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Abstract

With a mortality rate of 5.4 million lives worldwide every year and a healthcare cost of more
than 16 billion dollars in the USA alone, sepsis is one of the leading causes of hospital mor-
tality and an increasing concern in the ageing western world. Recently, medical and techno-
logical advances have helped re-define the iliness criteria of this disease, which is otherwise
poorly understood by the medical society. Together with the rise of widely accessible Elec-
tronic Health Records, the advances in data mining and complex nonlinear algorithms are a
promising avenue for the early detection of sepsis. This work contributes to the research
effort in the field of automated sepsis detection with an open-access labelling of the medical
MIMIC-IIl data set. Moreover, we propose MGP-ATCN: a joint multitask Gaussian Process
and attention-based deep learning model to early predict the occurrence of sepsis in an
interpretable manner. We show that our model outperforms the current state-of-the-art and
present evidence that different labelling heuristics lead to discrepancies in task difficulty. For
instance, when predicting sepsis five hours prior to onset on our new realistic labels, our pro-
posed model achieves an area under the ROC curve of 0.660 and an area under the PR
curve of 0.483, whereas the (less interpretable) previous state-of-the-art model (MGP-TCN)
achieves 0.635 AUROC and 0.460 AUPR and the popular commercial InSight model
achieves 0.490 AUROC and 0.359 AUPR.

Introduction

Every year, it is estimated that 31.5 million people worldwide contract sepsis. With a mortality
rate of 17% in its benign state and 26% for its severe state [1], sepsis is one of the leading causes
of hospital mortality [2], costing the healthcare system more than 16 billion dollars in the USA
alone [3]. Studies demonstrated that early treatment has a significant positive effect on the
survival rate [4, 5]. In particular, [6] demonstrated that each hour delay in treating a patient
results in a 7.6% increase in mortality.

Current methods of screening, such as the Modified Early Warning System (MEWS) and
the Systemic Inflammatory Response Syndrome (SIRS) have been criticised for their lack of
specificity, leading to low accuracies and high false alarm rates. In 2015, the Third Interna-
tional Consensus Definitions for Sepsis [7-9] committee worked towards incorporating
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medical and technological advances into an up-to-date definition of sepsis, providing scientists
with widely acknowledged illness criteria. Together with the rise of Electronic Health Records
(EHR), the scientific community is now armed with both the data and labelling techniques to
experiment with novel prediction methods [10-14], which are already proving effective in
increasing survival rate [15] and promising in decreasing costs.

The models developed so far either relied on some interpretable yet simple prediction
methods, such as logistic regression [13] and decision tree classifiers [16, 17], or on effective
yet black-box methods such as Recurrent Neural Networks [18]. Moreover, the results
achieved by different authors are rarely comparable: although most use the MIMIC-III data
set, the disparities in labelling rules result in highly variable data sets (eg. [19] have 17,898 sep-
tic patients vs. 2,577 for [14]).

This work presents an attempt at reconciling interpretability and predictive performance
on the sepsis prediction task and makes the following contributions:

o Gold standard for labelling. We provide a gold standard for Sepsis-3 labelling implemented
on the MIMIC-III data set.

« Novel interpretable model. We present an explainable and end-to-end trainable model
based on Multitask Gaussian Processes and Attentive Neural Networks for the early predic-
tion of sepsis.

« Empirical evaluation. We assess our model on real-world medical data and report superior
predictive performance and interpretability compared to previous methods.

An overview of our proposed method is shown in Fig 1. The code for labeling the data
https://github.com/mmr12/MIMIC-III-sepsis-3-labels and for running the models https://
github.com/mmr12/MGP-AttTCN is publicly available.

Related work
Medical time series diagnostics

Multiple researchers have tackled the task of predicting sepsis and septic shock. Works on sep-
tic shock include exploration of survival models [11] and Hidden Markov Models [12]. How-
ever, these models rely on the assumption that a patient has already developed sepsis and focus
on patterns of patients’ further deterioration. Other authors [13, 14, 16, 17] use linear models
and decision trees on engineered features to predict sepsis onset, thus failing to capture tempo-
ral patterns. More recently, [19, 20] employed recurrent neural networks to better capture
time dependencies. Crucially, all these models rely on either averaging or forward imputation
of data points to create equidistant inputs. This transformation creates data artefacts and dis-
cards relevant uncertainty: in the medical field, the absence of data is a conscious decision
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Fig 1. Proposed model architecture.

https://doi.org/10.1371/journal.pone.0251248.9001
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made by professionals implying an underlying belief of the patient state. [18, 21] tackled this
issue with Multitask Gaussian Processes (MGPs), however their models lack the interpretabil-
ity necessary in the medical field.

Irregularly sampled time series

The most common solution to missing values is forward imputation [13]. [22] utilise forward
imputation coupled with a missingness indicator fed into a black-box model. Although this
method retains information about data presence, it is not clear how the information is later
interpreted by the model and hence does not meet our transparency criteria. [23] use MGPs to
fit sparse medical data, however they optimise their model for the data fit and use the parame-
trisation as input for a classifier rather than optimising the model for a classification task. Both
[21, 24] use MGPs with end-to-end training, although their temporal covariance function is
shared across all variables. Finally, [18] uses MGPs with multiple time kernels in a similar fash-
ion to our model, although they infer the number of kernels from hyperparameter tuning
rather than the data itself.

Attention based neural networks

Attention was first introduced on the topic of machine translation [25]. Since then, the concept
has been used in natural language processing [26, 27] and image analysis [28, 29]. In the same
spirit, [30] used attention mechanisms to improve the performance of a time series prediction
model. Although their model easily explains the variable importance, its attention mechanism
is based on Long Short Term Memory encodings of the time series. At any given time, such an
encoding contains both the information of the current time point and all previous time points
seen by the recurrent model. As such, the time domain attention does not allow for easy inter-
pretation. More similar to our implementation is the RETAIN model [31], which generates its
attention weights through reversed recurrent networks and applies them to a simple embed-
ding of the time series. The model employs recurrent neural networks which are slower to
train and suffer from the vanishing gradient problem. Furthermore, the initial and final
embeddings decrease the model’s interpretablity. Attention in combination with a Temporal
Convolutional Network (TCN) has also been used by [32], but there it only attends to time
points and not to different features.

Parallel work on sepsis prediction

As mentioned above, sepsis prediction on the ICU is an important and timely problem and an
active area of research. Under these circumstances, it is not surprising that some approaches
have been developed in parallel to this work [33-43]. It will be an exciting and important ave-
nue for future work to benchmark all these approaches (including ours) against each other
and to compare their performances on a unified and realistic set of sepsis labels, for instance,
the ones we propose in this work.

Method

In the following, we will provide a detailed explanation of our proposed model and its different
components. A graphical overview of the model is shown in Fig 1.

Notation

Let us first define some notation for the problem at hand. For each patient encounter p, several
features y, ., k are recorded at times ¢, ;, ; from admission, where k € {1, . .., M} is the feature
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identifier. These features are often vital signs and laboratory results. As such, they are rarely
observed at the same times. Hence, we have a sparse matrix representation of observations

yP:“l e yp,l,th

yP=M>f1 e yP=MJNP

where N, is the patient’s observation period length. We also define static features s, = {s 11>
..5pm+q} With feature identifiers k € {M + 1, ..., M + Q}, corresponding to time-independent
quantities, such as age, gender and first admission unit. Finally, we define sepsis labels [, € {0,
1}. Given the sparsity of the data, we can define the compact representation of all observed val-
ues:

{tP«'lk}ie{o.u-.Np},ke{l,m,M} )

{tpv YP> Sps lp} = {yp'tk}ie{o’m’N"}‘ke{l’m’M}7 (2)
{Sp,M+1’ D) Sp1M+Q}’
lP

The goal of the model is, for a given set {t,, y,, s,} to predict the label /,. In order to remove
clutter, we will from now on drop the patient-specific subscript p from all notation, and the
feature subscript k from time notation, simplifying t, ; to ¢,.

Multitask Gaussian Process (MGP)

Gaussian processes are non-parametric Bayesian models commonly known for their ability to
generate coherent function fits to a set of irregular samples, by modelling the data covariance.
As they easily account for uncertainty and do not require homogeneously sampled data,
Gaussian processes are the perfect candidate model to deal with irregularly sampled medical
time series.

We use a Multitask Gaussian Process (MGP) [44] to capture feature correlation and [45]’s
end-to-end training framework, in a similar manner to [24]. Given an hourly spaced time

series {t/ }?: where 0 is the time of prediction, the MGP layer produces a set of posterior pre-

-N,
dictions for each feature, which will then be fed into a classification model.
We define a patient-independent prior over the true values of {y; s} by {fx(t,)} such that

Yix ~ N (fi(8), 07) (3)

k
(1) £ (8)) = S KA K) K2 (1. 8) @
leL
where {K}'(t,,,)} _, are parametric time point covariances varying in smoothness,
{K¥(k,K)},., are free-form feature covariances at a given smoothness level, independent of
time, and L are smoothness clusters. Over all variables and time points, the multivariate model
has covariance

k
Y KFoK'+D®I (5)

leL

where D = diag(oy) are the noise terms associated to each feature and ® is the Kronecker
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product. This formulation allows each datapoint to be defined as both a function of its own
timed observations and observations of the remaining features.

The quick illness progression is well suited to the quadratic growth of the covariance
matrix. However, for the few cases when a patient develops sepsis well into their hospitalisa-
tion, a suitable measure to prevent excessive memory consumption is to ignore the initial data-
points of the patient.

Note that there are two main feature clusters: vital signs (vitals) and laboratory results
(labs). Vitals are noisier and sampled more often, whereas labs are more monotone and rarely
sampled. As opposed to [18], we do not treat the number of clusters L as hyperparameters but
set L = 2 and define

_|ti - t'|
Ki(t.1) = exp( 5 0
1

as Ornstein-Uhlenbeck (OU) kernels with lengths A; and A,, each representing a cluster
smoothness. OU kernels are well suited to capture local variations and do not assume infinite
differentiability as Squared Exponential kernels do. In our case, differentiablity implies a level
of smoothness which is unrealistic for medical records and only introduces unnecessary bias.
In addition, given the scarce availability of labs, short lengthscales would be an il fit to the
data. We hence discarded kernels varying over lengthscales such as the Cauchy and the Ratio-
nal Quadratic kernels. Kf(k, k') are free-form covariance matrices that are learned by gradient
descent.

The posterior over the reguarly sampled timepoints t' = {#,} is a multivariate Gaussian

0
i=—N,

with mean and covariance:

p= O KoK KoK '+DaI)y

leL leL

k o
> = ZKI®K1“ (7)

leL

- K eK)O KoK +Dal) () KK

leL leL leL

In order to approximate the posterior distribution, we then take Monte Carlo samples yyc
from Yyop ~ N (, X).

To feed the MGP samples into the classifier, we fix the model time window to N = 25 by
either zero padding or truncating the beginning of the time series. We choose to do so at the
beginning of the time series in order to align prediction times as the last step of the temporal
classification model. Here, we also integrate the static variables by broadcasting them over
each time. The reasoning behind this design choice is explained in more details in the follow-
ing section.

Attention Time Convolutional Network (AttTCN)

The concept of attention was born in machine translation [25] and has recently successfully
been applied to different types of sequential data [26-30]. In machine translation, given an
input sentence embedding

S:{hlf")hm} (8)
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the attention mechanism produces weights

o, -y} s.t. % € [0,1], Eoc} =1 9)

and a context vector
¢ = b, (10)

used to predict target word i. The weights o can therefore be interpreted as the importance of

the input sentence’s j™ word to produce the i™ word of the translation.
More recently, [31] have applied attention to clinical time series. Given a time series

{XN'”’XT}CRrv (11)
the authors first create a time-independent embedding of the data

{vj,-+,v;} CR™. (12)

They then use inversed recurrent neural networks (RNN) to create weights @ € R” and
B € R™™ where a; € [0, 1] and B; € [-1, 1], with softmax and tanh activations respectively.
The context vectors then take the form

4= Zo‘jﬁ/ O, (13)

jsi

where © is the element-wise product, and are fed into a multilayer perceptron with softmax
activation to yield a prediction.
The attention model we devised borrows some ideas from [31]. Two embeddings, z = [z,

!

szyland 7 = [, ..., 2] with z,z € RV are directly generated from the interpolated
datay,,. € RV through two temporal convolutional networks (TCNs), removing a layer
of abstraction and hence facilitating interpretability.

TCNs are a class of neural networks composed of causal convolutions stacked into Residual
Blocks. A causal convolution is a 1D convolutional layer which only takes inputs from the past
to generate its output, avoiding any information leakage from the future. Residual Blocks are
made of two causal convolutional layers together with ReLU activation functions, dropout and
L2 regularisations. The Residual Blocks also include an identity map from the input of the
block added to the output. As we only use up to 12 layers, this last step is omitted in our archi-
tecture. TCNs have shown to outperform RNNs [46], are faster at training and do not suffer
from vanishing gradients. Given the latter, inverting the time series similarly to [47] also
becomes an unnecessary step which we omit.

We generate the attention weights @ and f3 as

%, = softmax(z; x W, +b,,) (14)
%, = softmax(z; x W, , +b,,) (15)
B,, = sigmoid(z; x W, +b,) (16)
B, = sigmoid(z; x Wy, +b,,) (17)
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W, W, eR"™® b b, eR (18)

2,00 Yol

W/XO’ W[;,1 c R(M+Q)X(M+Q) b/iovb[;.o c RM*Q , (19)

such that @ = [a,, @,] € RV and g = [B,, B,] € RV M2,
We then create two context vectors, one for each of the negative and positive label predic-
tions

C = Za}'ﬁ 5 QYMC,_;‘ c RNX(M+Q)><2 7 S c {07 1} : (20)

jsi

where yycj is broadcast to meet the dimensionality of ;5. We then predict the labels as

N M+Q

1, = softmax(ZZci‘nm) c0,1*. (21)

In our case, we are only interested in making predictions with the latest available data. We
therefore only use 1
cific use case.

Since the MGP output is directly multiplied by weights c;, the classification model can be
interpreted as a scoring mechanism where each past point yyc ; contributes a; o B to the
time series being classified as positive, and a;, f;;; to the time series being classified as nega-

1o t0 train the model. This of course can be easily modified to suit any spe-

tive. The positive and negative scores are then normalised to represent probabilities of the pos-
itive or negative labelling. As we designed both & and f to be non-negative, we can hence
directly look at the average & and 8 over Monte Carlo samples to see which time points and
features contribute most strongly to the network’s positive or negative decision. This facilitates
the interpretability of our model compared to previous approaches.

Data

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host
response to infection [7]. A dysregulated host response is interpreted as a suspicion of infec-
tion. In EHR terms, it is encoded by the administration of high spectrum antibiotics and a
bacterial blood culture within a set interval of each other. The organ dysfunction is interpreted
as a two point increase in Sequential Organ Failure Assessment (SOFA) within a suspected
infection window. The SOFA score quantifies the deterioration of different systems—respira-
tion, coagulation, liver function, cardiovascular function, central nervous system, and renal
function.

We make use of the MIMIC-III dataset, a collection of medical records for over 40°000
patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between
2001 and 2012 [48]. The records are composed of vital sign recordings, laboratory tests, drugs
administered, and patients’ outputs. We encode the Sepsis-3 criteria in the MIMIC-III dataset
following [48, 49]’s code available on GitHub and [21]’s code that the authors have generously
provided.

One key difference between our assumptions and the ones [21] develop is the handling
of missing SOFA contributor values: if one or more SOFA contributors are missing, [21] do
not calculate the total score. On the other hand, we assume such a contributor to be within a
healthy norm, hence implying a zero contribution. With our methodology, patients worsening
in one area but with no measurements in another will be considered septic, whereas they will
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not in the [21] dataset. After discussions with a clinician, we learned that the standard practice
in the clinic would be to assume healthy values for all unmeasured variables, as we did in our
labeling. Moreover, if the treating physician would expect a variable to be outside the healthy
norm, they would usually measure it, such that most unmeasured variables will indeed have a
high probability of being healthy. Our labeling approach thus fits better with the standard clin-
ical practice and includes more septic patients that would not be included in [21]’s data. More-
over, we hypothesize that these patients would be the ones where the treating clinicians do not
already suspect a sepsis and have thus not measured all the SOFA variables, which will poten-
tially make them harder to classify but arguably also more interesting, because they would oth-
erwise be missed by the treating doctors.

In order to validate our results, we carry out all experiments on using both labelling
techniques.

Patient inclusion

We filter for patients admitted to Intensive Care Units (ICU) who are more than 14 years old
and with valid records. Case patients are patients having sepsis onset within their ICU stay,
whereas control patients have not developed sepsis nor have an ICD discharge code referring
to sepsis. Starting with 58,976 patients, we find 14,071 control patients and 7,936 case patients
using our labels, versus 1,797 cases using [21]’s labels.

Feature extraction

Reviewing sepsis-related literature and commonly extracted laboratory and vital recordings,
we extract all features which were reported at least once for more than 75% of the included
population. The final 24 dynamic features are reported in Table 1. We also extract static fea-
tures—age, gender, and first ICU admission department.

Case-control matching

As the goal is to predict sepsis prior to onset, the cases data was extracted between ICU admis-
sion and sepsis onset. Note that sepsis onset happens early within ICU admission, with the
median patient getting sick at 3.4 hours after admission. On the other hand, patients not devel-
oping sepsis are more likely to recover completely, and do so in a lengthier time frame. In
addition, once they are close to discharge, their vitals and labs are within the norms. Hence,
both the length and the values of the time series are strong discriminatory factors which ease
the classification. We hence carry out a matching strategy similar to [21]: following the class
imbalance ratio, we associate each control time series to a case time series and truncate the

Table 1. List of dynamic features.

Vitals Labs
Systolic blood pressure (sysbp) bicarbonate Pulse transit time (ptt)
Diastolic blood pressure (diabp) creatinine International normalized ratio (inr)
Mean blood pressure (meanbp) chloride Prothrombin time (pt)
Respiratory rate (resprate) glucose sodium
Heart rate (heartrate) hematocrit Blood urea nitrogen (bun)
Pulse oximetry (spo2 pulsoxy) hemoglobin White blood cells (wbc)
Body temperature (tempc) lactate magnesium
platelet Blood gas pH (ph bloodgas)
potassium

https://doi.org/10.1371/journal.pone.0251248.t001
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Fig 2. Baseline patient data for different horizons. x-axis: Time from admission. y-axis: Feature identifier.

https://doi.org/10.1371/journal.pone.0251248.9002

control to have the same length as the case from ICU admission. We then discard patients
with less than 40 data points within the selected window, and—for computational tractability
—truncate the first N, — 250 initial values of patients’ time series in order to keep a maximum
of 250 data points per patient.

Horizon augmentation

As our goal is to predict sepsis early, we augment the data by creating new shorter time series.
For each time series, we create six copies, where each copy represents a different horizon to
onset. We then proceed to truncate the last one to six hours prior to onset from the time series
copies. In order to keep data consistency, we once again discard time series with less than 40
observations. Fig 2 is a graphical representation of the discretised version used for the baseline
of an augmented datapoint, whereas in Tables 2 and 3 we illustrate the data distribution per
horizon.

Table 2. Augmented dataset statistics with Moor et al. [21] labels.

Horizon to onset N. of patients N. of obs. per patient
0Oh 15,123 69.9+59.6
1h 11,258 56.6+59.1
2h 8,478 61.4+62.8
3h 6,554 66.5+£65.9
4h 5,233 70.6£69.0
5h 4,162 76.3+71.9
6h 3,390 81.9+74.3

https://doi.org/10.1371/journal.pone.0251248.t1002

Table 3. Augmented dataset statistics with our labels.

Horizon to onset N. of patients N. of obs. per patient
0Oh 20,075 64.0 £ 65.5
1h 15,832 62.5 £ 65.6
2h 12,080 66.1 £ 67.2
3h 9,441 69.7 + 68.1
4h 7,484 73.4+68.5
5h 6,007 77.1 £ 68.2
6h 4,876 81.2 +67.4

https://doi.org/10.1371/journal.pone.0251248.1003
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Data split

Finally, we split the data into training, validation, and testing sets, respectively capturing 80%,
10%, and 10% of the data. We then normalise the data by subtracting the training set mean
and dividing by the training set standard deviation of each feature.

Hyperparameter search and training

As the datasets are highly imbalanced, we carry out a case set oversampling: we randomly
resample the case set to have the same size as the control set. In addition, at each iteration we
sample the same number of cases and controls and then feed a shuffled version into the model.
In this manner, the model will see an equal number of controls and cases and will not become
biased towards zero labels. This procedure is not applied to the validation and test sets, as the
results would not compare to real-life settings.

For both our model MGP-AttTCN and all baselines, in order to select the best possible
hyperparameters, we performed a hyperparameter random search, as described in Table 4.

Baselines

Data preparation

In order to benchmark our MGP model, we build some baselines homogenising the data
sampling. For each hour and variable, we take the average of the available observations. If a
given hour has no observations, we carry forward the average of the previous hour. In this
manner, we generate an hourly sampled time series for each patient. We then proceed to
normalise the size of each patient matrix by setting a time window of observation N. For
patients having more than N observations N, we discard the first N — N, observation;
whereas for patients having less than N observations, we pad the beginning of the matrix
with zeros.

Yoig 7 yp,l‘tNP Yot 0 VN,

carry furwargl .. ' (22)

Yoy, " yp,M‘tNP Yoma yp.M,NP

Table 4. Hyperparameter search.

Hyperparameter Random Search

min max
MGP Monte Carlo samples 4 20
TCN kernel size 2 6
TCN number of Residual Blocks 2 12
TCN number of hidden layers 10 55
TCN dropout rate 0 0.99
TCN L2 regularisation 0 250

https://doi.org/10.1371/journal.pone.0251248.t1004
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YpaN-N, 7 Vpin
if N,>N
Yy MN-N, Yo MN
normalise (23)
o -0 Yoan-N, 7 Vpan
else
0 -0 YpMN-N, 7 VpMN

We choose to align the end of the time series as opposed to the beginning, as the relative
importance of time points is higher closer to when a patient becomes sick rather to when they
are admitted to the ICU.

As a next step, we augment the data to focus on different time series in a similar manner as
for irregularly sampled data. We create seven copies of each time series, where for each copy
we discard the last zero to six hours, then normalise the matrix as above. We hence generate a

dataset Y, = {Y}, = {{yw}thl} where g represents all augmented the time series.
W="q

InSight

The InSight scoring model is one of the few machine learning algorithms to surpass the proof-
of-concept stage with multiple research, economic and clinical trials [13, 14, 16, 50]. We there-
fore include it as a baseline to our model. The key concept of the model is to use few largely
available vitals, build some handcrafted features and train a simple classification model.

Here we provide a brief summary of the main method. The features extracted are based on
a window of six consecutive hours. For each six hour window, we extract each variable’s mean
M; and difference D; (last observation minus first observation) over the window. We also
extract variable pairs correlation D;; and triplet correlation Djj, where i, j, k are observed
variables. We interpret the latter as a relaxation of the Pearson correlation: if the correlation
between two variables is

Pyy = E[(X — /;XL(Y — :uY)] (24)

then we define the triplet correlation as

Prry = E[(X - uX)(().YO.—O.#Y)(Z — 1)) (25)

We then classify the difference and correlations as either positive, negligible or negative using
their distribution quantiles over every patient and six hour window observed. Note that given
the high level of data missingness, many variables are calculated by forward imputation and

hence have no variance over six hours. To adjust for the high number of zero correlations, we
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calcualte the quantiles of non-zero correlations and define:

1 if D, > q*(2/3)
D,={ -1 if D, <q"(1/3) (26)
0 otherwise

where g* is the adjusted quantile function. We proceed in a similar manner for the correlations
and triplet correlations.

In order to keep the results comparable to the AttTCN fixed window N, we extract N — (6
— 1) six consecutive hour window and vectorise the resulting features, generating in total

M = (N =5) x @ x M+ () + (4)) (27)

features per patient.

To remain consistent with the original work, we only kept patients with at least one obser-
vation for each feature over the 5 hour period for the following observations: age, systolic
blood pressure, pulse transit time, heart rate, temperature, respiration rate, white blood cell
count, pH and pulse oximetry. The corresponding dataset statistics can be found in Tables 5
and 6.

Although the original paper does not specify which classification method the authors
employ, we derive by their description of a dimensionless score that the method is a logistic
regression.

Other baselines

Logistic regression. As a simple baseline, we perform a Ridge Logistic Regression using
the hourly data described above.

Table 5. Baseline dataset with our labels.

Horizon to onset N. of patients N. of patients with onset

0Oh 1,943 786 (40.5%)
1h 1,938 782 (40.4%)
2h 1,810 690 (38.1%)

3h 1,657 606 (36.6%)
4h 1,504 532 (35.4%)
5h 1,352 467 (34.5%)
6h 1,217 420 (34.5%)

https://doi.org/10.1371/journal.pone.0251248.t1005

Table 6. Baseline dataset with Moor et al. [21] labels.

Horizon to onset N. of patients N. of patients with onset
0Oh 2,298 658 (28.6%)
1h 2,294 657 (28.6%)
2h 2,187 609 (27.8%)
3h 1,981 531 (26.8%)
4h 1,748 453 (25.9%)
5h 1,518 384 (25.3%)
6h 1,330 329 (24.7%)

https://doi.org/10.1371/journal.pone.0251248.t1006
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Ablation models. In addition to Insight and the Logistic Regression, we perform ablation
studies on our proposed model. In a first instance, we remove the AtTCN arm and replace it
by a logistic regression (model “MGP-log.reg.”). Secondly, we remove the arm of the AttTCN
controlling the attention over time o (model “MGP-AttTCN w/o &), then the arm generating
B (model “MGP-AttTCN w/o 7).

MGP-TCN. Finally, we compare our model to the state-of-the-art MGP-TCN algorithm
[21].

Experimental results

We compare our model’s performance to the performance of the InSight algorithm [13] and
to the state-of-the-art MGP-TCN algorithm [21]. Fig 3 shows the predictive performance of
the models for different time horizons, whereas the numerical results can be found in the
Appendix, in S1-S8 Tables in S1 File.

Comparison between different data labels

The first result is the difference in performance of models applied to the different labelling
methods. The SOFA contributor assumption from [21] has two main implications. Firstly, it
considerably restricts the number of patients. Assuming that sicker patients receive more med-
ical attention, the patients included are likely to be in worse conditions than the septic patients
excluded and hence easier to classify. Secondly, it delays sepsis onset. For example, a patient
having a severe liver failure with few other recorded vitals, followed by an overall collapse fur-
ther in time will have septic onset at the time of its liver failure in our records, whereas it will
only be considered septic at the time of the overall collapse in [21]’s labels. On the other hand,
the labels we produce reflect the incomplete nature of medical data: even if only a part of all
the potentially relevant tests are carried out at any given time, a doctor must be able to assess a
patient’s well-being and foresee potential complications. The difference in labels implies a dis-
crepancy in task difficulty: [21]’s labels present an easier learning problem, but define a more
narrow use case in real-world scenarios.

Indeed, when assessing the performance of the different models on the two different data
labellings, it becomes evident that our proposed labels are harder to fit. This means that pre-
dicting sepsis in a realistic setting on the intensive care unit is probably much harder than pre-
vious work would suggest.

Model performance

We find that our MGP-AttTCN model yields a better performance than the MGP-TCN [21]
when presented with patients further in time from sepsis onset (i.e., earlier in time) (Fig 3, top
row). In the case of our labels the difference is clearly noticeable, whereas with [21]’s labels it is
of lower statistical significance.

Moreover, we observe that ablations of our model (e.g., changing the GP kernel, removing
the o weights, or removing the § weights) reduces our model’s performance, as expected (Fig
3, middle row). The exception to this are the o weights on our labels, which seem to neither
improve nor impair our model’s performance significantly. Note however, that the @ and
weights play a strong role for the interpretability of our model (see below) and are thus useful
even without influencing the raw predictive performance.

Finally, with our labels, our model also outperforms InSight, as well as the simple logistic
regression and MGP-LogReg baselines (Fig 3, bottom row). The intuition behind this result is
the robustness of the model to missing data: It accounts for the data uncertainty and hence has
a better performance on lower resolution and more irregular data. Note however that on [21]’s
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For our labels.

For Moor et al. [21] labels.
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using the baseline dataset. using the baseline dataset.
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Time to onset Time to onset
Log. Reg. —— MGP-ALtTCN w/o alpha —— MGP-TCN
—— InSight —— MGP-ALtTCN w/o beta === MGP-AttTCN
~— MGP-Log.Reg. —— MGP-AttTCN w/ SE kernel

Fig 3. Area under the ROC curve of different models. It can be seen that our proposed labels are harder to fit than the ones
by [21]. Moreover, our proposed model outperforms the baselines on both label sets, especially for earlier prediction
horizons.

https://doi.org/10.1371/journal.pone.0251248.9003
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Fig 4. Heatmaps of the learned MGP covariance matrices between the data features for the two different smoothness clusters.

https://doi.org/10.1371/journal.pone.0251248.9004

labels, the logistic regression is a stronger competitor (which was not considered in their
paper), highlighting again that their prediction task is significantly easier than the one with
our more realistic labels. All these results were measuring the performance using the area
under the receiver-operator characteristic curve (AUROC), but we provide additional results
using the precision-recall curve (AUPRC) in the appendix (S1 Fig in S1 File), which qualita-
tively show the same observations.

MGTP interpretability

Inspecting the learned covariances (Fig 4), we notice that the two OU lengthscales converged
to represent two clusters within the selected variables: a shorter lengthscale (around two
hours) represents noisy data, whereas a larger lengthscale (around 64 hours) represents
smoother observations. In addition, the feature covariance matrix for the short lengthscale
puts more emphasis on vitals, while the one for the long lengthscale puts more emphasis on
labs, fitting our initial intuition that vitals vary more rapidly. Graphically, one can observe this
by inspecting the diagonals on the covariance heatmaps.

On a more granular level, the two covariance matrices also provide insights about the
underlying variables. One can for instance observe that the body temperature (tempc) has a
larger variance than the systolic and diastolic blood pressure (sysbp, diabp), following the gen-
eral clinical intuition. Moreover, we can observe correlations between different features, such
as a negative correlation between temperature and heart rate, which also seems to coincide
with the general medical expectation. These covariances can then for instance be used by the
model to extrapolate a full time series from a single INR observation with an inverse correla-
tion to the pulse oximetry observations (Fig 5).

Attention weights

Even if our model does not outperform the MGP-TCN under all conditions, its main advan-
tage over the baselines lies in its improved interpretability due to the attention mechanism.
Once the samples have been drawn, the weights & and f provide us with information about
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Fig 5. Visualization of the journey of an exemplary patient trajectory through our proposed model architecture. The raw features (row 1), measured at
irregular time points, are interpolated by the MGP (row 2). Samples from the MGP posterior can then be aggregated into means and variances for each
feature on a fixed, regularly-spaced time grid (row 3). These values are then attended to by the TCN (row 4), where positive attention weights are yellow
and negative ones blue. Row 5 shows the attention weights separated by features (x-axis) and time points (y-axis).

https://doi.org/10.1371/journal.pone.0251248.9005

the importance of different time points and features for the model’s prediction. The attention
weights for an exemplary patient trajectory are depicted in Fig 5.

The figure shows the flow of data from a randomly chosen example patient through our
model. In the first row, we see the actual measured data. We can see that while for instance the
heart rate and oximetry are measured regularly, the prothrombin time has a lot of missing val-
ues. In the second row, we see imputations of the time series sampled from our MGP. We see
that even though the prothrombin time measurements are sparse, the MGP yields imputations
with reasonably low uncertainty, thanks to information extracted by the model from the other
features. In the third row, we resample the time series from the MGP interpolations on a regu-
lar grid, which includes a mean and uncertainty estimate for each value. Finally, in the fourth
row, the TCN part of our model can assign attention weights to the different resampled mea-
surements, which show their influence on the model’s final prediction. Positive attention
weights mean that the respective feature increases the model’s probability of diagnosing the
patient as septic. They are shown in yellow. Negative attention weights decrease this probabil-
ity and are shown in blue. The final row of the figure shows the attention weights for all the dif-
ferent variables (x-axis) over time (y-axis).

Opverall, the absolute values of & are small for points further from the prediction time and
increasingly larger closer to it. A good example of this behaviour is the fourth row in Fig 5,
where feature importance increases in time. We can also see there that different features can
have opposing effects on the prediction. While the elevated heart rate close to the prediction
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time increases the likelihood of a sepsis prediction (first column, yellow weights), the lowered
prothrombin values reduce this likelihood (third column, blue weights). These attention
weights have been deemed plausible by a clinician to whom we showed the figure, demonstrat-
ing that they can help to build trust in the model’s prediction by making its decision process
more relatable to trained professionals and comparable with their prior knowledge. In this par-
ticular patient, for instance, the elevated heart rate is a common symptom of sepsis [51] and
thus deserves its positive attention weight, while another common symptom is an increased
prothrombin time [52], such that the decreased prothrombin time in this example should
rightfully be regarded as speaking against the diagnosis of sepsis, as attested by its negative
attention weight. Interestingly, the low prothrombin values are not actually measured in this
example, but predicted by the MGP purely based on the other measured features and the
learned covariances.

Finally, a x B x yypc gives the individual score contribution of each feature at each time
point. These weights are shown in the last row of the figure. It can again be seen that the atten-
tion weights are generally larger in magnitude closer to the prediction time. Moreover, about
half of the features have significant non-zero attention weights, while the others seem to not be
important for the prediction in this example.

These visualizations could be used by doctors to make an informed decision about whether
or not to trust the prediction of the model for each given patient, thus facilitating the interpret-
ability and accountability that is crucial in medical applications.

Conclusion

We have shown that current data sets for the early prediction of sepsis underestimate the
true difficulty of the problem and proposed a new labelling for the MIMIC-III data set that
corresponds more closely to a realistic intensive care setting. Moreover, we have proposed
a new machine learning model, the MGP-AttTCN, which outperforms the state-of-the-art
approaches on the easier labels from the literature as well as on our proposed harder labels.
Additionally, our model provides an interpretable attention mechanism that will allow clini-
cians to make more informed decisions about trusting its predictions on a case-by-case basis.
Potential avenues for future work include a more thorough discussion with clinicians to
make our proposed labels even more representative of the real-world task. Moreover, there is
potential for architectural improvements, for instance by meta-learning the MGP prior [53,
54], amortizing the latent MGP inference for performance gains [55-59], discretizing the
latent space for improved interpretability [60, 61], or treating the neural network parameters
in a Bayesian way to improve the uncertainty estimation [62-64].
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