
sensors

Article

Toward a Robust Security Paradigm for Bluetooth
Low Energy-Based Smart Objects in
the Internet-of-Things

Shi-Cho Cha 1, Kuo-Hui Yeh 2,* ID and Jyun-Fu Chen 1

1 Department of Information Management, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan; csc@cs.ntust.edu.tw (S.-C.C.); D9909302@mail.ntust.edu.tw (J.-F.C.)

2 Department of Information Management, National Dong Hwa University, Hualien 97401, Taiwan
* Correspondence: khyeh@gms.ndhu.edu.tw; Tel.: +886-3-863-3117

Received: 7 September 2017; Accepted: 11 October 2017; Published: 14 October 2017

Abstract: Bluetooth Low Energy (BLE) has emerged as one of the most promising technologies to
enable the Internet-of-Things (IoT) paradigm. In BLE-based IoT applications, e.g., wearables-oriented
service applications, the Bluetooth MAC addresses of devices will be swapped for device pairings.
The random address technique is adopted to prevent malicious users from tracking the victim’s
devices with stationary Bluetooth MAC addresses and accordingly the device privacy can be
preserved. However, there exists a tradeoff between privacy and security in the random address
technique. That is, when device pairing is launched and one device cannot actually identify another
one with addresses, it provides an opportunity for malicious users to break the system security via
impersonation attacks. Hence, using random addresses may lead to higher security risks. In this
study, we point out the potential risk of using random address technique and then present critical
security requirements for BLE-based IoT applications. To fulfill the claimed requirements, we present
a privacy-aware mechanism, which is based on elliptic curve cryptography, for secure communication
and access-control among BLE-based IoT objects. Moreover, to ensure the security of smartphone
application associated with BLE-based IoT objects, we construct a Smart Contract-based Investigation
Report Management framework (SCIRM) which enables smartphone application users to obtain
security inspection reports of BLE-based applications of interest with smart contracts.

Keywords: Bluetooth low energy; internet-of-things; privacy; random address; security

1. Introduction

With the advancement of wireless communications and pervasive computing technologies on
smartphones, people can control nearby Internet-of-Things (IoT) devices, e.g., wearable devices or
fixed specific-purpose sensors, via their smartphones. Versatile IoT-based service applications have
been developed on the smartphone to provide intelligence and convenience to our daily life. Because
major smartphone platforms, such as iOS and Android, are equipped with Bluetooth Low Energy (BLE)
capabilities and have well-implemented API for BLE communication, more and more IoT devices have
adopted BLE technologies to communicate with smartphones. To ensure that users have permissions to
access BLE-based IoT devices, the devices usually request users to provide credentials as access tokens
for the purpose of authentication and access control. In general, users will request the credentials via an
Internet service. In that case, users can obtain credentials with online Internet services, and accordingly
the costs for users for installing credentials into their smartphones can be reduced. Alternatively,
sellers of the devices will provide physical media, like the PIN code protection envelope provided by
banks, to deliver credentials (or key phrases) to users. Nevertheless, there are management issues in
protecting the printed out credentials from being stolen by malicious people.

Sensors 2017, 17, 2348; doi:10.3390/s17102348 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0598-761X
http://dx.doi.org/10.3390/s17102348
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2348 2 of 19

Since privacy has become a critical issue in smartphone applications, current smartphone
platforms have started to prohibit smartphone applications from obtaining sensitive information, such
as a smartphone’s physical identification, which may result in potential individual privacy disclosure.
For example, after Android 6.0 [1], if Android applications invoke the BluetoothAdapter.getAddress()
method to get the Bluetooth hardware address of a smartphone, the applications will receive a constant
value of 02:00:00:00:00:00 instead of the complete address value. Moreover, to prevent user smartphones
from being tracked by malicious adversaries using smartphone Bluetooth Media Access Control (MAC)
addresses, a useful technique, called BLE random address, is adopted on smartphones [2,3]. That is,
the smartphone will adopt different Bluetooth MAC addresses to communicate with nearby BLE-based
devices when the smartphone restarts its Bluetooth function. After a device has been paired with
another device with the BLE random address scheme, the device will then transfer the original
Bluetooth MAC address and associated identification data to another device. After that, when the
device picks up a new Bluetooth MAC address during the next session, the linked device can use the
information to resolve the new address into the original one. Note that a device may still give random
addresses to paired devices rather than its original address for privacy considerations [3]. However, if
a device does not provide its original address to paired devices, the device may need to execute the
pairing process again.

Although the random address scheme in BLE can prevent BLE-based IoT devices from being
tracked by unauthorized parties, once a smartphone has bonded to a device using the random address
mechanism, every application installed on this smartphone can track the device. For example, in
Figure 1, suppose that a BLE device A adopts the random address scheme to protect its real Bluetooth
MAC address. The smartphone X cannot obtain the real Bluetooth MAC address of the device A.
For example, assume there exists a smartphone X with the App 1 installed on the smartphone. The user
of smartphone X can initiate the pairing process to establish a pairing relationship between the
smartphone X and the device A via the App 1. The smartphone X can accordingly obtain the real
Bluetooth MAC address of the device A. In order to prevent the App 1 from obtaining the real address
of the device A, the smartphone X stores the latest random address of the device A before pairing and
provides the stored address to the App 1. Therefore, the App 1 can identify the device A with the
stored address. Comparatively, other smartphones aside from X cannot know how to link received
Bluetooth MAC addresses to the device A unless there is only one nearby device. Unfortunately,
to ensure the effectiveness of random addresses a BLE-based device may not allow simultaneous
pairing connections to the device. Consequently, many BLE applications are designed without pairing.
This paves a way for malicious adversary to retrieve sensitive data or to launch a user privacy invading
attack. As illustrated in Figure 1, the App 2 can also obtain the stored address to identify the device A
without any newly invoked pairing process. In our previous work [4], a security weakness based on
the above scenario had been identified in a commercial product sold in Taiwan, i.e., a smart motorcycle
called Gogoro Smart Scooter [5]. In general, users can control their Gogoro motorcycles through BLE
signals sent from the user’s smartphone. Based on the reverse-engineering analysis on the application
associated with Gogoro motorcycles, in the following we present the communication processes of
starting a Gogoro motorcycle. Note that the processes occur between Gogoro motorcycles, smartphones
and backend servers.

Each motorcycle has a public Bluetooth address and a secret key stored in its engine control unit.
The backend server built by the Gogoro company firstly stores addresses and secret keys of every
motorcycle. When a user buys a motorcycle S, the Gogoro company requests the user to provide
his/her email and a password as a registration request. Next, the user can install an application on
his/her smartphone which will be mainly used for logging into a web server provided by the company.
After verifying the user by the provided email and password, the server sends a secret key KS and
a Bluetooth address AS associated with the motorcycle S to the application. The motorcycles use a
customized pairing process to pair with user smartphones: the motorcycles just store the addresses of
their owners’ smartphones. However, because current smartphones usually use random addresses, the

Sensors 2017, 17, 2348 3 of 19

backend server of the company generates pseudo-addresses for user smartphones. After successfully
authenticating against the backend server, the user U can obtains his/her pseudo-address AU from
the backend server and provides the address to his/her motorcycle. When the S wants to use his/her
smartphone to control the motorcycle, the smartphone advertises a message with the address of the
motorcycle, i.e., AS, and his/her pseudo-addresse, i.e., AU . After receiving the message, the motorcycle
can detect the presence of the user’s smartphone and try to connect to the specific GATT service in
the smartphone and send a challenge back to the application. The motorcycle application on the
smartphone then retrieves the challenge and generates a response based on the secret key of the
motorcycle and the challenge. Finally, the motorcycle judges whether the the response matches the
challenge. If the response matches the challenge, the motorcycle executes the previously received
command. Nevertheless, the above process has a vulnerability. If malicious people can obtain the
pseudo-addresses of motorcycle owners, Bluetooth MAC addresses of motorcycles, and secret keys
of the motorcycles, those malicious people can control motorcycles on behalf of motorcycle owners.
The pseudo-addresses of smartphones that can control motorcycles and addresses of motorcycle
can easily be retrieved because the motorcycle applications advertise the pseudo-addresses of user
smartphones and the addresses of motorcycles to notify associated motorcycles to connect to the
smartphones. Moreover, based on our analysis, although the application uses SSL to communicate
with the Web server of the company, the application does not verify the web server certificate. Therefore,
malicious people may intercept the communication between the web server and user applications
to obtain secret keys to control associated motorcycles (the company has fixed the issue after being
notified by us). Obviously, using pseudo-addresses would not be a good solution to identifying devices
using random addresses.

Sensors 2017, 17, 2348 3 of 18

addresses of their owners’ smartphones. However, because current smartphones usually use random

addresses, the backend server of the company generates pseudo-addresses for user smartphones.

After successfully authenticating against the backend server, the user 𝑈 can obtains his/her pseudo-

address 𝐴𝑈 from the backend server and provides the address to his/her motorcycle. When the 𝑆

wants to use his/her smartphone to control the motorcycle, the smartphone advertises a message with

the address of the motorcycle, i.e., 𝐴𝑆 , and his/her pseudo-addresse, i.e., 𝐴𝑈 . After receiving the

message, the motorcycle can detect the presence of the user’s smartphone and try to connect to the

specific GATT service in the smartphone and send a challenge back to the application. The motorcycle

application on the smartphone then retrieves the challenge and generates a response based on the

secret key of the motorcycle and the challenge. Finally, the motorcycle judges whether the the

response matches the challenge. If the response matches the challenge, the motorcycle executes the

previously received command. Nevertheless, the above process has a vulnerability. If malicious

people can obtain the pseudo-addresses of motorcycle owners, Bluetooth MAC addresses of

motorcycles, and secret keys of the motorcycles, those malicious people can control motorcycles on

behalf of motorcycle owners. The pseudo-addresses of smartphones that can control motorcycles and

addresses of motorcycle can easily be retrieved because the motorcycle applications advertise the

pseudo-addresses of user smartphones and the addresses of motorcycles to notify associated

motorcycles to connect to the smartphones. Moreover, based on our analysis, although the

application uses SSL to communicate with the Web server of the company, the application does not

verify the web server certificate. Therefore, malicious people may intercept the communication

between the web server and user applications to obtain secret keys to control associated motorcycles

(the company has fixed the issue after being notified by us). Obviously, using pseudo-addresses

would not be a good solution to identifying devices using random addresses.

Figure 1. A potential security impact of adopting the random address technique.

Because the pairing process plays an important role in the BLE-based authentication process for

preventing Man-In-the-Middle (MITM) attacks and providing communication security, BLE

applications without pairing would increase security risks on the smartphone (and to its owner).

Therefore, in this study we first present the generalized requirements BLE-based applications

associated with IoT devices. From the viewpoint of IoT devices, to pursue the best tradeoff between

privacy and security, we demonstrate a privacy-aware access control scheme for BLE-based IoT

devices. Since in our scheme BLE-based IoT applications can constrain an authorized person to use a

specific smartphone to access IoT devices without revealing the smartphone’s physical identification

information, the proposed method can contribute to alleviate the tension between security and

privacy on BLE-based IoT applications. Moreover, from the viewpoint of a smartphone application

associated with the IoT objects, we propose a Smart Contract-based Investigation Report

Figure 1. A potential security impact of adopting the random address technique.

Because the pairing process plays an important role in the BLE-based authentication process
for preventing Man-In-the-Middle (MITM) attacks and providing communication security, BLE
applications without pairing would increase security risks on the smartphone (and to its owner).
Therefore, in this study we first present the generalized requirements BLE-based applications associated
with IoT devices. From the viewpoint of IoT devices, to pursue the best tradeoff between privacy and
security, we demonstrate a privacy-aware access control scheme for BLE-based IoT devices. Since in our
scheme BLE-based IoT applications can constrain an authorized person to use a specific smartphone
to access IoT devices without revealing the smartphone’s physical identification information, the
proposed method can contribute to alleviate the tension between security and privacy on BLE-based
IoT applications. Moreover, from the viewpoint of a smartphone application associated with the IoT
objects, we propose a Smart Contract-based Investigation Report Management (SCIRM) framework

Sensors 2017, 17, 2348 4 of 19

for the security management of BLE-based applications. The SCIRM enables smartphone application
users to obtain security inspection reports of BLE-based applications of interest with smart contracts.
Benefiting from blockchain technology, users can obtain historical inspection reports of a BLE-based
application and verify the integrity of the reports. In addition, SCIRM utilizes smart contract
technology to implement the interfaces so that smart contracts will enforce the related actions
automatically. The presented framework can enable users to adopt appropriate countermeasures
to potential application security risks as users can obtain up-to-date security information about
applications in a timely way. In brief, in this study we introduce a robust security paradigm, as shown
in Figure 2, for BLE-based smart objects in the IoT in which two viewpoints on IoT device security
and smartphone applications security, respectively, are the focus. The contribution of this manuscript
is twofold: one is a privacy-aware access control scheme for secure communication between the
smartphone and BLE-based IoT devices and the other one is the SCIRM for the security management
of BLE-based applications.

Sensors 2017, 17, 2348 4 of 18

Management (SCIRM) framework for the security management of BLE-based applications. The

SCIRM enables smartphone application users to obtain security inspection reports of BLE-based

applications of interest with smart contracts. Benefiting from blockchain technology, users can obtain

historical inspection reports of a BLE-based application and verify the integrity of the reports. In

addition, SCIRM utilizes smart contract technology to implement the interfaces so that smart

contracts will enforce the related actions automatically. The presented framework can enable users

to adopt appropriate countermeasures to potential application security risks as users can obtain up-

to-date security information about applications in a timely way. In brief, in this study we introduce

a robust security paradigm, as shown in Figure 2, for BLE-based smart objects in the IoT in which

two viewpoints on IoT device security and smartphone applications security, respectively, are the

focus. The contribution of this manuscript is twofold: one is a privacy-aware access control scheme

for secure communication between the smartphone and BLE-based IoT devices and the other one is

the SCIRM for the security management of BLE-based applications.

Figure 2. The proposed security paradigm for BLE-based applications associated with IoT devices.

The rest of the paper is organized as follows: Section 2 discusses the related work and Section 3

presents the generalized security requirement of BLE-based applications associated with IoT devices.

In Section 4, we introduce a privacy-aware access-control mechanism to fulfill the security criterion

we have proposed. After that, the proposed framework, i.e., SCIRM, is presented in Section 5 and,

finally, we conclude the paper in Section 6.

2. Related Work

In recent years, researchers have paid a great deal of attention to the development of IoT-based

applications with potential security and privacy issues. In 2012, Jara et al. [6] designed a knowledge

acquisition and management platform relying on IoT network architecture. The platform focused on

the management of personal health, and enabled delivery of healthcare services by virtue of its

capabilities to predict health anomalies in real-time and offer feedback to patients. The next year,

Berhanu et al. [7] presented an adaptive security process for IoT devices in an e-Health environment,

and examined the validation through the study of the impact of antenna orientation on energy

Figure 2. The proposed security paradigm for BLE-based applications associated with IoT devices.

The rest of the paper is organized as follows: Section 2 discusses the related work and Section 3
presents the generalized security requirement of BLE-based applications associated with IoT devices.
In Section 4, we introduce a privacy-aware access-control mechanism to fulfill the security criterion we
have proposed. After that, the proposed framework, i.e., SCIRM, is presented in Section 5 and, finally,
we conclude the paper in Section 6.

2. Related Work

In recent years, researchers have paid a great deal of attention to the development of IoT-based
applications with potential security and privacy issues. In 2012, Jara et al. [6] designed a knowledge
acquisition and management platform relying on IoT network architecture. The platform focused
on the management of personal health, and enabled delivery of healthcare services by virtue of its
capabilities to predict health anomalies in real-time and offer feedback to patients. The next year,
Berhanu et al. [7] presented an adaptive security process for IoT devices in an e-Health environment,
and examined the validation through the study of the impact of antenna orientation on energy
consumption. The authors investigated the feasibility of adopting lightweight security solutions

Sensors 2017, 17, 2348 5 of 19

as part of the ASSET infrastructure [8]. In 2014, Torjusen et al. [9] proposed a solution integrating
run-time verification enablers in the feedback adaptation loop of the ASSET system, i.e., an adaptive
security framework in an IoT based e-Health environment, and implemented the framework with
colored Petri Nets. The run-time enablers produce machine-based formal models of a system’s status
and available context at run-time. Moreover, the authors presented requirements for verification at
run-time as formal specifications and introduced dynamic context monitoring and adaptation. Recently,
Gope and Hwang [10,11] proposed authentication mechanisms for a distributed IoT-based network
architecture and applied the proposed techniques to healthcare management. The protocols are
suitable for Body Sensor Networks consisting of health care-oriented sensor nodes. To establish secure
communication in an efficient way, lightweight cryptography modules, i.e., one-way hash function and
bitwise exclusive-or operation, are adopted to support the authentication process. The authors then
investigated the security and performance via BAN logics inference and protocol efficiency analysis.

In view of the security issues of the IoT architecture, Yao et al. [12] presented a lightweight
multicast communication scheme on a small scale level of IoT applications. The proposed method is
based on the fast one-way accumulator technique [13] which provides high usage flexibility when
existing and accumulated items in an application are dynamic. The authors then reconstruct a fast
one-way accumulator and designed a lightweight multicast authentication mechanism for small scale
IoT applications. Based on the evaluation and analysis, this study showed that the proposed multicast
authentication scheme can meet the requirements of resource-constraint applications. In 2015, to
achieve security protection among ubiquitous things, Ning et al. [14] proposed an aggregated proof-
based hierarchical authentication scheme for layered U2IoT architectures. In the presented scheme,
anonymous data transmission, mutual authentication and hierarchical access control are achieved via
user authorization, aggregated-proof verifications, homomorphism functions and Chebyshev chaotic
maps. The authors claimed that their proposed scheme is suitable for the U2IoT architecture. Later,
Hernández-Ramos et al. [15] developed several lightweight authentication and authorization schemes,
which are compliant with the Architectural Reference Model (ARM) from the EU FP7 IoT-A project, on
constrained smart objects. The proposed schemes can be combined with other standard technologies
and form security plans for the lifecycle of IoT devices. The same year, Kawamoto et al. [16]
implemented a flexible data collection scheme for retrieving ambient information from intelligent
sensors/devices as authentication tokens in a location-based authentication system for industrial IoT
applications. In the proposed method, a dynamic parameter adjusting mechanism is automatically
performed based on system factors and surrounding environment parameters to pursue higher system
accuracy. Next, Cirani et al. [17] presented an integration architecture consisting of HTTP/CoAP
services and open authorization (OAuth) services for IoT applications with multiple constrained
objects which are limited by their computational power. The authors then conducted a performance
evaluation via simulations with Contiki OS-based constrained devices to present the feasibilities and
practicability of their proposed architecture. More recently, Cha et al. [4] presented an analysis for
examining the security impact of adopting random address technique in BLE-based IoT applications.
The authors argued that a one-to-one property must be strictly adopted for credentials and device
connection. Afterwards, the authors presented a privacy enhancement solution for BLE-based IoT
devices. Fawaz et al. [18] examined more than 200 types of BLE-based devices and discovered these
devices cannot fulfill the privacy criteria, i.e., the device’s presence may be revealed. Potential threats,
such as the revealing of individual sensitive information and even behavior tracking, may thus
exist. To conquer the problem, the authors proposed a privacy-aware enhancement system, called
BLE-Guardian, which delivers robust privacy protection for users (or environments) equipped with
BLE devices. In the proposed system, the users (and administrators) possess the ability to monitor
and control those who discover, scan and connect to their devices. Then, Rizzardia et al. [19] added
security functionalities to MQTT primitives and accordingly constructed a lightweight data-sharing
system. With the support of a policy management scheme, the flow of information in MQTT-enabled

Sensors 2017, 17, 2348 6 of 19

IoT systems can be flexibly controlled based on predefined flexible policies. Furthermore, the authors
presented the proposed mechanism as an open source feature under an Apache v.2 license.

3. The Generalized Requirements

This section provides generalized requirements for BLE-based applications associated with IoT
devices. As depicted in Figure 3, users use their smartphones to send requests to an Internet server
to verify their identities. The server then sends credentials to the user smartphones to enable the
smartphones to connect to nearby IoT devices and to control those devices. In that case, the following
requirements should be achieved:

• The Internet server must ensure that credentials can only be used by the assigned smartphone.
• An IoT device must be controlled by one smartphone at a time.
• Smartphone users can discover the credentials to control IoT devices which have been used by

others even though the IoT devices have no Internet connection abilities.

Table 1 lists possible schemes for IoT devices to identify smartphones. First, after verifying
the identities of smartphone users, the Internet server can generate credentials based on the
identification information of smartphones [20]. Therefore, an IoT device can restrict access so only the
smartphone with the specified identification information can use associated credentials to connect
to the device. Similarly, smartphone applications can use smartphone identification information to
encrypt credentials for IoT device communication. Then, smartphone applications need to use local
identification information to obtain the credentials. If people copy the encrypted credentials to other
smartphones, the smartphone applications cannot obtain credentials with incorrect identification
information. One of the most critical deficiencies of the above schemes is that smartphone applications
may have trouble obtaining the real identification information of the located smartphones.

Sensors 2017, 17, 2348 6 of 18

policies. Furthermore, the authors presented the proposed mechanism as an open source feature

under an Apache v.2 license.

3. The Generalized Requirements

This section provides generalized requirements for BLE-based applications associated with IoT

devices. As depicted in Figure 3, users use their smartphones to send requests to an Internet server

to verify their identities. The server then sends credentials to the user smartphones to enable the

smartphones to connect to nearby IoT devices and to control those devices. In that case, the following

requirements should be achieved:

 The Internet server must ensure that credentials can only be used by the assigned smartphone.

 An IoT device must be controlled by one smartphone at a time.

 Smartphone users can discover the credentials to control IoT devices which have been used by

others even though the IoT devices have no Internet connection abilities.

Table 1 lists possible schemes for IoT devices to identify smartphones. First, after verifying the

identities of smartphone users, the Internet server can generate credentials based on the identification

information of smartphones [20]. Therefore, an IoT device can restrict access so only the smartphone

with the specified identification information can use associated credentials to connect to the device.

Similarly, smartphone applications can use smartphone identification information to encrypt

credentials for IoT device communication. Then, smartphone applications need to use local

identification information to obtain the credentials. If people copy the encrypted credentials to other

smartphones, the smartphone applications cannot obtain credentials with incorrect identification

information. One of the most critical deficiencies of the above schemes is that smartphone

applications may have trouble obtaining the real identification information of the located

smartphones.

Figure 3. Generalized model of BLE-based applications associated with IoT devices.

Table 1. List of Schemes to Pair Smartphones to Devices.

Scheme Deficiencies

Using ID-based keys Difficulty to obtain identity information. Identity stealing

and faking. Encrypting credentials with identities

Storing credentials in SE Not every smartphones have built-in SEs

OTP using out-of-band channels
Extra communication costs. Smartphones may not have

SMS capability.

Encrypting credentials and pseudo-identities

with user pins
Users may forget their pins

Figure 3. Generalized model of BLE-based applications associated with IoT devices.

Table 1. List of Schemes to Pair Smartphones to Devices.

Scheme Deficiencies

Using ID-based keys Difficulty to obtain identity information. Identity
stealing and faking.Encrypting credentials with identities

Storing credentials in SE Not every smartphones have built-in SEs

OTP using out-of-band channels Extra communication costs. Smartphones may not
have SMS capability.

Encrypting credentials and pseudo-identities with
user pins Users may forget their pins

Sensors 2017, 17, 2348 7 of 19

Malicious users may obtain identification information and associated credentials if smartphone
owners jailbreak their smartphones and accidentally install malware on the smartphones. Then, the
malicious users can adopt faked identification information to access IoT devices. To address the issue,
smartphone users may store credentials in the security elements (SEs) of their smartphones and only
perform operations regarding credentials in the SEs. Obviously, the biggest limitation of the scheme
is that not every smartphone has built-in SEs. Moreover, when users wish to communicate with IoT
devices, the users can request remote servers to send one-time-passwords (OTPs) to user smartphones
via SMS messages. However, users may not be able to receive SMSs if their smartphones do not install
SIM cards. Also, users may need to pay extra costs to receive SMS messages. Even when the servers
send OTPs to users through e-mails rather than SMS messages, the IoT devices need to synchronize
with the servers.

Finally, after servers authenticate the users, the servers can generate pseudo-identities for the
users and send the pseudo-identities along with associated credentials to users. The smartphone
applications can request the users to input PINs and use the PINs to encrypt the data. Then, users can
input PINs into smartphone applications to obtain the original pseudo-identities and credentials to
communicate with IoT devices. In this case, if malicious users obtain data encrypted with the PINs of
others, the malicious users cannot obtain correct pseudo-identities along with associated credentials
to connect to IoT devices. One major challenge of the scheme is to deal with the situations that users
forget their PINs. Users may further store encrypted PINs to remote servers to address the issue.

4. A Privacy-Aware Access-Control Mechanism for BLE-Based Smart Objects

In this section, we present a privacy-aware access-control scheme for enabling BLE-based IoT
devices. Let the notation E/Ep denotes an elliptic curve E over a prime finite field Ep, defined by an
equation: y2 = x3 + ax + b, where a, b ∈ Fp are constants such that ∆ = 4a3 + 27b2 6= 0. All points
Pi = (xi, yi) on E and the infinity point O form a cyclic group G under the operation of point addition
R = P + Q defined based on the chord-and-tangent rule. In addition, we define t · P = P + P + . . . + P
(t times) as scalar multiplication, where P is a generator of G with order n.

• Setup: server X generates a group G of elliptic curve points with prime order n and determines
a generator P of G. Then, X chooses a master key s ∈ Z∗n and a secure hash function
H : {0, 1}∗ × G → Z∗q . Next, X calculates a master public key PKX = s · P, and publishes system
parameters, i.e., (G, P, PKX , H). On the other hand, given params, the smartphone S picks a
random number xS ∈ Z∗n as it’s own secret value and computes PKS = xS · P as the corresponding
public key. During system initialization, a set of system parameters, i.e., (G, P, PKX , PKS, H), are
installed into each IoT device associated with server X.

• Verification (Figure 4): first, an authentication between smartphone S and server X is performed.
After authenticating the user, the server generates a pseudo-identity IDS for the user. Given
params, s and the identity IDS of smartphone S, server X generates a random number rx ∈ Z∗n, and
calculates Rx = rx · P, hx = H(Rx, PKS, IDS, PKX) and sx = rx · IDS + hx · s mod n. Then, server
X returns (IDS, sx, Rx) to the smartphone S which soon forwards it to the device D. Then, device
D checks the validity of (IDS, sx, Rx) via whether the equation sx · P = Rx · IDS + hx · PKx mod n
holds or not. The correctness of (IDS, sx, Rx) is presented as follows: sx · P = (rx · IDS + hx · s) ·
P = rx · IDS · P + hx · s · P = Rx · IDS + hx · PKx. If the validity of (IDS, sx, Rx) holds, device D
can be operated and accessed by smartphone S (and server X) and sends a success command as a
response to smartphone S.

Sensors 2017, 17, 2348 8 of 19
Sensors 2017, 17, 2348 8 of 18

Figure 4. The communication processes of the proposed ECC-based scheme.

4.1. Security Analysis of the Proposed Approach

In this study, we assume that adversary Adv models an outside adversary who is able to replace

any entity’s public key with specific values chosen by the adversary itself; however, the adversary

Adv does not know the secret value of Server X.

Game 1: The following process is performed between a challenger C and an adversary Adv during

the proposed ECC-based approach between IoT device D and server X. In Initialization phase, C

generates 𝑠, 𝑥𝑆 and system parameters, i.e., (𝐺, 𝑃, 𝑃𝐾𝑋, 𝑃𝐾𝑆, 𝐻). Next, C sends (𝐺, 𝑃, 𝑃𝐾𝑋, 𝑃𝐾𝑆, 𝐻) to

the adversary Adv. Next, in Query phase, the adversary Adv is able to adaptively issue the following

oracle queries, i.e., RequestPublicKey(IDt) and ReplacePublicKey(IDt, PKt, PKt#) to C, where t may be IoT

device D or server X. Finally, in Output phase the adversary Adv will output (𝐼𝐷𝑡 , 𝑠𝑡 , 𝑅𝑡); and, if

 𝑡𝑟𝑢𝑒 ← 𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝐷𝑆, 𝑠𝑥, 𝑅𝑥), the adversary Adv wins in Game 1.

 RequestPublicKey(IDt): The oracle takes as input a query (IDt), where IDt is the party t’s identity.

It browses the list L and returns the party t’s public key PKt.

 ReplacePublicKey(IDt, PKt, PKt#): The oracle takes as input a query (IDt, PKt, PKt#), where IDt is the

party t’s identity. This oracle replaces the party t’s public key with PKt# and updates the

corresponding information in the list L.

Definition 1. The proposed ECC-based mechanism between IoT device D and server X is secure against

malicious adversaries, if for any polynomial adversary Adv, Succj is negligible, where Succj is the success

probability that Adv wins in Game 1.

Definition 2. (Elliptic Curve Discrete Logarithm Problem; ECDLP). Given a group G of elliptic curve points

with prime order n, a generator P of G and a point 𝑥 ⋅ 𝑃, it is computationally infeasible to derive 𝑥, where

𝑥 ∈ 𝑍𝑛
∗ .

Theorem 1. The proposed ECC-based scheme is existentially secure against malicious adversary in the random

oracle model, assuming the hardness of solving ECDLP. If there exist a polynomial-time (pt, qH, qpk, qrpk)

adversary 𝛼 which can submit at most qH queries to the oracle Hash(.), qpk queries to the oracle

RequestPublicKey(IDt) and qrpk queries to the oracle ReplacePublicKey(IDt, PKt, PKt#), and 𝑆𝑢𝑐𝑐𝛼 is negligible,

where 𝑆𝑢𝑐𝑐𝛼 is the success probability that 𝛼 wins in game 1, then there exists another algorithm 𝛽 which

can solve a random instance of ECDLP in polynomial time with success probability:

𝑆𝑢𝑐𝑐𝛽 ≥
𝑆𝑢𝑐𝑐𝛼

𝑞𝐻 × 𝑞𝑝𝑘 × 𝑞𝑟𝑝𝑘

Figure 4. The communication processes of the proposed ECC-based scheme.

4.1. Security Analysis of the Proposed Approach

In this study, we assume that adversary Adv models an outside adversary who is able to replace
any entity’s public key with specific values chosen by the adversary itself; however, the adversary Adv
does not know the secret value of Server X.

Game 1: The following process is performed between a challenger C and an adversary Adv during
the proposed ECC-based approach between IoT device D and server X. In Initialization phase, C
generates s, xS and system parameters, i.e., (G, P, PKX , PKS, H). Next, C sends (G, P, PKX , PKS, H)

to the adversary Adv. Next, in Query phase, the adversary Adv is able to adaptively issue the following
oracle queries, i.e., RequestPublicKey(IDt) and ReplacePublicKey(IDt, PKt, PKt

#) to C, where t may be
IoT device D or server X. Finally, in Output phase the adversary Adv will output (IDt, st, Rt); and, if
true← Veri f y(params, IDS, sx, Rx) , the adversary Adv wins in Game 1.

• RequestPublicKey(IDt): The oracle takes as input a query (IDt), where IDt is the party t’s identity.
It browses the list L and returns the party t’s public key PKt.

• ReplacePublicKey(IDt, PKt, PKt
#): The oracle takes as input a query (IDt, PKt, PKt

#), where IDt

is the party t’s identity. This oracle replaces the party t’s public key with PKt
and updates the

corresponding information in the list L.

Definition 1. The proposed ECC-based mechanism between IoT device D and server X is secure against
malicious adversaries, if for any polynomial adversary Adv, Succj is negligible, where Succj is the success
probability that Adv wins in Game 1.

Definition 2. (Elliptic Curve Discrete Logarithm Problem; ECDLP). Given a group G of elliptic curve points
with prime order n, a generator P of G and a point x · P , it is computationally infeasible to derive x, where x ∈ Z∗n.

Theorem 1. The proposed ECC-based scheme is existentially secure against malicious adversary in the
random oracle model, assuming the hardness of solving ECDLP. If there exist a polynomial-time (pt, qH,
qpk, qrpk) adversary α which can submit at most qH queries to the oracle Hash(.), qpk queries to the oracle
RequestPublicKey(IDt) and qrpk queries to the oracle ReplacePublicKey(IDt, PKt, PK t

#), and Succα is negligible,

Sensors 2017, 17, 2348 9 of 19

where Succα is the success probability that α wins in game 1, then there exists another algorithm β which can
solve a random instance of ECDLP in polynomial time with success probability:

Succβ ≥
Succα

qH × qpk × qrpk

Proof. Let α be a polynomial-time adversary that breaks the proposed ECC-based scheme with
non-negligible advantage Succα. The goal of this proof is to build a polynomial-time algorithm β

which uses α to solve ECDLP. That is, given a random instance (P, Q = x · P), it derives the secret x.
In Initialization phase, β picks an identity ID∗ as the challenged identity in game 1, sets Q = PKX
and sends public system parameters (G, P, PKX , PKS, H) to α. In Query phase, α adaptively issue the
following oracle queries to β, and each query is unique.

• Hash query: For each query, β maintains a list ListH storing <Rt, PKS, IDS, PKt, ht>.
Upon receiving an Hash query for some < Rt, PKS, IDS, PKt, ht > from α, β checks the ListH and
returns ht to α via the following steps:

(1) If <Rt, PKS, IDS, PKt, ht> exists in ListH , β directly returns ht to α.
(2) Otherwise, it chooses a random value ht ∈ Z∗n, adds <Rt, PKS, IDS, PKt, ht> into ListH ,

and returns ht to α.

• RequestPublicKey(IDt): Upon receiving a query with an identity IDt from α, β performs the
following steps:

(1) If IDt 6= ID∗, β generates three random numbers at, bt, xt ∈ Z∗n, and performs
Rt · IDS ← at · P− bt · PKt , ht ← bt , st ← at and PKt = xt · P. Then, β adds <ht, IDS, Rt>
and <IDS, st, Rt, PKt, xt> to the lists ListH and ListK, respectively. Finally, β returns PKt

to α.
(2) Otherwise, β generates three random numbers at, bt, xt ∈ Z∗n, and sets IDt · Rt ← at · P ,

ht ← bt , st ← ⊥ and PKt = xt · P. Then, β adds <ht, IDS, Rt> and <IDS,⊥, Rt, PKt, xt>
to the lists ListH and ListK, respectively. Finally, β returns PKt to α.

• ReplacePublicKey(IDt, PKt, PKt
#): Once β receives a query for some (IDt, PKt, PKt

#) from α, β

performs the following steps:

(1) β looks for < IDS, st, Rt, PKt, xt > in the list ListK. If there exists such a record, β sets PKt

= PKt
and xt = ⊥.

(2) Otherwise, β simulate the RequestPublicKey(IDt) query for the identity IDt and sets
PKt=PKt

and xt = ⊥.

In the final phase, α successfully outputs (IDS, st, Rt) for the target ID∗ with non-negligible
advantage Succα. Based on the forking lemma [21], if we have the polynomial replay of β with the
same random tape and different choices of hash oracle, α is able to output another valid signature.
Eventually, we will have two valid verification, i.e.,

(
IDS, st, Rt

(j)
)

, satisfying the following equations

st
(j) = rt · IDS

(j) + ht
(j) · s mod n, where j = 1 and 2. Now, β can derive the two unknown values

rt and s, and outputs s as the solution of the random instance (P, Q = s · P) of ECDLP. Next, we
analyze β’s success probability Succβ of winning in game 1. Note that Event 1 (E1) denotes that
α can forge a valid verification message, i.e., (IDS, st, Rt), while Event 2 (E2) represents that the
output (IDS, st, Rt) satisfies IDt = ID∗. It is calculated that Pr[E1] ≥ Succα, Pr[E2|E1] ≥ 1

qH×qpk×qrpk

and Succβ = Pr[E1 ∧ E2] = Pr[E1]Pr[E2|E1] ≥ Succα
qH×qpk×qrpk

, where qH is the number of Hash query,
qpk is the number of RequestPublicKey query and qrpk is the number of ReplacePublicKey query.
Hence, the algorithm β can solve ECDLP with, at minimum, the advantage Succα

qH×qpk×qrpk
, where

Sensors 2017, 17, 2348 10 of 19

qH denotes the maximum number of queries to Hash, qpk denotes the maximum number of queries to
RequestPublicKey(IDt) and qrpk denotes the maximum number of queries to ReplacePublicKey(IDt, PKt,
PKt

#). That contradicts the hardness of solving ECDLP. �

4.2. Performance Analysis of the Proposed Approach

To evaluate the performance of the proposed approach, we adopt an IoT-based testbed, i.e.,
Raspberry PI 2, as the implementation platform in the experiment. The Raspberry PI platform is a
card-sized single-board computer which offers an ARM GNU/Linux kernel. In general, the Raspberry
PI platform is simulated as an IoT-based smart object. The implementation environment is outlined
in Table 2. In addition, in the experiment the elliptic curve is with a 384-bit prime n and the random
number generator is with 96-bit output sequence, while SHA-3 (512-bit) is used as the one-way
hash function. From Table 3, we can see that around 1301 ms is required in terms of the execution
time for the required computations at BLE-based IoT devices. Note that in the experiment, the
smartphone performs only the job of message forwarding, while the server is responsible for the
signature generation. Obviously, both of them will not be performance bottlenecks when performing
our proposed privacy-aware access-control scheme. Therefore, we only investigate the performance at
the IoT device end in which the signature verification is invoked.

Table 2. Implementation Environment.

Environment Description

IoT Platform Raspberry PI 2: Broadcom BCM2836 @ 1 GHz Quad-Core ARM Cortex-A7
Architecture, 1 GB DDR2 RAM, SanDisk 16 GB Class 10 SD Card

Programming Language Eclipse 3.8 with Oracle Java 8

Crypto API The Bouncy Castle Crypto APIs [22]

Table 3. Experiment Results at BLE-based IoT Devices.

Computation Cost Execution Time

Compute H(Rx, PKx, IDx, PKx) 1.017 ms
Verify sx · P = Rx · IDS + hx · PKx 0.284 ms

5. Smart Contract-Based Investigation Report Management Framework (SCIRM)

To help application developers develop secure smartphone applications, several countries and
organizations such as the European Union Agency for Network and Information Security (ENISA) [23]
and the Taiwan Industrial Development Bureau (IDB) [24], have developed guidelines for smartphone
application security. However, when users download smartphone applications from marketplaces,
users usually cannot know whether the developers of the applications have followed the guidelines
to develop the applications. Therefore, organizations such as US National Institute of Standards
and Technology (NIST) [25] and the Open Web Application Security Project (OWASP) [26] have
developed smartphone application verification guidelines as well as security requirements for
smartphone applications. Hence, smartphone application developers can delegate third parties to
follow the verification guidelines to check whether their applications satisfy security requirements
of the verification guidelines. Furthermore, organization or government agencies may develop
certification programs for smartphone applications. For example, the Taiwan IDB has announced
the self-regulatory mobile application security certification program [27]. Smartphone application
developers can appoint accredited inspection laboratories to inspect whether their applications satisfy
applicable security requirements. Consequently, users can decide to only install inspected applications
to reduce security risks of using smartphone applications. In light of this, we propose a Smart
Contract-based Investigation Report Management (SCIRM) framework for security evaluation of

Sensors 2017, 17, 2348 11 of 19

BLE-based applications associated with IoT devices. The framework provides not only ontologies
to store verification reports about smartphone applications in a bitcoin-like blockchain, but also
standard interfaces based on smart contracts for application verifiers to upload inspection reports to
the blockchain. The users are notified once the inspection results of a smartphone application have
changed. As a result, the proposed framework can enable users to obtain the latest security information
of an application timely. Moreover, users can also obtain historical inspection results on applications
by versions, developers, and other application profiles. The proposed framework can also contribute
to providing users more information to evaluate application security risks.

Figure 5 provides an overview of the proposed framework. As depicted in Figure 5, the framework
contains two views: the conceptual view and the implementation view. The conceptual view is
composed of four major standards:

• The Specification of Inspection Report defines the components of an inspection report as well
as the format of each component. In general, an inspection report includes a list of inspection
results. Each inspection result is for a security objective. An inspector can describe findings about
whether an application comply with a security objective in an inspection result.

• The Specification of Report Storage clarifies how to store an inspection report in the blockchain.
• The Trusted Verifier Schema Specification provides properties required to describe a trusted

verifier. In general, users may not know the trustworthy of an inspector and the inspection
reports it issued. This study assumes that a notary can provide identities and associated public
keys for well-known inspectors. For example, Taiwan has the Accreditation Program for Mobile
Application Basic Security Evaluation Laboratories [28]. The Taiwan Accreditation Foundation
lists information about the accredited laboratories on its Web pages. Therefore, we can simply
append blockchain account identities and associated public keys of the laboratories.

• The standard API and the associated smart contract for report management.

Sensors 2017, 17, 2348 11 of 18

 The Specification of Inspection Report defines the components of an inspection report as well as

the format of each component. In general, an inspection report includes a list of inspection

results. Each inspection result is for a security objective. An inspector can describe findings about

whether an application comply with a security objective in an inspection result.

 The Specification of Report Storage clarifies how to store an inspection report in the blockchain.

 The Trusted Verifier Schema Specification provides properties required to describe a trusted

verifier. In general, users may not know the trustworthy of an inspector and the inspection

reports it issued. This study assumes that a notary can provide identities and associated public

keys for well-known inspectors. For example, Taiwan has the Accreditation Program for Mobile

Application Basic Security Evaluation Laboratories [28]. The Taiwan Accreditation Foundation

lists information about the accredited laboratories on its Web pages. Therefore, we can simply

append blockchain account identities and associated public keys of the laboratories.

 The standard API and the associated smart contract for report management.

Conceptual View

Specification of
Inspection Report

Specification of Report
Storage

Smart Contracts Code
& Interface

Trusted Verifier
Schema Specification

Implementation View

Blockchain Network

Notary

Trusted Verifier
Provision

Chunk i of report x

Chunk j of report x

State of report
manager for report x

Blocks

Interface for
VerifiersInterface for

Users

Naming
Service

State of app event
notifier for App y

Interface for
Nota

Figure 5. The overview of the proposed SCIRM framework.

The implementation view illustrates the physical components of the framework. We deploy the

framework on the Ethereum blockchain system [29]. In the Ethereum blockchain system, people can

enclose data in transactions. The blockchain system encapsulates the transactions in blocks. Due to

the size limits of a transaction, this study requests a verifier to split an inspection report into several

chunks and enclose the chunks into different transactions. The report manager is to manage the

inspection reports. When a verifier submits an inspection report to the blockchain, the verifier obtains

the compiled byte code of the report manager and creates a new instance of the report manager smart

contract. The verifier can then bind the contract to the transactions of the inspection report. As

depicted in Figure 5, the Ethereum blockchain system stores the state of each contract in blocks. After

a verifier has created a report manager smart contract for an inspection report, people can obtain the

state of the contract from a block in the blockchain system and use the state information to find

associated transactions storing the chunks of the report. In addition, we define the application event

notifier smart contract. A notary can create an application event notifier smart contract for an

Figure 5. The overview of the proposed SCIRM framework.

Sensors 2017, 17, 2348 12 of 19

The implementation view illustrates the physical components of the framework. We deploy the
framework on the Ethereum blockchain system [29]. In the Ethereum blockchain system, people can
enclose data in transactions. The blockchain system encapsulates the transactions in blocks. Due to
the size limits of a transaction, this study requests a verifier to split an inspection report into several
chunks and enclose the chunks into different transactions. The report manager is to manage the
inspection reports. When a verifier submits an inspection report to the blockchain, the verifier obtains
the compiled byte code of the report manager and creates a new instance of the report manager smart
contract. The verifier can then bind the contract to the transactions of the inspection report. As depicted
in Figure 5, the Ethereum blockchain system stores the state of each contract in blocks. After a verifier
has created a report manager smart contract for an inspection report, people can obtain the state of
the contract from a block in the blockchain system and use the state information to find associated
transactions storing the chunks of the report. In addition, we define the application event notifier
smart contract. A notary can create an application event notifier smart contract for an application.
Verifiers can then link the report manager smart contract of the application to the application event
notifier smart contract. Therefore, users only need to listen to the application event notifier smart
contract to obtain events that an inspection report of the application has been created or obsoleted.

In addition to the constructor, a report manager smart contract provides interfaces for users and
verifiers to access information of the associated report. Simply speaking, the report manager smart
contract of an inspection report enables users to obtain the contents and status (e.g., active, obsolete, or
revoked) of the report. Moreover, report manager smart contracts can trigger events to notify users
the status changes of reports. On the other hand, a verifier can update the status of a report and
append other reports to the report through the related smart contract. Although users can obtain all
inspection reports and related information of smartphone applications by traversing through every
block in the blockchain, finding transactions and contract states of a specific smartphone application
could be very time-consuming. Therefore, this study proposes to deploy some supernodes for building
indexes on transaction attributes and contract states. The supernodes can provide naming services for
users to lookup inspection re-ports on a specific smartphone application or reports on applications
developed by a specific developer. Finally, in current Ethereum blockchain systems, people only know
a transaction or a smart contract is submitted by an identity. Consequently, users cannot determine
whether they should trust inspection reports issued by an identity. To address the issue, this study
assumes that notaries can provide a list of trusted verifiers as well as information of the verifiers.
The notaries may also process complaints of application developers and mark an inspection report
as revoked. However, enabling notaries to revoke inspection reports may induce disputes between
notaries and verifiers. We leave the report revocation mechanism as our future work.

Before introducing the report management smart contract, this study will first introduce the
application event notifier smart contract. Figure 6 illustrates the abstract interface of an application
event notifier smart contract. An application event notifier smart contract contains profiles of a
smartphone application. In addition, it provides the reportStatusChanged interface for the associated
report manger smart contract to inform the application event notifier smart contract that the creator of
the report manger has just updated the state of the related inspection report. Consequently, interested
people can obtain update events for an inspection report. In this case, SCIRM provides the following
types of update events for an inspection report:

Sensors 2017, 17, 2348 13 of 19

SCIRM provides the following types of update events for an inspection report:

• Creation of the inspection report.
• Obsoleting of the inspection report.
• Being extended by another report.

Sensors 2017, 17, 2348 12 of 18

application. Verifiers can then link the report manager smart contract of the application to the

application event notifier smart contract. Therefore, users only need to listen to the application event

notifier smart contract to obtain events that an inspection report of the application has been created

or obsoleted.

In addition to the constructor, a report manager smart contract provides interfaces for users and

verifiers to access information of the associated report. Simply speaking, the report manager smart

contract of an inspection report enables users to obtain the contents and status (e.g., active, obsolete, or

revoked) of the report. Moreover, report manager smart contracts can trigger events to notify users the

status changes of reports. On the other hand, a verifier can update the status of a report and append

other reports to the report through the related smart contract. Although users can obtain all inspection

reports and related information of smartphone applications by traversing through every block in the

blockchain, finding transactions and contract states of a specific smartphone application could be very

time-consuming. Therefore, this study proposes to deploy some supernodes for building indexes on

transaction attributes and contract states. The supernodes can provide naming services for users to

lookup inspection re-ports on a specific smartphone application or reports on applications developed

by a specific developer. Finally, in current Ethereum blockchain systems, people only know a

transaction or a smart contract is submitted by an identity. Consequently, users cannot determine

whether they should trust inspection reports issued by an identity. To address the issue, this study

assumes that notaries can provide a list of trusted verifiers as well as information of the verifiers. The

notaries may also process complaints of application developers and mark an inspection report as

revoked. However, enabling notaries to revoke inspection reports may induce disputes between

notaries and verifiers. We leave the report revocation mechanism as our future work.

Before introducing the report management smart contract, this study will first introduce the

application event notifier smart contract. Figure 6 illustrates the abstract interface of an application

event notifier smart contract. An application event notifier smart contract contains profiles of a

smartphone application. In addition, it provides the reportStatusChanged interface for the associated

report manger smart contract to inform the application event notifier smart contract that the creator

of the report manger has just updated the state of the related inspection report. Consequently,

interested people can obtain update events for an inspection report. In this case, SCIRM provides the

following types of update events for an inspection report:

SCIRM provides the following types of update events for an inspection report:

 Creation of the inspection report.

 Obsoleting of the inspection report.

 Being extended by another report.

Figure 6. Abstract of the application event notifier smart contract. Figure 6. Abstract of the application event notifier smart contract.

Note that because contents of transactions are immutable in blockchains, update operations to
an inspection report are not provided. The abstract interface of a report manager smart contract is
depicted in Figure 7. In addition to the profiles of the associated application, a report manager smart
contract contains the status of an inspection report, total chunks of the report, and the addresses of
the chunks. As depicted in Figure 8, when a verifier wishes to upload an inspection report for an
application, the verifier will first split the report into several chunks and submit transactions containing
the chunks to the blockchain network. The verifier then generates a report manager smart contract
with application profiles, total chunk number of the report, and the address of the applications event
notifier smart contract.

Sensors 2017, 17, 2348 14 of 19

Sensors 2017, 17, 2348 13 of 18

Note that because contents of transactions are immutable in blockchains, update operations to

an inspection report are not provided. The abstract interface of a report manager smart contract is

depicted in Figure 7. In addition to the profiles of the associated application, a report manager smart

contract contains the status of an inspection report, total chunks of the report, and the addresses of

the chunks. As depicted in Figure 8, when a verifier wishes to upload an inspection report for an

application, the verifier will first split the report into several chunks and submit transactions

containing the chunks to the blockchain network. The verifier then generates a report manager smart

contract with application profiles, total chunk number of the report, and the address of the

applications event notifier smart contract.

Figure 7. Abstract of the report manager smart contract.

Because the current Ethereum platform only allows using fixed size array as function parameters,

the verifier needs to use the setChunkInfo function to provide associated transaction addresses one by

one. The report manger smart contract will store the addresses in a mapping object. After receiving

addresses to access every chunk of the associated report, the report manger smart contract will invoke

the reportStatusChanged function of related application event notifier. The notifier can then trigger an

event to notify interested users of the creation of the report. The verifier can also use the obsoleteReport

function to obsolete a report, or the extended function to represent the situation that the report is

extended by another report. The report manger smart contract will also request the associated

application event notifier smart contract to notify users when these two functions are called.

Figure 7. Abstract of the report manager smart contract.

Because the current Ethereum platform only allows using fixed size array as function parameters,
the verifier needs to use the setChunkInfo function to provide associated transaction addresses one by
one. The report manger smart contract will store the addresses in a mapping object. After receiving
addresses to access every chunk of the associated report, the report manger smart contract will
invoke the reportStatusChanged function of related application event notifier. The notifier can then
trigger an event to notify interested users of the creation of the report. The verifier can also use the
obsoleteReport function to obsolete a report, or the extended function to represent the situation that the
report is extended by another report. The report manger smart contract will also request the associated
application event notifier smart contract to notify users when these two functions are called.

Sensors 2017, 17, 2348 15 of 19
Sensors 2017, 17, 2348 14 of 18

Verifier

1. Split an inspection report into
several trunks

2. Submit the trunks to the block
chain network

ReportManager

3. Create a report
manager smart

contract

AppEventNotifier User

loop Has more chunk
information to set?

4. Set chunk information

5. ReportStatusChanged

6. Trigger an event to
notify interested users

Figure 8. The report creation process.

Figure 9 illustrates the process for a user to retrieve inspection reports of an application from a

blockchain. When a user downloads a smartphone application from a marketplace, the user can first

query the naming service to obtain the address of the AppEventNotifier smart contract of the

application as well as the addresses of associated ReportManager smart contracts. Then, for each

ReportManager smart contract, the user can obtain the status of the associated inspection report and

the verifier to determine whether or not to download the report. If the user decides to download the

report, the user can reassemble the report by collecting all the chunks stored in the transactions.

Finally, the user can listen to the AppEventNotifier smart contract of the application for status changing

events of the application inspection reports.

User Naming Service

1. Obtain addresses of
AppEventNotifier and

ReportManager smart contract of
an application

ReportManager

2. Obtain the status and total chunk
number of the report managed by

the ReportManager

loop
Has more chunk

information to retrieve?

3. Retrieve transactions that
store chunks of the report

from the blockchain

AppEventNotifer

4. Listens for events about reports
of the application

Figure 9. The report query process.

5.1. Performance Analysis for SCIRM

To prove the concept of the proposed framework, we have implemented a prototype system and

performed simulation experiment. As shown in Figure 10, we use Node.js to implement a Report

Upload Server to handle inspection report uploads. In addition, this study launches a private

Ethereum network with a single service node. The report manager communicates with the node via

the Ethereum JavaScript API. After receiving an inspection report, the report upload server will split

received reports into chucks (Step 1), store the chunks in transactions (Step 2), and send the

Figure 8. The report creation process.

Figure 9 illustrates the process for a user to retrieve inspection reports of an application from a
blockchain. When a user downloads a smartphone application from a marketplace, the user can first
query the naming service to obtain the address of the AppEventNotifier smart contract of the application
as well as the addresses of associated ReportManager smart contracts. Then, for each ReportManager
smart contract, the user can obtain the status of the associated inspection report and the verifier to
determine whether or not to download the report. If the user decides to download the report, the
user can reassemble the report by collecting all the chunks stored in the transactions. Finally, the user
can listen to the AppEventNotifier smart contract of the application for status changing events of the
application inspection reports.

Sensors 2017, 17, 2348 14 of 18

Verifier

1. Split an inspection report into
several trunks

2. Submit the trunks to the block
chain network

ReportManager

3. Create a report
manager smart

contract

AppEventNotifier User

loop Has more chunk
information to set?

4. Set chunk information

5. ReportStatusChanged

6. Trigger an event to
notify interested users

Figure 8. The report creation process.

Figure 9 illustrates the process for a user to retrieve inspection reports of an application from a

blockchain. When a user downloads a smartphone application from a marketplace, the user can first

query the naming service to obtain the address of the AppEventNotifier smart contract of the

application as well as the addresses of associated ReportManager smart contracts. Then, for each

ReportManager smart contract, the user can obtain the status of the associated inspection report and

the verifier to determine whether or not to download the report. If the user decides to download the

report, the user can reassemble the report by collecting all the chunks stored in the transactions.

Finally, the user can listen to the AppEventNotifier smart contract of the application for status changing

events of the application inspection reports.

User Naming Service

1. Obtain addresses of
AppEventNotifier and

ReportManager smart contract of
an application

ReportManager

2. Obtain the status and total chunk
number of the report managed by

the ReportManager

loop
Has more chunk

information to retrieve?

3. Retrieve transactions that
store chunks of the report

from the blockchain

AppEventNotifer

4. Listens for events about reports
of the application

Figure 9. The report query process.

5.1. Performance Analysis for SCIRM

To prove the concept of the proposed framework, we have implemented a prototype system and

performed simulation experiment. As shown in Figure 10, we use Node.js to implement a Report

Upload Server to handle inspection report uploads. In addition, this study launches a private

Ethereum network with a single service node. The report manager communicates with the node via

the Ethereum JavaScript API. After receiving an inspection report, the report upload server will split

received reports into chucks (Step 1), store the chunks in transactions (Step 2), and send the

Figure 9. The report query process.

5.1. Performance Analysis for SCIRM

To prove the concept of the proposed framework, we have implemented a prototype system and
performed simulation experiment. As shown in Figure 10, we use Node.js to implement a Report
Upload Server to handle inspection report uploads. In addition, this study launches a private Ethereum
network with a single service node. The report manager communicates with the node via the Ethereum
JavaScript API. After receiving an inspection report, the report upload server will split received
reports into chucks (Step 1), store the chunks in transactions (Step 2), and send the transaction to the

Sensors 2017, 17, 2348 16 of 19

node (Step 3). Next, the report upload server creates a report manager smart contract and sends the
addresses to the contract (Step 4).

Sensors 2017, 17, 2348 15 of 18

transaction to the node (Step 3). Next, the report upload server creates a report manager smart

contract and sends the addresses to the contract (Step 4).

Report
Upload
Server

Inspection Reports

Private Ethereum Service Node

Ethereum JavaScript
API

ReportManager

Figure 10. The experimental scenario.

In the experiment, the report manager and the Ethereum service node are both executed on a

desktop equipped with an Intel Core i7-4790 CPU 3.60 GHz CPU and 12 GB RAM running Ubuntu

16.04 LTS. To simplify the experimental environment, this study fixes the mining difficulty to 0x4000.

Note that the mining difficulty is a parameter of the Ethereum and other blockchain platforms. In the

blockchain platforms, each participant competes to win the right to generate a data block and store the

block in associated blockchains. In this case, a participant tries to find a nonce that the participant can

use the nonce to generate a hash value matching specific patterns with the nonce and the data block to

be stored. The higher the mining difficulty, the more calculating efforts a participant need to perform. In

addition, the competition winner can usually receive a specified amount of digital currency as

incentives to maintain the platforms continuously. As advances of information technologies, the

blockchain platforms usually increase the mining difficulty to control the total amount of associated

digital currencies. However, increasing the mining difficulty may influence the experimental results.

Therefore, we fix the mining difficulty in our experiment to discuss the differences of using different

blocksize.

An inspection report is about 22 Kbytes (based on the inspection items of the Taiwan self-

regulatory mobile application security certification program). This study calculates the average time

for the report update server to perform the tasks (from Step 1 to Step 4) in the above paragraph with

different maximum chunk size. For each maximum chunk size, this study performs the experiment

20 times. Table 4 summarizes the experimental results in which the experimental result illustrates the

time for an inspector to store an inspection report in the blockchain. As listed in the table, the report

update server can usually finish the above tasks in reasonable amount of time. On the aspect of report

inquiry, a user can usually obtain the inspection report less than a second because the user can just

read data in a blockchain directly without any mining behavior.

Table 4. Experimental results of storing an inspection report in the blockchain.

Maximum Chunk Size (Bytes) 1 K 2 K 4 K 8 K 16 K 32 K

Average time (seconds) 79.6 42.0 24.9 14.0 10.9 7.41

5.2. Security Analysis for SCIRM

The SCIRM framework has the following major security requirements: (a) a malicious person

cannot spoof the identity of a verifier to issue an inspection report; (b) unauthorized people cannot

tamper with the content of an inspection report; and (c) only the creator of an inspection report can

change the status of the report. To fulfill requirement (a), a user can obtain the verifier identity from a

report manager smart contract and use the identity to retrieve information of the verifier from the

notaries. This study assumes that notaries can check the authenticity of the identities and the related

Figure 10. The experimental scenario.

In the experiment, the report manager and the Ethereum service node are both executed on a
desktop equipped with an Intel Core i7-4790 CPU 3.60 GHz CPU and 12 GB RAM running Ubuntu
16.04 LTS. To simplify the experimental environment, this study fixes the mining difficulty to 0x4000.
Note that the mining difficulty is a parameter of the Ethereum and other blockchain platforms. In the
blockchain platforms, each participant competes to win the right to generate a data block and
store the block in associated blockchains. In this case, a participant tries to find a nonce that the
participant can use the nonce to generate a hash value matching specific patterns with the nonce
and the data block to be stored. The higher the mining difficulty, the more calculating efforts a
participant need to perform. In addition, the competition winner can usually receive a specified
amount of digital currency as incentives to maintain the platforms continuously. As advances of
information technologies, the blockchain platforms usually increase the mining difficulty to control the
total amount of associated digital currencies. However, increasing the mining difficulty may influence
the experimental results. Therefore, we fix the mining difficulty in our experiment to discuss the
differences of using different blocksize.

An inspection report is about 22 Kbytes (based on the inspection items of the Taiwan
self-regulatory mobile application security certification program). This study calculates the average
time for the report update server to perform the tasks (from Step 1 to Step 4) in the above paragraph
with different maximum chunk size. For each maximum chunk size, this study performs the experiment
20 times. Table 4 summarizes the experimental results in which the experimental result illustrates the
time for an inspector to store an inspection report in the blockchain. As listed in the table, the report
update server can usually finish the above tasks in reasonable amount of time. On the aspect of report
inquiry, a user can usually obtain the inspection report less than a second because the user can just
read data in a blockchain directly without any mining behavior.

Table 4. Experimental results of storing an inspection report in the blockchain.

Maximum Chunk Size (Bytes) 1 K 2 K 4 K 8 K 16 K 32 K

Average time (seconds) 79.6 42.0 24.9 14.0 10.9 7.41

5.2. Security Analysis for SCIRM

The SCIRM framework has the following major security requirements: (a) a malicious person
cannot spoof the identity of a verifier to issue an inspection report; (b) unauthorized people cannot
tamper with the content of an inspection report; and (c) only the creator of an inspection report

Sensors 2017, 17, 2348 17 of 19

can change the status of the report. To fulfill requirement (a), a user can obtain the verifier identity
from a report manager smart contract and use the identity to retrieve information of the verifier
from the notaries. This study assumes that notaries can check the authenticity of the identities and
the related verifier information before the notaries register the data to their databases. Therefore,
unless a malicious person can tamper databases of notaries or steal the credential information of a
verifier, malicious people cannot impersonate the verifier to issue a report. For the requirement (b), if
a malicious person wishes to tamper the content of an inspection report, the person would need to
modify the transactions storing the chunks of the report. Moreover, the person may also try to change
the variables of the associated report manager smart contract that keep addresses of the transactions to
other addresses to link the report manager to a faked report. However, the Ethereum platform has
built in security mechanisms to prevent people from tampering existing transactions or contract states
in blocks unless the malicious person can control the majority of computing power in the Ethereum
network. Therefore, unauthorized person cannot tamper the content of an inspection report while the
underlying Ethereum network security mechanism are in place. To meet the requirement (c), this study
uses the function modifier of the Ethereum platform to impose constraints so that only the creator of
a report manager smart contract can link an inspection report to the smart contract and change the
status of the report. Malicious people cannot change the status of the report unless they can obtain the
credentials of the creator.

5.3. Limitations for SCIRM

We have proposed a SCIRM framework for BLE-based applications to enable smartphone
application users to obtain security inspection reports of interested applications using smart contracts.
Based on the blockchain technology, users can get historical inspection reports of an application and
ensure the integrity of the reports. In addition, application users and other volunteers can collaborate
to provide resources needed to host the framework. Therefore, as the framework does not rely on a
single party, the framework does not need to consider the business interests of a business company.
However, there exist certain limitations that point the way toward future research. First, this study
does not address the dispute between application developers and verifiers over contents in inspection
reports. In this case, an application developer and a verifier may delegate a mutually agreed third party
arbitrator to decide whether or not to invalidate an inspection report or a particular part of a report.
Designing and implementing a smart contract to automate the above process would be interesting
future work. Second, an application developer may develop an application for different application
platforms. Therefore, an application may have different identities in different platforms. To address the
issue, we may assign a unique identity to link the same application developed for different platforms.
Last but not least, this study currently only provides operations for a whole report. A verifier may
wish to invalidate an inspection result item in a report or append a set of new inspection result items
to an existing report. However, the finer the granularity, the more complex it is for users to collect
inspection result items in different transactions in blockchains. Designing a fine-grained system would
be a complicated and interesting problem which is worthy of further studies.

6. Conclusions

In this study, we have introduced a robust security paradigm for BLE-based smart objects in the
IoT in which two viewpoints on IoT device security and smartphone applications security, respectively,
are the focus. First, we addressed the security impact of adopting BLE random address technique
on smartphones to prevent malicious adversary from retrieving smartphones’ physical identification
codes. Three critical security requirements for designing privacy-aware access-control schemes on
BLE-based smart objects are thus derived. Then, a privacy-aware access-control scheme adopting
a robust ECC-based crypto-module is presented to fulfill the claimed requirements. Second, we
demonstrate the SCIRM framework for efficiently managing security inspection reports for the

Sensors 2017, 17, 2348 18 of 19

BLE-based applications on smartphones associated with IoT objects. Based on our analysis, the
proposed SCIRM framework is secure and practical for application scenarios in real world.

Acknowledgments: This work was supported in part by the Academia Sinica, in part by the Taiwan
Information Security Center, and in part by the Ministry of Science and Technology, Taiwan under Grant MOST
105-2221-E-259-014-MY3, Grant MOST 105-2221-E-011-070-MY3, Grant MOST 105-2221-E-011-079-MY3, and Grant
MOST 106-3114-E-011-003.

Author Contributions: Shi-Cho Cha and Kuo-Hui Yeh wrote the paper; Shi-Cho Cha and Jyun-Fu Chen conceived,
designed and performed the experiments, and analyzed the data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Android Developer Website. Android 6.0 Changes. Available online: https://developer.android.com/
about/versions/marshmallow/android-6.0-changes.html (accessed on 12 October 2017).

2. Bluetooth SIG. Specification of Bluetooth System Core Package 4.2. Available online: https://www.bluetooth.
com/specifications/adopted-specifications (accessed on 12 October 2017).

3. Gupta, N. Inside Bluetooth Low Energy; Artech House: Norwood, MA, USA, 2013.
4. Cha, S.-C.; Dai, C.-Y.; Chen, J.-F. Is there a tradeoff between privacy and security in BLE-based IoT

applications: Using a smart vehicle of a major Taiwanese brand as example? In Proceedings of the 2016 IEEE
5th Global Conference on Consumer Electronics (GCCE 2016), Kyoto, Japan, 11–14 October 2016.

5. Gogoro Smart Scooters. Available online: https://www.gogoro.com/tw/ (accessed on 5 October 2017).
6. Jara, A.J.; Zamora, M.A.; Skarmeta, A.F. Knowledge acquisition and management architecture for mobile and

personal Health environments based on the Internet of Things. In Proceedings of the 11th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Liverpool, UK,
25–27 June 2012; pp. 1811–1818.

7. Berhanu, Y.; Abie, H.; Hamdi, M. A Test bed for Adaptive Security for IoT in eHealth. In Proceedings of the
International Workshop on Adaptive Security, Zurich, Switzerland, 8–12 September 2013.

8. ASSET Project. Available online: http://asset.nr.no (accessed on 12 October 2017).
9. Torjusen, A.B.; Abie, H.; Paintsil, E.; Trcek, D.; Skomedal, Å. Towards Run-Time Verification of Adaptive

Security for IOT in eHealth. In Proceedings of the 2014 European Conference on Software Architecture
Workshops, Vienna, Austria, 25–29 August 2014.

10. Gope, P.; Hwang, T. BSN-Care: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network.
IEEE Sens. J. 2016, 16, 1368–1376. [CrossRef]

11. Gope, P.; Hwang, T. Untraceable Sensor Movement in Distributed IoT Infrastructure. IEEE Sens. J. 2015, 15,
5340–5348. [CrossRef]

12. Yao, X.; Han, X.; Du, X.; Zhou, X. A Lightweight Multicast Authentication Mechanism for Small Scale IoT
Applications. IEEE Sens. J. 2013, 13, 3693–3701. [CrossRef]

13. Nyberg, K. Fast accumulated hashing. In Proceedings of the 3rdFast Software Encryption Workshop,
Cambridge, UK, 21–23 February 1996; pp. 83–87.

14. Ning, H.; Liu, H.; Yang, L.T. Aggregated-proof Based Hierarchical Authentication Scheme for the Internet of
Things. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 657–667. [CrossRef]

15. Hernández-Ramos, J.L.; Pawlowski, M.P.; Jara, A.J.; Skarmeta, A.F.; Ladid, L. Toward a Lightweight
Authentication and Authorization Framework for Smart Objects. IEEE J. Sel. Areas Commun. 2015, 33,
690–702. [CrossRef]

16. Kawamoto, Y.; Nishiyama, H.; Kato, N.; Shimizu, Y.; Takahara, A.; Jiang, T. Effectively Collecting Data for
the Location-Based Authentication in Internet of Things. IEEE Sys. J. 2017, 11, 1403–1411. [CrossRef]

17. Cirani, S.; Picone, M.; Gonizzi, P.; Veltri, L.; Ferrari, G. IoT-OAS: An OAuth-Based Authorization Service
Architecture for Secure Services in IoT Scenarios. IEEE Sens. J. 2015, 15, 1224–1234. [CrossRef]

18. Fawaz, K.; Kim, K.-H.; Shin, K.G. Protecting Privacy of BLE Device Users. In Proceedings of the 25th USENIX
Security Symposium, Austin, TX, USA, 10–12 August 2016.

19. Rizzardi, A.; Sicari, S.; Miorandi, D.; Coen-Porisini, A. AUPS: An Open Source AUthenticated
Publish/Subscribe system for the Internet of Things. Inf. Syst. 2016, 62, 29–41. [CrossRef]

https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.gogoro.com/tw/
http://asset.nr.no
http://dx.doi.org/10.1109/JSEN.2015.2502401
http://dx.doi.org/10.1109/JSEN.2015.2441113
http://dx.doi.org/10.1109/JSEN.2013.2266116
http://dx.doi.org/10.1109/TPDS.2014.2311791
http://dx.doi.org/10.1109/JSAC.2015.2393436
http://dx.doi.org/10.1109/JSYST.2015.2456878
http://dx.doi.org/10.1109/JSEN.2014.2361406
http://dx.doi.org/10.1016/j.is.2016.05.004

Sensors 2017, 17, 2348 19 of 19

20. Markmann, T.; Schmidt, T.C.; Wählisch, M. Federated end-to-end authentication for the constrained internet
of things using ibc and ecc. SIGCOMM Comput. Commun. Rev. 2015, 45, 603–604. [CrossRef]

21. Pointcheval, D.; Stern, J. Security Proofs for Signature Schemes. In Proceedings of the EUROCRYPT ’96
(LNCS 1070), Zaragoza, Spain, 12–16 May 1996; pp. 387–398.

22. The Bouncy Castle Crypto APIs. 2016. Available online: https://www.bouncycastle.org/ (accessed on
12 May 2017).

23. European Union Agency for Network and Information Security (ENISA). Smartphone Secure Development
Guidelines. Available online: https://www.enisa.europa.eu/publications/smartphonesecuredevelopment-
guidelines2016 (accessed on 30 June 2017).

24. Taiwan IDB (Industrial Development Bureau). Available online: https://www.moeaidb.gov.tw/external/
ctlr?PRO=index&lang=1 (accessed on 12 October 2017).

25. Quirolgico, S.; Voas, J.; Karygiannis, T.; Michael, C.; Scarfone, K. Vetting the Security of Mobile Applications;
(NIST) SP 800-163. Available online: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
163.pdf (accessed on 12 October 2017).

26. Mueller, B. Mobile Application Security Verification Standard (MASVS) 0.9.4. Available online:
https://www.owasp.org/images/6/61/MASVS_v0.9.4.pdf (accessed on 12 October 2017).

27. Taiwan Industrial Development Bureau (IDB). Self-Regulatory Mobile App Functional Security Certification
v3.0. Available online: https://www.moeaidb.gov.tw/external/en.html (accessed on 12 October 2017).

28. Accreditation Program for Mobile Application Basic Security Evaluation Laboratories 0263, 2918, 3016,
3102, 3302, 3325, 3334. Available online: http://www.taftw.org.tw/wSite/taf/list_expansion_special.jsp
(accessed on 10 October 2017).

29. Ethereum Blockchain System. Available online: https://www.ethereum.org/ (accessed on 30 June 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2829988.2790021
https://www.bouncycastle.org/
https://www.enisa.europa.eu/publications/smartphonesecuredevelopment-guidelines2016
https://www.enisa.europa.eu/publications/smartphonesecuredevelopment-guidelines2016
https://www.moeaidb.gov.tw/external/ctlr?PRO=index&lang=1
https://www.moeaidb.gov.tw/external/ctlr?PRO=index&lang=1
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-163.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-163.pdf
https://www.owasp.org/images/6/61/MASVS_v0.9.4.pdf
https://www.moeaidb.gov.tw/external/en.html
http://www.taftw.org.tw/wSite/taf/list_expansion_special.jsp
https://www.ethereum.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Generalized Requirements
	A Privacy-Aware Access-Control Mechanism for BLE-Based Smart Objects
	Security Analysis of the Proposed Approach
	Performance Analysis of the Proposed Approach

	Smart Contract-Based Investigation Report Management Framework (SCIRM)
	Performance Analysis for SCIRM
	Security Analysis for SCIRM
	Limitations for SCIRM

	Conclusions

