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Single-atom catalysts (SACs) with isolated metal atoms dispersed on supports

have attracted increasing attention due to their maximum atomic utilization and

excellent catalytic performance in various electrochemical reactions. However,

SACs with a high surface-to-volume ratio are fundamentally less stable and

easily agglomerate, which weakens their activity. In addition, another issue that

restricts the application of SACs is the low metal loading. Defect engineering is

the most effective strategy for the precise synthesis of nanomaterials to catch

and immobilize single atoms through themodulation of the electronic structure

and coordination environment. Herein, in this mini-review, the latest advances

in designing SACs by defect engineering have been first highlighted. Then, the

heteroatom doping or intrinsic defects of carbon-based support and anion

vacancies or cation vacancies of metal-based supports are systematically

evaluated. Subsequently, the structure–activity relationships between a

single-atom coupled defect structure and electrocatalytic performance are

illustrated by combining experimental results and theoretical calculations.

Finally, a perspective to reveal the current challenges and opportunities for

controllable preparation, in situ characterization, and commercial applications

is further proposed.
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Introduction

With the increasing depletion of fossil fuels (e.g., coal, oil, and natural gas), exploiting

renewable, sustainable, and eco-friendly fuels is quite urgent to alleviate the energy crisis

in modern society (Mi et al., 2018; Guo and Zhang, 2020). At present, increasing attention

is being devoted to electrochemical energy conversion and storage (e.g., fuel cells, water-

splitting devices, storage batteries, artificial carbon, and nitrogen fixation) due to their

high energy densities and environmental benefits (Wang et al., 2019; Ai et al., 2021; Chen

et al., 2021). The operation of all of these technologies requires appropriate advanced

electrocatalysts to reduce the energy barriers and accelerate the kinetics of chemical

reactions, such as the hydrogen oxidation reaction (HOR), oxygen reduction reaction
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(ORR), hydrogen evolution reaction (HER), oxygen evolution

reaction (OER), nitrogen reduction reaction (NRR), carbon

dioxide reduction reaction (CO2RR), biomass oxidation

reaction, and so on (Jiang et al., 2020; Zhou et al., 2020; Li

et al., 2021a; Wang et al., 2022b; Wang et al., 2022c; Zhu et al.,

2022). Accordingly, the state-of-the-art catalysts mainly depend

on platinum group metals (PGMs, Pt, and Au), PGM-based

oxides (IrO2 and RuO2), and PGM-based alloys (PtRu and PtPd)

(Li et al., 2022; Yan et al., 2022; Zhao et al., 2022). Regrettably, the

apparent activity, limited durability, high cost, and low storage of

PGM-based electrocatalysts have significantly hampered the

commercialization process. The intuitive strategy to overcome

this bottleneck issue is to use single-atom catalysts (SACs), which

not only profoundly expose the atoms to reduce the usage of

PGMs but also trigger the immeasurable performance on account

of the size effect and isolation effect (Qiao et al., 2011;Wang et al.,

2021). However, the atomically dispersed metal atoms often

inevitably suffer from migration and agglomeration on

support (Xu et al., 2018). The reason for this is that SACs

with a high surface-to-volume ratio are thermodynamically

less stable. In addition, the high loading of SACs is also a

great challenge for practical applications (Zhu et al., 2017; Sun

et al., 2021). Therefore, the development of efficient and robust

SACs with high atomic density and dispersion is still a challenge.

From the second law of thermodynamics, defects widely exist

in nanomaterials. They could disturb or even break the periodic

structure of crystals (Yan et al., 2017; Li et al., 2020).

Subsequently, the electronic structure of the nanomaterials is

redistributed, and then the adsorption energy of intermediate

species is optimized. Consequently, the kinetics of catalytic

reactions is accelerated (Yan et al., 2019). In addition to

activating the intermediate species, defect engineering can be

also used as an effective strategy to alter the surface-interfacial

coordination environment of the supports to form strong

intercalation for the capture of the metal species, such as

particles, clusters, and even single atoms. Moreover, some

defects (e.g., vacancies and edge sites) serve as an adsorbed

site to catch and disperse single atoms. Such an excellent

defective structure, by benefiting the capture of a single atom,

leads to an extraordinarily high metal loading (~20%) in SACs,

which exceeds that of the traditional strategy with a very low

metal loading of 1–2 wt% (Cheng et al., 2018). Furthermore, the

defects and SACs synergistically improve the electrocatalytic

performance in terms of selectivity, activity, and durability

(Zhang et al., 2019b; Ban et al., 2021; Zhang et al., 2021).

However, a deep understanding of the role of defects and

SACs in the catalytic process is still lacking, and the

interrelation between defects and SACs in synthetic catalysts

is poorly recognized. More recently, several in situ spectral and

microscopical instruments provide more in-depth information

about the nanomaterials at the molecular and atomic levels, such

as studying the growth process of electrocatalysts, observing the

electrochemical reaction process directly, and analyzing the

reaction mechanisms accurately (Zhang et al., 2019a; Wang

et al., 2022a). These findings encourage us to further explore

designing SACs by defect engineering.

Herein, in this mini-review, we first systematically

summarize the latest advances in designing SACs by defect

engineering. Subsequently, we turn our attention to addressing

how the defective carbon-based supports (e.g., heteroatom

doping and intrinsic defects) and defective metal-based

supports (e.g., cation vacancies and anion vacancies) affect the

formation of SACs. Then, the structure–activity relationships

between a single-atom coupled defect structure and

electrocatalytic ability are further discussed. At the end of this

review, after an in-depth understanding of the single atom and

defect structure, the prospects and challenges of defective SACs

are proposed in terms of controllable preparation, in situ

characterization, and practical application.

Defect engineering on carbon-based
materials

Owing to their low prices, excellent electrical conductivity,

high specific surface area, and robust stability in both acidic and

alkaline electrolytes, carbon-based materials have been selected

as the most routine support (Yang et al., 2017; Li et al., 2018).

However, because of the different specific surface energy of metal

and carbon, the weak interactions between single metal atoms

and carbon support could cause the migration and aggregation of

single metal atoms, and thus the electrocatalytic performance

becomes poor. To solve these issues, significant interest has been

devoted to the design and synthesis of defective carbon-based

materials to disperse single metal atoms due to their controllable

coordination-unsaturated environment and strong

metal–support interactions (Tang et al., 2020; Khan et al.,

2021). Heteroatom doping and intrinsic defects are the main

defective carbons, which not only regulate the surface charge and

electronic structure of carbons but also offer anchor sites for the

immobilization of single metal atoms. Benefiting from such a

unique structure, the isolated metal atoms should be firmly

captured, and the catalytic performance of catalysts could be

further improved. In this section, the recent studies of single

atomic electrocatalysts supported on defective carbon support

have been highlighted.

Single atomic metal–nitrogen–carbon has been widely

studied as one of the most promising alternatives to PGM-

based electrocatalysts for different electrochemical

applications. The species, loading, and even the adjacent

coordination environment of the single metal atom play a

part in their performance (Zhao et al., 2021). Heteroatom

doping is the most common defect in nanocarbon materials.

Based on different electronegativities and atomic sizes,

heteroatom (e.g., N, C, B, P, S, and O) defects can effectively

alter the coordination structure of the single metal atom. For
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example, Gong and co-workers developed a single-Ni-atom-

implanted nitrogen-doped carbon (NC) using a host–guest

cooperative protection strategy (Gong et al., 2020). X-ray

absorption spectroscopy (XAS) revealed that the coordination

structure of Ni–N is finely tuned by the C-doping defect from

Ni–N4 to Ni–N3C1 and Ni–N2C2. The electrocatalytic CO2

reduction tests exhibited that Ni–N–C with the lowest N

coordination number (Ni–N2C2) presents the highest CO

Faradaic efficiency of 98% and turnover frequency of

1,622 h−1, far superior to those of Ni–N3C1 and Ni–N4

(Figure 1A). Density functional theory (DFT) calculations

showed that the doping defect in Ni–N2C2 could optimize the

coordination number of Ni–N and then facilitate the formation

of a COOH* intermediate, consequently improving their activity

and selectivity. In addition to adjusting the coordination

structure of single metal atoms, heteroatom doping can also

regulate the electronic structure of single metal atom-based active

sites. Li and co-workers synthesized Cu or Fe single atom

anchored on an S, N-codoped carbon basal plane by a defect

trapping strategy (Figure 1B) (Li et al., 2021a). Both Raman

spectra and electron paramagnetic resonance (EPR) spectroscopy

displayed that S-doping created numerous defects in NSC

compared to that in NC. Experimentally, the Fe-NSC catalyst

achieves the maximum NH4
+ yield of 7.822 g.N.g−1Fe, Faradaic

efficiency of 78%, and lower charge-transfer resistance. XAS and

theoretical calculations illustrated that S-doping induces an

asymmetric charge distribution and redistribution, thus

increasing the interaction between single atom Fe and defect

carbon and resulting in efficient electrochemical denitrification.

Apart from dispersing monometallic atoms, bimetallic atoms

could be also anchored by doping defects. Zhang and co-workers

reported a double atomic Co-Pt site supported on an N-doped

defective carbon (denoted as A-CoPt-NC) by electrochemical

activation (Zhang et al., 2018a). The EXAFS data and

transmission electron microscopy (TEM) image showed that

the N-doping defect takes part in capturing a single Co atom

and then benefits from coordinating with Pt (Figure 1C). The

optimal catalysts exhibited ultrahigh ORR performance and

267 times higher mass activity compared to commercial Pt/C.

Theoretically, this dramatic improvement in ORR activity is

ascribed to the synergetic effects of bimetallic atom (Co-Pt)

and defect supports, which alters the d-orbital shift and the

coordination structures of atomic metals.

After a deeper understanding of doping defects, we found

that heteroatoms play an important role in activating adjacent

carbon atoms to improve the performance of electrocatalysts,

revealing that the truly active sites are carbon atoms themselves.

Thus, we have reasons to believe that the intrinsic defects in

FIGURE 1
Heteroatom doping: (A) single atomic Ni–Nx–C (x = 2, 3, and 4) for CO2RR (Gong et al., 2020), (B) Cu/Fe–N(S)C SACs with defect-rich carbon
for electrochemical denitrification (Li et al., 2021), (C) atomic Co-Pt supported on N doped carbon for ORR (Zhang et al., 2018a). Intrinsic defects: (D)
graphene defects trap atomic Ni species for HER and OER (Zhang et al., 2018b), (E) vacancy-defect Ni SACs for CO2RR (Rong et al., 2020), and (F)
edge-hosted Fe-N4 moieties in Fe–N–C SACs for ORR (Jiang et al., 2018).
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carbon-based supports are more precious than heteroatom

doping. For example, Zhang and co-workers constructed

atomically dispersed Ni atoms trapped on graphene defects

(A-Ni@DG) by a facile acid-leaching strategy (Zhang et al.,

2018b). Both the HAADF-STEM image (Figure 1D) and XAS

results showed that the intrinsic defect in graphene not only

serves as an anchored site to capture a single Ni atom but also

tailors the electronic densities of state (DOSs) of Ni species. Such

an excellent structure, by precisely controlling the coordination

environment of Ni, leads to exceptionally high performance in

electrochemical water-splitting with an ultralow overpotential of

70 mV for HER and 270 mV for OER at 10 mA cm−2, which

surpasses that of the state-of-the-art Pt/C and Ir/C catalysts. As

well as pure intrinsic defects, vacancy defects are widely studied

in SACs. For example, Chen and co-workers prepared a vacancy-

defect Ni–N3–V single-atom catalyst by cleaving the weaker

Ni–O interaction in the precursors of Ni–N3O–C at a high

temperature (Rong et al., 2020). The Ni–N3–V showed an

extremely high Faradaic efficiency (over 90%) and a record

high turnover frequency (1.35 * 105 h−1), which is much

higher than those of Ni–N4 SACs. This enhancement is owed

to the vacancy defect in Ni–N–C, which increases the CO*

desorption energy of active sites (Figure 1E). Not only

vacancy defects but also the edge sites in SACs could affect

the coordinate structure of metal-N4. Jiang and co-workers built

an atomically dispersed Fe-N4 site embedded in the edge of three-

dimensional (3D) hierarchically porous carbon by encapsulating

iron (II) phthalocyanine (FePc) into the cavity of ZIF-8 by edge-

site engineering (Jiang et al., 2018). The micro–mesoporous

carbon is formed by the aggregation of excessive FePc

molecules through the Kirkendall effect, and subsequently, the

Fe–N4 site is in situ generated on the edge of pore carbon

(Figure 1F). The synergistic effect between single metal sites

and defective carbons delivers superior ORR performance with a

half-wave potential of 0.915 V and a high atom-utilization

efficiency up to a 10-fold enhancement compared to any Fe-

based catalyst. DFT calculations further demonstrated that edge-

N atoms play a vital role in tuning the surface charge of the Fe–N4

structure and then optimizing the adsorption energy of oxygen

species to improve the ORR activity. In general, these results

demonstrate that heteroatom doping and intrinsic defects benefit

the formation of strong interfacial interactions between single

metal atoms and the defective carbon, finely controlling the

electronic structures and the coordination environment of the

single-atom catalysts for electrocatalysis.

Defect engineering on metal-based
materials

As summarized earlier, carbon-based defective materials are

cheap and a fine support for capturing single atoms. However,

the corrosion of carbon under high potentials is an inevitable

problem in the electrocatalytic process, which probably induces

the collapse of catalysts (Xie et al., 2014; Qiao et al., 2019).

Recently, due to facile syntheses and stability in high potentials,

increasing attention has been paid to metal-based materials, such

as metal oxide, metal nitride, metal sulfide, and metal phosphide.

Meanwhile, highly dispersed SACs have been well anchored on

metal-based supports by various defects, such as cation vacancies

and anion vacancies (Tan et al., 2022; Xiao et al., 2022). In this

part, we turn our focus to metal-based defective materials

stabilizing single metal atoms.

The most common and popular anion vacancies in metal-

based materials are oxygen vacancies. Benefiting from the low

formation energy of oxygen vacancies, the physicochemical

properties of defective metal oxides may be changed, and the

oxygen vacancies could be also used as the anchored sites to

capture single atoms. For example, Yin and co-workers

demonstrated a co-electrodeposition method to prepare Ir

single atom coupling with oxygen vacancies on ultrathin

NiCo2O4 porous nanosheets (Ir-NiCo2O4 NSs) (Yin et al.,

2020). Figure 2A further verifies the defect structure and

single atom of Ir-NiCo2O4 NSs by HAADF-STEM. The

lower coordinated Co sites near the oxygen vacancies play

an important role in anchoring atomic Ir and then facilitate

electron exchange and transfer. In addition, the Ir-Ox sites not

only protect the chemical state of Co during the OER but also

optimize the adsorption energy of H and O on the Co site,

which could ensure the utilization of Co-based activity sites. As

a result, Ir-NiCo2O4 NSs showed an excellent OER activity of

240 mV overpotential at 10 mA cm−2 and robust stability of

70 h under the condition of acid electrolyte. Additionally, Tong

and co-workers documented that the defect-rich W18O49

support could easily catch the single Fe atom by generating

oxygen vacancy for NRR (Tong et al., 2020). Zhang and co-

workers fabricated oxygen vacancy MXene to stabilize atomic

Pt for HER (Zhang et al., 2022). Except for oxygen vacancy, the

sulfur vacancy-based materials also act well for capturing single

atoms. Gong and co-workers reported the simultaneous

modulation of the mesoscale diffusion and Mo-Fe-C active

site formation over monodispersed hollow Fe@MoS2-C

sub–microreactors (Gong et al., 2022). A unique

microenvironment, used by the sulfur vacancies and

intercalated carbon, could catch Fe single atom to form the

Fe@MoS2-C sub–microreactor. Owing to the rich sulfur

vacancies and mesoscale diffusion, the Fe@MoS2-C exhibited

an improved OER performance compared to the Fe-based SACs

reported in the data. The theoretical calculation revealed the

stability of Mo–Fe–C coordination, the electron transfer

channel of “MoOx → Fe → carbon,” and the favorable

d-band center in the dual-anchoring model (Figure 2B).

In addition to the anion vacancies, the cation vacancies are

also delivered to engineer the high-performance SACs because

of their various electron and orbital distributions. For instance,

Zhou and co-workers prepared titanium vacancy as structural
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defects that serve to catch and anchor Ni single atoms by a ‘self-

reduction’ strategy (Zhou et al., 2022). The cation vacancy-rich

Ti3C2Tx MXene acts simultaneously as a support and reductant

during the nucleation of Ni SACs. Figure 2C further confirms

the structure of Ni NPs/Ti3C2Tx in terms of the cation

vacancies in Ti3C2Tx, the Ni single atom trapped on Ti

vacancies, and the coordinate structure of Ni in Ni NPs/

Ti3C2Tx. Experimentally, the Ni NPs/Ti3C2Tx catalysts

exhibited an ultralow onset potential of -0.03 V (vs. RHE)

and a negligible activity loss during a stability test of

24,000 s. Theoretically, this dramatic increase in hydrazine

oxidation reaction activity is ascribed to the redistribution of

electronic density of states by the strong interaction between the

Ni single atom and adjacent C atoms. Subsequently, He and co-

workers constructed nickel-vacancy-rich nickel hydroxides as a

support precursor to capture the atomic Ru and for the

subsequent phosphorization treatment to obtain Ni5P4-Ru

(He et al., 2020). The physical characterizations, such as

XAS, STEM, and EPR results, affirmed the strong coupling

between Ni vacancies and Ru single atoms. Benefiting from the

single atom coupled vacancies defect, Ni5P4-Ru achieves an

ultralow overpotential of 54 mV at 10 mA cm−2 and long-term

stability for OER. Both meticulous spectroscopic analysis and

theoretical calculations revealed that single Ru atom coupled Ni

vacancies could induce localized structure polarization, which

decreases the reaction barrier of water dissociation and

optimizes the hydrogen adsorption free energy on Ru sites

(Figure 2D). Generally speaking, understanding the positive

effect of cation vacancies and anion vacancies in metal-based

materials provides further direct evidence and information to

guide us toward a rational and precise SAC design at the

molecular and atomic levels.

Conclusion and outlook

SACs, as economical alternatives to noble metal-based

catalysts, presented excellent catalytic performances for

various electrochemical applications because of their well-

defined active centers, maximum atomic utilization, explicit

coordinate structure, and strong single-atom–support

interactions. However, SACs with a high surface-to-volume

ratio are thermodynamically less stable. Herein, in this mini-

review, we paid attention to the high-efficiency capture and

immobilization of SACs by defect engineering. Defects not

only tailor the surrounding electronic structure and

coordination environment of support but also serve as the

anchor sites to catch the isolated single atom and prevent the

migration and agglomeration of SACs. Consequently, the

electrocatalytic performance is further enhanced by defect

engineering and single-atom catalysts simultaneously.

Additionally, with the development of synthesis strategies,

characterization techniques, and theoretical modelings, the

defective SACs have achieved significant progress in recent

decades. However, there are always many difficulties and

challenges to be explored.

(i) Precisely controlling the formation of
SACs by defect engineering

The electrocatalytic performances of SACs are limited by the

loading of single atoms. However, the conventional strategies for

the construction of SACs are usually with low metal loading due

to their extremely high surface energy. Defect engineering could

tune the electronic structure of support and then optimize the

FIGURE 2
Anion vacancies: (A) Ir SACs supported onO vacancy in NiCo2O4 forOER (Yin et al., 2020) and (B) Fe SACs supported on S vacancy inMoS2-C for
HER andOER (Gong et al., 2022). Cation vacancies: (C)Ni SACs supported on Ti vacancy inMXene for hydrazine oxidation reaction (Zhou et al., 2022)
and (D) Ru SACs supported on Ni vacancy in Ni5P4 for HER (He et al., 2020).
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adsorption energy of anchored sites to facilitate the capture of

single metal atoms. Based on the strong interaction between

defects and single atoms, an increasing number of isolated metal

atoms can be trapped and stabilized on the defective support to

achieve a high metal loading. Therefore, the exploration of

defective supports benefits carrying out the high metal loading

in SACs and provides a new opportunity for maximum

utilization of catalysts.

(ii) Exploring the structural evolution of
defective SACs via advanced
characterization methods under the
operational process

Harsh electrocatalytic processes (e.g., long-term operation in

high potentials, strongly acidic or alkaline electrolyte) may

induce the structural evolution of defective SACs. In addition,

the structural evolutions of active sites in previous research

studies are almost from theoretical simulations. Thus, it is

quite urgent to develop advanced characterization techniques

to analyze and study the evolution of active sites in the

electrocatalytic reaction directly. Coupling with experimental

results and theoretical calculation will provide more invaluable

information for further detecting the truly active site under the

operational process.

(iii) Large-scale synthesis of defective
SACs for practical application

In the traditional fabrication of SACs, the routine precursors

are metal–organic frameworks, and the conventional approach is

atomic layer deposition. In addition, the generation of defects in

supports is a high-energy process. Thus, the synthesis cost, yields,

and efficiency of defective SACs are the major challenges, which

limit the actual production. Accordingly, the development of an

efficient strategy for large-scale synthesis of defective SACs is

vital to satisfy the potential demands of their practical

application.
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