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Introduction
The rise of disruptive digital health technologies 
is revolutionizing healthcare.1,2 The increasing 
prevalence of chronic health burden such as head-
ache disorders and the growing digitally native 
population are drivers for innovative modes of 
disease management.3,4 The application of digital 
health tools (e.g. computerized expert systems/
software, mobile health, wearables, health infor-
mation technology, Internet of Medical Things, 

telehealth and telemedicine, robotic surgery) is 
known to reduce diagnostic delays and inaccura-
cies, improve inefficiencies, improve access, and 
facilitate remote management and continuity of 
care – all of which reduce healthcare-related 
costs.1,2,5 In addition, digital health platforms 
empower patients’ self-efficacy by increasing 
patient’s shared decision-making within the clini-
cian–patient relationship as well as by facilitating 
behavioral activation and internal locus of 
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Abstract
Background: Computerized migraine diagnostic tools have been developed and validated 
since 1960. We conducted a systematic review to summarize and critically appraise the quality 
of all published studies involving computerized migraine diagnostic tools.
Methods: We performed a systematic literature search using PubMed, Web of Science, 
Scopus, snowballing, and citation searching. Cutoff date for search was 1 June 2021. 
Published articles in English that evaluated a computerized/automated migraine diagnostic 
tool were included. The following summarized each study: publication year, digital tool name, 
development basis, sample size, sensitivity, specificity, reference diagnosis, strength, and 
limitations. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was applied 
to evaluate the quality of included studies in terms of risk of bias and concern of applicability.
Results: A total of 41 studies (median sample size: 288 participants, median age = 43 
years; 77% women) were included. Most (60%) tools were developed based on International 
Classification of Headache Disorders criteria, half were self-administered, and 82% were 
evaluated using face-to-face interviews as reference diagnosis. Some of the automated 
algorithms and machine learning programs involved case-based reasoning, deep 
learning, classifier ensemble, ant-colony, artificial immune, random forest, white and 
black box combinations, and hybrid fuzzy expert systems. The median diagnostic accuracy 
was concordance = 89% [interquartile range (IQR) = 76–93%; range = 45–100%], 
sensitivity = 87% (IQR = 80–95%; range = 14–100%), and specificity = 90% (IQR = 77–96%; 
range = 65–100%). Lack of random patient sampling was observed in 95% of studies. Case–
control designs were avoided in all studies. Most (76%) reference tests exhibited low risk of 
bias and low concern of applicability. Patient flow and timing showed low risk of bias in 83%.
Conclusion: Different computerized and automated migraine diagnostic tools are available 
with varying accuracies. Random patient sampling, head-to-head comparison among tools, 
and generalizability to other headache diagnoses may improve their utility.
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control.3,4 Patient-centered digital care can be 
enhanced by promoting patient engagement and 
redefining patient–doctor relationship.3,4 In the 
United States, healthcare delivery is suboptimal 
and inefficient as compared with economically 
similar countries that spend half annual per capita 
cost.6,7 Digital health tools can promote value-
based care to improve the health of populations 
(scalability), improve individual patient out-
comes, and lower per capita costs.1,8,9 The ongo-
ing COVID-19 pandemic demonstrates the utility 
of digital health platforms such as telehealth.10

That the diagnosis of headache disorders is pri-
marily based on patient history provides a valua-
ble opportunity for developing and evaluating 
digital tools to diagnose and manage headache 
types. Headache disorders remain largely under-
diagnosed and misdiagnosed, and thus are under-
treated and mistreated.11,12 Delays in accurate 
diagnosis lasting more than a decade lead to a 
higher risk for chronicification and increased 
complexity in headache treatment.13–16 Digital 
tools have the potential to close the gap between 
accurate diagnosis and increasing headache bur-
den. Daily monitoring of headache incidence and 
related attributes using e-diary reduces diagnostic 
errors due to recall bias.17,18 Automated predic-
tion of headache attacks and medication overuse 
can be made by using data-driven machine learn-
ing approaches.19,20 Wearables can identify real-
time digital biomarkers for early detection of 
headache attacks (e.g. sleep time,21 galvanic skin 
response,21–24 heart rate variability21,22) and can 
also be used to improve adherence and deliver 
treatment such as smartphone-based biofeed-
back,22–24 behavioral therapy,25 and smartphone-
controlled electronic pulses.26

The strong relationship between psychiatric 
comorbidities, traumatic brain injury, and head-
ache disorders such as migraine is an important 
aspect of the growing headache burden.27,28 
Comprehensive evaluation of psychiatric disor-
ders (e.g. depression, anxiety, post-traumatic 
stress disorder) is a critical component of proper 
headache management which can be optimized 
using digital health tools.27–29 Digital health tools 
can solve unmet needs in these complex migraine 
comorbidities by providing early and accurate 
real-time identification of clinical symptoms or 
signs (e.g. quantitative electroencephalography/ 
EEG wearable headsets, transcranial Doppler, 
photoplethysmography for temporal artery pulse 

wave), as well as by aiding in monitoring symptom 
management.29 Currently, there is active research 
involving development and validation of digital 
tools for traumatic brain injury and headaches by 
utilizing physiological biomarkers such as nystag-
mus, vestibular-ocular function, saccades, intrac-
ranial pressure, optic nerve sheath diameter, 
pupillary reflex, and reaction time.29

The diagnostic classification of headache disor-
ders (International Classification of Headache 
Disorders, 3rd edition or ICHD-330) is well suited 
for building artificial intelligence automated diag-
noses. Patient-centered care and patient–physi-
cian shared decision-making are important 
features that are characteristic of digital headache 
tools.31,32 Headache clinical trials and population 
research can benefit by utilizing digital health 
tools for screening, improved oversight, and real-
time analysis of patient outcomes.33,34 Personalized 
headache care, behavioral, and lifestyle-based 
management approaches can be enhanced using 
digital health applications.35,36 The number of 
headache-trained healthcare providers is rela-
tively low and poorly accessible to most headache 
sufferers.37 With nearly a billion people estimated 
to suffer from migraine worldwide,38 digital health 
technologies have the scalability potential to 
expand and improve access and outcomes for 
patients.39 Migraine stigmatization, prevalent in 
headache care,40 and migraine-specific disabilities 
present an opportunity for digital tools to serve 
patient populations not comfortable in seeking 
care through traditional face-to-face interviews41 
or unable to access care due to disease-specific 
limitations.

Although multiple computerized headache diag-
nostic tools have been developed and evaluated 
since the 1960s,42 migraine ranks last among the 
eight most prevalent conditions globally in terms 
of available mobile health applications.43 Migraine 
causes the highest disability in the productive age 
group.44 Despite the development of many com-
puterized migraine diagnostic and management 
digital tools, there is no systematic review that 
specifically summarized the accuracy, perfor-
mance, and quality of published computerized 
migraine diagnostic digital tools. In this study, we 
conducted a systematic review to summarize and 
critically appraise the quality of published studies 
that developed and evaluated computerized 
migraine diagnostic tools. We hypothesized that 
there will be a significant variation in the accuracy 
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performance of the published migraine diagnostic 
tools.

Methods

Search methodology
The methods of systematic review followed the 
standard guidelines of Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses 
(PRISMA)45. Literature search was performed 
using PubMed Advanced Search Builder, Web of 
Science Advanced Search, and Scopus Advanced 
Search using text-word searching. For PubMed 
Advanced Search Builder, the following search 
terms were combined using the Boolean operator 
‘AND’: ((computerized) AND (diagnosis)) AND 
(migraine); ((algorithm) AND migraine)) AND 
(diagnosis); ((automated) AND (migraine)) 
AND (diagnosis). For Web of Science Advanced 
Search, the Web of Science Core Collection data-
base was employed using the following search 
terms, Boolean operators, and field tags: 
TS=(computerized* AND migraine diagnosis); 
TS=(computerized* AND migraine); TS= (auto-
mated* AND migraine); TS=(algorithm* AND 
migraine). The field tag TS stands for topics. The 
asterisk * represents a wildcard in Web of Science 
for any group of characters, including no charac-
ter. For Scopus Advanced Search, the following 
search terms were used: ‘migraine AND comput-
erized AND diagnosis’.

We employed PubMed, Web of Science, and 
Scopus because these three databases are the 
most comprehensive and most optimum resources 
for conducting systematic review of medical lit-
erature.46,47 We did not include ScienceDirect as 
it covers publications by Elsevier only48 – which 
are all available in Web of Science/PubMed/
Scopus. Embase was not employed as its coverage 
is similar to PubMed’s MEDLINE. PsycInfo is 
for specialized articles on behavioral studies;47 we 
attempted PsycInfo search but could not find rel-
evant articles. Additional search was done by 
snowballing and citation searching. Cutoff date 
for search was 1 June 2021.

The inclusion criterion was published articles and 
translated abstracts in English that evaluated a 
computerized/automated diagnostic tool for 
migraine. Some of the included studies involved 
evaluation of computerized digital tools for other 

headache types in addition to migraine – in such 
studies, only the migraine data were extracted for 
our systematic review. The study protocol was reg-
istered on PROSPERO (International Prospective 
Register of Systematic Reviews) [PROSPERO 
CRD42021033196]. The search results were 
uploaded to Covidence (http://covidence.org) for 
deduplication and screening. Two authors (YWW, 
RPC) screened references and reviewed full-text 
articles independently.

Data extraction
After reviewing the identified articles and deciding 
on inclusion, data were extracted and entered into 
a summary table by first author and publication 
year, digital tool name, development basis, sample 
size, concordance rate, sensitivity, specificity, ref-
erence diagnosis, strength, and limitations.

Summary analysis
Descriptive statistics [median, interquartile range 
(IQR), range, percentages] were used to summa-
rize the following parameters: age, sex ratio, pro-
portion of tools developed based on ICHD 
criteria, proportion of self-administered and phy-
sician/provider-administered, study settings, that 
is, percentage of tools validated in headache clini-
cal centers versus nonclinical settings, percentage 
of reference diagnosis conducted using face-to-
face interviews, and median diagnostic accuracy 
(concordance, sensitivity, specificity). Studies 
were categorized by decades to assess whether 
there was progressive increment in the number of 
digital tools developed. Median group differences 
(where group size imbalance is not larger than 
1:3) were compared using the Mann–Whitney 
test. Spearman’s nonparametric correlation 
between year of publication and accuracy perfor-
mance measurands was examined to assess 
whether there was improvement in diagnostic 
accuracy over the successive years. A value of 
p < 0.05 was considered to be statistically 
significant.

Quality Assessment of Diagnostic Accuracy 
Studies
The Quality Assessment of Diagnostic Accuracy 
Studies (QUADAS)-249 tool was applied to criti-
cally appraise the quality of the included studies in 
terms of risk of bias and concern of applicability 
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over four key domains: patient selection, index 
test, reference standard, flow, and timing. Risk 
levels are classified as high, low, and unclear. See 
Supplemental File 1 for details on QUADAS 
assessment.

Results

Search results
The number of published studies identified by 
PubMed Advanced Search Builder on ((computer-
ized) AND (diagnosis)) AND (migraine); ((algo-
rithm) AND (migraine)) AND (diagnosis); 
((automated) AND (migraine)) AND (diagnosis) 
was 155, 218, and 97, respectively. The number of 
published studies identified through Web of Science 
Core Collection Advanced Search database using 
the following search terms TS=(computerized* 
AND migraine diagnosis); TS=(computerized* 
AND migraine); TS=(automated* AND migraine); 
TS=(algorithm* AND migraine) was 58, 199, 138, 
and 294, respectively. The number of published 
studies identified through Scopus Advanced Search 
database using the terms ‘migraine AND computer-
ized AND diagnosis’ was 1813. There were 6 stud-
ies identified through snowballing and 15 studies 

through citation searching on ResearchGate and 
Google Scholar (Figure 1 PRISMA flowchart).

Included studies and summary results
After screening records, removing duplicates, and 
reviewing full-length articles, 41 studies (median 
age = 43 years; 77% women) were included in the 
systematic review (Figure 1 PRISMA flowchart; 
Supplemental File 2 and 3) as per the inclusion 
criteria. The median sample size of the studies was 
288. Sixty percent of the digital tools were devel-
oped based on ICHD criteria. The remaining tools 
were developed based on local or national criteria 
(8), Wolff 1962 criteria (2), 1962 Ad Hoc criteria 
(1), case-based reasoning following ICHD-3-beta 
(1), artificial immune algorithm following ICHD-2 
(1), deep learning framework (1), and ID-CM or 
Identify Chronic Migraine (1). Half (50%) of the 
tools were self-administered. Eighty-eight percent 
of tools were evaluated in headache clinical cent-
ers. The remaining were validated in nonclinical or 
community care settings, that is, employees (1), 
primary care (2), and students (1).

Face-to-face interviews were used in 82% of the 
reference diagnosis, phone interviews in two 
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Figure 1. PRISMA flowchart.
PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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studies, and questionnaire-based diagnosis in 
four studies. The majority (70%) of the digital 
tools were available in English. Five were availa-
ble in Italian, four in Turkish, three in Chinese, 
one in Polish, one in Persian, two in Dutch, one 
in Serbian, one in Spanish, and one in Japanese. 
Some of the automated algorithms and machine 
learning programs involved case-based reasoning, 
deep learning, classifier ensemble, ant-colony, 
artificial immune, random forest, white and black 
box combinations, and hybrid fuzzy expert sys-
tems. Ten (25%) studies compared multiple 
machine learning programs to identify the most 
accurate tool in diagnosing migraine. Two of the 
digital tools are available as open-source software, 
and two other tools contained a daily electronic 
diary (e-diary). Management options were 
embedded in one of the digital tools.

There was a 4.5-time increase in the number of 
digital tools after 2005 compared with before 
(Figure 2). There were six new digital tools since 
the COVID-19 pandemic started in the begin-
ning of 2020. The median diagnostic accuracy 

was concordance = 89% (IQR = 76–93%; 
range = 45–100%), sensitivity = 87% (IQR = 
 80–95%; range = 14–100%), and specific-
ity = 90% (IQR = 77–96%; range = 65–100%). 
Five (12%) of the digital tools achieved diagnos-
tic accuracy of 100% in one of the accuracy per-
formance measurands, that is, sensitivity, 
specificity, and concordance. Lack of random 
patient sampling was observed; only 2 (5%) stud-
ies applied random sampling, while the majority 
23 (56%) of the studies used convenience or con-
secutive sampling. Patient sampling method was 
unclear in 16 (39%) studies. There was no 
description of age or sex ratio of participants in 25 
(61%) studies. There was no statistically signifi-
cant correlation between year of publication and 
accuracy performance of the digital tools.

Twelve (30%) of the digital tools were developed 
specifically for migraine diagnosis (i.e. binary 
classification into ‘migraine’ or ‘no migraine’), 
while the remainder 29 (70%) were developed to 
diagnose migraine as well as other primary head-
ache disorders [i.e. multiclass classification into 
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Figure 2. A decade-by-decade timeline of the number of computerized migraine diagnostic tools developed 
and validated since 1965. There was a 4.5-time increment in the number of computerized migraine diagnostic 
tools since 2005 compared with before 2005. There were six new tools developed and evaluated since the 
beginning of 2020.
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‘migraine’ or ‘tension-type headache (TTH)’ or 
‘trigeminal autonomic cephalalgias (TAC)’ or 
‘other headache’]. Although the accuracy perfor-
mance of the migraine-only diagnostic tools 
(binary) was observably lower than the tools that 
diagnose migraine plus other headache disorders 
(multiclass), the difference was not statistically 
significant (Figure 3). We are currently conduct-
ing a separate systematic review appraising accu-
racy performance of digital diagnostic tools for 
other headache disorders (e.g. TTH, TACs) in 
addition to comparing accuracy performance of 
migraine diagnosis versus diagnosis of other head-
ache disorders (e.g. TTH, TACs).

Brief description of performance of selected 
migraine diagnostic digital tools – a timeline
Since the 1960s, there have been efforts to create 
computer-generated diagnostic tools in head-
ache.42,50 One of the early computer-based self-
administered diagnostic tools developed in 1968 
correctly identified all nine headache patients as 
vascular headache, as compared with diagnoses 
made by neurologists with interest in headache.42 
A self-administered computer-based diagnostic 
tool developed in 1972 performed with sensitivity 
and specificity of 74% and 75% of diagnosing 
migraine, respectively, while correctly differentiat-
ing 36 of 50 patients to common migraine, classi-
cal migraine, cluster migraine, muscle contraction, 
and other headache types, as compared with diag-
noses made by neurologists with interest in head-
ache.50 However, in 1974, another computerized 

diagnostic tool performed considerably lower with 
sensitivity and specificity of 14% and 98%, respec-
tively; the reason for its lower performance was 
considered to be due to lesser power of algorithms 
involving 19 headache types in its diagnostic 
capacity.51 In 1980, a voice-based, self-adminis-
tered, computer diagnostic study involving 40 
headache patients52 showed that 38 (95%) patients 
found the computer interview easy to use, while 
22 (55%) patients thought that the computer took 
a complete headache history; 55% of the head-
ache clinicians found the computer interview to be 
useful.52 While these early studies on computer-
based tools laid the foundation for self-adminis-
tered headache diagnostic tools, the lack of 
standard headache classification and absence of 
widely available computers made it challenging to 
adopt their use for daily practice. Headache clas-
sification has evolved greatly through the decades; 
phrases such as vascular headache, common 
migraine, cluster migraine, and muscle contrac-
tion are currently outdated.

In the 2000s, the Italian Neurological Association 
for Headache Research developed and validated 
the Archivio Informatico con funzioni di Diagnosi 
Assistita per Cefalee – Informatic Register with 
Assisted Diagnosis for Headaches (AIDA 
CEFALEE) – computerized ICHD-2-based 
expert software that is filled by physicians and 
automatically generates a textual patient history, 
diagnosis, and treatment recommendations.53,54 
Its diagnostic performance was evaluated in 200 
headache patients from five headache centers 

Accuracy Sensitivty Specificity
0

50

100

%

Migraine Only
Migraine + Other Headache D/O

Figure 3. Comparison of diagnostic accuracy performance between binary and multiclass classification. The 
digital tools that were specifically designed for diagnosis of migraine only (‘migraine’ versus ‘no migraine’, 
i.e. binary classification) performed observably lower than the digital tools that were developed for multiclass 
classification of migraine and other headache disorders. The median values of sensitivity, specificity, and 
accuracy for the migraine-only classification digital tools (black bars) were 75%, 85%, and 61%, while for tools 
that diagnosed migraine and other headache disorders were 89%, 88%, and 88%. The differences did not reach 
statistical significance on the Mann–Whitney test.
D/O, disorders.
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against an ICHD-2-based structured clinical inter-
view conducted by medical staff.53,54 The AIDA 
CEFALEE34,35 and the structured clinical inter-
view showed 100% sensitivity and 76% specificity 
in diagnosing migraine.53,54 In 2008, US research-
ers developed the self-administered Computerized 
Headache Assessment Tool (CHAT) based on the 
1988 ICHD-1 and evaluated its diagnostic accu-
racy in 135 headache patients55 using a reference 
of phone interview diagnoses by headache special-
ist nurse. The reference diagnosis was based on the 
1994 UCSD (University of California San Diego) 
Migraine Questionnaire56 and Silberstein–Lipton 
criteria.57 The CHAT had an overall accuracy of 
92.8% (91/98), that is, 91.6% (77/84) in migraine 
[100% (35/35) in episodic migraine, 85.7% 
(42/49) in transformed migraine] and 83.3% 
(5/6) in probable migraine. The reference used to 
validate the CHAT, that is, the Silberstein–
Lipton criteria are currently outdated.

In 2014, Chinese researchers developed and vali-
dated the first ICHD-3-based, physician-admin-
istered, computerized clinical decision support 
systems (CDSS) in 543 patients against a refer-
ence diagnosis by 2 headache specialists.58 The 
CDSS was designed to assist general practitioners 
based on the ICHD-3.58 Its diagnostic sensitivity 
and specificity were 94% and 95%, respectively.58 
That the AIDA and CDSS were only available in 
Italian and Chinese, respectively, and had to be 
physician administered reduce their utility for 
direct patient use and self-management in anglo-
phone populations. In 2015, a four-item migraine 
diagnostic algorithm, that is, the Migraine-4, was 
found to have a sensitivity and specificity of 94% 
and 92%, respectively, compared with a reference 
diagnosis made by structured self-administered 
questions.59 The performance assessment of the 
Migraine-4 was conducted in a nonclinical popu-
lation and its accuracy was not compared with 
diagnosis made by live interviews.59

In the last 5 years, Turkish,60 Serbian,61 
Iranian,62,63 German,64 US,65 and Dutch66 
researchers have evaluated different algorithms, 
machine learning expert systems in diagnosing 
migraine and other headache types. These algo-
rithms involved ant-colony, artificial immune, 
classifier ensembles, white and black box combi-
nations, and hybrid fuzzy expert systems. Their 
accuracy ranged from 65% to 100%. Some tools 
are available as open source, include electronic 
headache diary, and provide treatment options. 

Limitations of these newly developed tools 
include the fact that they were based on non-
ICHD criteria, retrospective analysis, and that 
they were not tested against live interviews. Some 
of these tools contained contamination where the 
reference diagnostician was exposed to diary data 
before interviews. The ongoing COVID-19 pan-
demic may have contributed to the rise in digital 
tools and telemedicine research in headache 
including mobile phone applications. In 2020, 
the M-sense app was developed based on ICHD-3 
criteria and 3-monthly, patient-administered 
electronic headache diary.64 The diagnostic accu-
racy of M-sense was validated in 102 patients 
against a headache specialist diagnosis using the 
same data collected by M-sense.64 The M-sense 
showed 96.9% (62/64) sensitivity and 68.4% 
(26/38) specificity for migraine.64

QUADAS results
Consecutive or convenience sampling was used in 
56% of the studies (Table 1, Supplemental File 4). 
The sampling method was unclear in 39% of the 
studies. Only 5% of the studies applied random 
sampling. Most studies (61%) mentioned consec-
utive or random sampling resulting in low risk of 
bias in patient selection (domain 1) according to 
QUADAS-2. Case–control design was avoided in 
all studies. The index tests (domain 2) showed low 
risk of bias (interpreted without knowledge of the 
reference test result) and low concern of applica-
bility (the index test, its conduct, or interpretation 
did not differ from the review questions) in all the 
studies. Similarly, the majority (76%) of reference 
standard tests (domain 3) exhibited low risk of bias 
(the reference standard, its conduct, or its inter-
pretation did not introduce bias) and low concern 
of applicability (the target condition as defined by 
the reference standard, i.e. migraine matches the 
review question). The majority, 83% of the stud-
ies, featured low risk of bias in the flow and timing 
(domain 4) of participating patients, that is, most 
patients received both the index and reference tests 
within appropriate interval. Percentage results are 
displayed in Supplemental File 4. Sample size esti-
mation was lacking in all included studies.

Discussion
Our systematic review shows the progressive 
increment in the quality and quantity of comput-
erized migraine diagnostic tools. The rise of digi-
tal health in headache medicine deserves special 
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Table 1. QUADAS assessment of included studies.

Study Risk of bias Applicability concerns

 Patient 
selection

Index 
test

Reference 
standard

Flow 
and 
timing

Patient 
selection

Index 
test

Reference 
standard

Freemon42 Low Low Unclear Low Low Low Unclear

Stead50 Unclear Low Low Low Low Low Low

Toole et al.51 Unclear Low Unclear Low Low Low Unclear

Penzien et al.67 Unclear Low Low Low Low Low Low

Andrew et al.68 Unclear Low Low Low Low Low Low

Gallai et al.69 Low Low Low Low Low Low Low

Pryse-Phillips et al.70 Unclear Low Low Low Low Low Low

Kopec et al.71 Unclear Low High High Low Low High

Sarchielli et al.72 Low Low Low Low Low Low Low

Sarchielli et al.73 Low Low Low Low Low Low Low

De Simone et al.54 Low Low Low Low Low Low Low

Maizels and Wolfe55 Low Low Low High Low Low Low

Mendes et al.74 Low Low Low High Low Low Low

Porta-Etessam et al.75 Low Low Low Low Low Low Low

van Oosterhout et al.76 Low Low Low Low Low Low Low

Tezel and Köse77 Unclear Low Unclear High Low Low Unclear

Yurtay et al.78 Low Low Low High Low Low Low

Krawczyk et al.79 Unclear Low Low Low Low Low Low

Eslami et al.80 Low Low Low Low Low Low Low

Dong et al.58 Low Low Low Low Low Low Low

Yanping and Huilong81 Unclear Low High Low Low Low High

Yin et al.82 Low Low Low Low Low Low Low

Jackowski et al.83 Unclear Low High Low Low Low High

Çelik et al.60 Unclear Low Low Low Low Low Low

Walters and 
Smitherman59

Low Low Low Low Low Low Low

Lipton et al.65 Low Low Low Low Low Low Low

Çelik et al.84 Low Low Low Low Low Low Low

Çelik and Yurtay85 Low Low Low Low Low Low Low

(Continued)
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Study Risk of bias Applicability concerns

 Patient 
selection

Index 
test

Reference 
standard

Flow 
and 
timing

Patient 
selection

Index 
test

Reference 
standard

Keight et al.86 Unclear Low High Low Low Low High

Vandewiele et al.87 Unclear Low Low Low Low Low Low

Kaiser et al.88 Low Low Low High Low Low Low

Khayamnia et al.62 Low Low Unclear Low Low Low Unclear

Sacco et al.89 Low Low Low Low Low Low Low

Qawasmeh et al.63 Unclear Low Low Low Low Low Low

Roesch et al.64 Low Low Low Low Low Low Low

Kwon et al.90 Low Low Unclear Low Low Low Unclear

Katsuki et al.91 Low Low Low Low Low Low Low

van Casteren et al.66 Low Low Low High Low Low Low

Simić et al.61 Unclear Low Unclear Low Low Low Unclear

Simić et al.92 Low Low Low Low Low Low Low

Groccia et al.93 Unclear Low Low Low Low Low Low

QUADAS, Quality Assessment of Diagnostic Accuracy Studies.
The risk of bias in the domain of patient selection was low in 56% (23) of the studies that used consecutive/convenience 
sampling and 5% (2) of the studies that applied random sampling. The sampling method was unclear in 39% (16) of the 
studies. The index test results were all interpreted without knowledge of the results of the reference standard. The conduct 
or interpretation of the index test did not introduce bias – hence resulting in ‘low risk’ and ‘low concern’ for ‘Risk of Bias’ 
and ‘Applicability’. Likewise, most studies (76%) featured ‘low risk’ and ‘low concern’ in the conduct and interpretation of 
the reference tests. Similarly, most (83%) studies showed ‘low risk’ of bias in the flow and timing of patients, that is, all 
patients received both the index and reference tests at appropriate interval.
For each included study, Risk of bias and Applicability concerns are tabulated as “Low” (green shade), “Unclear” (blue 
shade), and “High” (orange shade).

Table 1. (Continued)

attention because of shortage and/or inaccessibil-
ity of headache specialists for a growing headache 
burden worldwide. As artificial intelligence and 
machine learning tools are advancing rapidly, we 
anticipate a continued research in and adoption 
of computerized headache diagnostic and man-
agement tools. This is evidenced by the 4.5-time 
increase in the number of digital tools developed 
and validated in the last decade. The high median 
values of 87–90% for concordance, sensitivity, 
and specificity reflect the high level of accuracy 
and precision of computerized migraine diagnos-
tic tools. That the ICHD criteria were used by 
most of the tools to build the automation algo-
rithm is a worthy feature in terms of applying 
standardized migraine diagnosis.

That half of the computerized diagnostic tools 
were self-administered was a useful indicator 
that the tools can be completed at patient’s con-
venience, saving time and empowering patient 
self-efficacy. The majority of the computerized 
tools were evaluated in a headache clinical 
center – a barrier for the generalizability of the 
results to community or primary care settings. 
Future studies may develop and conduct field 
testing of such tools designed for community 
level or nonclinical populations and for primary 
care settings.

Our findings show that the majority of the valida-
tion studies did not apply probability patient sam-
pling (e.g. random patient selection). Nonrandom 
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patient recruitment (e.g. consecutive or conveni-
ence sampling) leads to a type of selection bias 
known as spectrum bias. Spectrum bias reflects 
the varying accuracy of diagnostic tools in differ-
ent patients.94 That case–control study design 
was avoided by all included studies and reflects 
the strong quality of the results.49,95 By including 
extreme populations, that is, cases of chronic 
migraine versus controls of fully healthy partici-
pants, the performance of diagnostic accuracies 
can be more inflated in case–control designs than 
when including the average migraine patient ver-
sus typically healthy individuals.95 The majority 
of the included studies measured the migraine 
diagnostic accuracy by enrolling patients with 
migraine and control participants that included 
patients with other headache types (e.g. TTH) as 
well as healthy individuals. Future studies can 
improve presentation of their results by provid-
ing sensitivity (e.g. subgroup) analysis to address 
heterogeneous patient and control populations.

The application of face-to-face interviews by the 
majority of the reference diagnosis was a strong 
feature, as a direct comparison between machine 
automation and human can be allowed. Some 
diagnostician interviewers possess naturally 
engaging personality and utilize memory jogging 
techniques to reduce recall bias during inter-
views.96 Embedding e-diary in the digital tools 
can reduce patients’ recall bias, as was seen in two 
of the included studies.64,66 One of the digital 
tools includes a management option58 – indicat-
ing the potential of the tools for headache care in 
terms of both diagnosis and management. Digital 
tools have been validated in several clinical trials 
as self-management therapies (e.g. neurofeed-
back, behavioral therapy) for migraine and other 
headache disorders.22,23 Overall, the QUADAS 
quality assessments showed low risk of bias and 
low concern of applicability in all categories, 
which indicated the quality of the validation 
studies.

The expert systems utilized in the computerized 
migraine diagnostic tools involved purely data-
driven approaches and hybrid expert diagnostic 
systems. Hybrid systems involved combination of 
different automation and algorithm approaches 
as well as combination of data- and knowledge-
driven modalities. This indicates the versatility of 
the digital platform in incorporating multiple 
approaches. The marginal improvement we found 
in the accuracy performance of multiclass over 

binary classification digital tools may indicate that 
multiclass classification may capture multiple 
response variables of clinical features, thereby 
matching with refined headache phenotypes. 
However, this speculation involving potential dif-
ferences in machine learning migraine diagnostic 
digital tools needs to be appropriately tested and 
validated.

Our systematic review was focused on migraine 
because migraine is the most commonly studied 
headache diagnosis. Some of the computerized 
diagnostic tools included (Table 1) are capable to 
simultaneously perform diagnosis of multiple 
headache disorders. It will be interesting to com-
pare computerized migraine diagnostic accuracy 
with computerized diagnosis of other headache 
types.

Limitations
Because the studies included in this systematic 
review evaluated different digital tools, we were 
not able to conduct a weighted meta-analysis and 
derive a combined performance for diagnostic 
accuracy. Similarly, because of the interstudy het-
erogeneity of diagnostic automation software, it 
was not possible to undertake detailed sensitivity 
analysis such as publication bias, confounding or 
moderation, small-study bias, outliers, and cumu-
lative meta-analysis among the different comput-
erized migraine diagnostic tools. That patient 
selection method was missing from 39% of the 
included studies is another limitation. Studies 
that involved inappropriate exclusion criteria (e.g. 
overexclusion of difficult cases) may inflate the 
accuracy performance of a digital migraine diag-
nostic tool – only because confirmed or known 
migraine cases were enrolled, whereas ‘difficult to 
diagnose’ patients were excluded.97,98 Vice versa, 
studies that involved overinclusion of ‘difficult to 
diagnose’ migraine cases may underestimate the 
accuracy performance of a digital migraine diag-
nostic tool – only because ‘easy to diagnose’ 
migraine patients were excluded.97,98

By virtue of incorporating the same ICHD ques-
tion items in the index test (digital tools) and refer-
ence tests (interviews), validation of computerized 
migraine diagnostic tools is inherently faced with 
incorporation bias which can overestimate accu-
racy performance of the digital tools tested.99–101 
This circularity problem can only be solved by test-
ing digital/computerized migraine diagnostic tools 
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that rely on digital biomarkers (e.g. heart rate vari-
ability, photoplethysmography) instead of self-
report symptoms and signs, that is, when the index 
and reference tests contain parameters that are 
completely independent to each other (e.g. physi-
ological/objective versus patient-reported parame-
ters).99–101 Our review was limited to studies 
published in English, although we have included 
translated abstracts. As such, we may have missed 
computerized migraine diagnostic tools published 
in journals with other languages.

Conclusion
The emergence of digital health in headache  
medicine is evident. Computerized migraine diag-
nostic tools have been shown to perform with 
diagnostic accuracy as high as 100% compared 
with traditional interview-based diagnosis by 
headache experts. Increased testing in different 
clinical settings and patient populations as well as 
random patient sampling and a priori sample size 
estimations will enhance generalizability and 
robustness of computerized migraine diagnostic 
tools for implementation toward daily use. By vir-
tue of being a chronic condition whose episodic 
attacks can be triggered by lifestyle-related changes 
(e.g. sleep disruption, skipped mealtime) and fea-
turing several lifestyle-related multimorbidities 
(e.g. depression, anxiety),14,17,38 migraine care can 
benefit from digital health applications helping 
sufferers self-monitor and better manage their 
headache and related problems by reinforcing 
healthy lifestyle behavior.

Compared with traditional headache care model 
that is not capable of reaching the growing bur-
den of a billion of migraine sufferers worldwide,102 
computerized migraine diagnostic tools have the 
potential to provide efficient, patient-centered, 
and improved headache care by delivering early 
diagnosis and management, enhancing diagnostic 
accuracy, saving time, boosting accessibility, ena-
bling remote care with reduced costs, and decreas-
ing travel to hospital/clinic care setting thereby 
reducing the exposure to communicable diseases 
in healthcare settings.103 People with migraine 
can increase their self-efficacy and get a greater 
control of their health by using digital tools.104 
Personalized migraine care can be facilitated by 
digital tools.105 Headache care providers can 
obtain a comprehensive objective overview of the 
patient including real-time monitoring via sensors 
and diary recording.103 Virtual or augmented 

reality treatment modalities can be tested using 
migraine digital health tools, for example, to 
reduce head pain perception106 or to provide bio-
feedback sessions for associated psychological 
comorbidities.107 Scalability as well as data secu-
rity of digital migraine tools can be increased by 
using blockchain technology.108 Ingestible sen-
sors can be tested to measure gastroparesis, gut 
metabolomics, or gut–brain axis involvement in 
migraine.109
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