-
stability, whichmight be used to develop personalized tumor
profiling and therapy [37]. RXFP1 (relaxin family peptide
receptor 1, relaxin receptor 1, and relaxin/insulin-like family
peptide receptor 1) is a G protein-coupled receptor with the
extracellular low-density lipoprotein A (LDL-A) module
located at the N-terminus. Studies have revealed that RXFP1
is activated by both C1q-tumor necrosis factor-related
protein 8 (CTRP8) and relaxin and contributes to growth
and invasion of human glioblastoma [38–40]. Suppression of
RXFP1 inhibits prostate cancer tumorigenesis, growth, and
metastasis [41–43]. Relaxin 2/RXFP1 Signalling induces cell
invasion via the beta-catenin pathway in endometrial
cancer [44]. Expression of RXFP1 is decreased in idiopathic
pulmonary fibrosis [45] and mediates the effects of miR-
144-3p in lung fibroblasts from patients with idiopathic
pulmonary fibrosis [46]. RXFP1 protects against airway
fibrosis during homeostasis but not against fibrosis asso-
ciated with chronic allergic airways disease [47]. RTL1
(retrotransposon-like protein 1, retrotransposon Gag like
1, also known as Peg11, paternally expressed 11) is essential
for maintenance of the fetal capillaries. Both its loss and its
overproduction cause late-fetal and/or neonatal lethality in
mice [48]. /e Rtl1 promoter is hypermethylated in the
placentas with fetal growth restriction. Infants with severe
SGA have abnormal placental DNA methylation of CpG1
in the CG4 region of RTL1, suggesting the existence of
disturbed epigenetic control in utero [49]. Overexpression
of RTL1 in melanoma cells accelerated cutaneous mela-
noma cell proliferation, promoted the passage of the cell
cycle beyond G1 phase, and increased the expression of cell
cycle related genes, and RTL1 promotes melanoma cell
proliferation by regulating the Wnt/β-Catenin signalling
pathway [50]. RTL1 activation serves as a driver of HCC.
Overexpression of RTL1 was detected in 30% of analyzed
human HCC samples, indicating the potential relevance of
this locus as a therapeutic target for patients [51]. RRAGB
(Ras related GTP binding B) mediates mTOR (mechanistic
target of rapamycin kinase) and TRIM37 (tripartite motif
containing 37) pathways related to amino acid-stimulated
MTORC1 (MTOR complex 1) signalling and autophagy
[52]. In the current study, we found that RRAGB, RSPH9,
RPS6KL1, RXFP1, and RTL1 are differentially expressed
between NSCLC and ANTs. Expression of RRAGB, RSPH9,
RPS6KL1, RXFP1, and RTL1 is significantly associated with
survival of NSCLC. /ese results suggest that RRAGB,
RSPH9, RPS6KL1, RXFP1, and RTL1 may be key factors in
NSCLC activity.

5. Limitations

(1)/e relative expression profiles of RTL1 expression in the
TCGA-LUAD and GSE11969 of NSCLC adenocarcinoma
are not consistent./is may be due to intervariation between
different detection platforms. (2) /e six-gene prognostic
signature remains to be evaluated for clinical application
using multicenter randomized controlled studies and
mechanistic investigation using in vivo and in vitro
experiments.

6. Conclusions

In summary, we have identified a six-gene prognostic model
for NSCLC adenocarcinoma by calculating prognostic-score
using the formula: prognostic score� (− 0.2491×EXPRRAGB)
+ (− 0.0679×EXPRSPH9)+ (− 0.2317×EXPRPS6KL1) + (− 0.1035×

EXPRXFP1) + 0.1571×EXPRRM2+0.1104×EXPRTL1, where EXP
is the FPKM value of the mRNA included in the model. /is
signature and the genes RRAGB, RSPH9, RPS6KL1, RXFP1,
RRM2, and RTL1 included in this model are independent
biomarkers for prediction of overall survival of NSCLC ade-
nocarcinoma./e role of the signature genes played in NSCLC
adenocarcinoma activity and prognosis remains to be in-
vestigated in the future.
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