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Abstract

Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of
gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we
are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the
binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful
loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery,
including computational convenience, and how its principled derivation offers further insights about the posterior
distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator
can differ from the traditional maximum a posteriori or maximum likelihood estimators.
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Introduction

In motif discovery we are given a set of sequences that share a

common motif and aim to identify the motif profile—the

frequency of symbols for each position in the pattern—and the

positions in each sequence where the motifs are. It is assumed that

the motifs have significantly different profiles from sequence

background. This problem has gained attention and relevance in

the past 25 years mainly due to biological applications; a classical

example is regulation of gene expression by transcription factors

that bind to specific motifs in genomic promoter regions [1–3]. For

this reason, we refer to the positions where the motifs are realized

in the sequences as ‘‘binding sites’’.

Due to its importance, hundreds of procedures have been

proposed for motif discovery [4,5]. While some approaches seek to

characterize motifs and their binding sites using dictionary

methods that capture over-representation of words as evidence

[6,7], it is common to represent motif compositions by a position

weight matrix (PWM) [18] and specify a parametric model where

sequences are generated conditionally on motif and background

compositions and binding sites. Binding sites can then be regarded

as missing data; parameters for the compositions can be estimated

using expectation-maximization (EM) [9] in a frequentist setup

[10,11], or assigned a prior distribution in a Bayesian setup [12–

14]. Other computational approaches are based on evolutionary

algorithms and population clustering [15–17].

Even when exploiting prior information in both compositions

and binding site configurations in a Bayesian setup, motif

discovery is still considered a hard problem since motifs are

usually short relative to sequence length and have a composition

that might be hard to distinguish from background (see, for

instance, [4].) It is then imperative to rely on more refined,

informative estimation methods that better glean information from

the posterior distribution of binding site configurations. Discrete

inferential methods with this goal have recently been proposed,

including the median probability model of Barbieri and Berger [8]

and the centroid estimator [19,20].

Estimators based on centroid inference, in particular, have been

more successful than the ubiquitous maximum a posteriori (MAP)

estimator when applied to motif discovery in models that account

for sequence conservation [21,22]. These estimators, however,

were defined from a thresholded loss function that mostly

compares binding sites across sequences instead of more finely

comparing sequences position-wise for binding site overlaps, as in

the traditional centroid estimator (details in Methods.) Moreover,

these results rely on sampled binding site configurations to derive

the centroid and thus do not offer a characterization of the

estimator. Centroid estimators were also shown to yield more

compact centered credibility sets then MAP estimators when

applied to sequence alignment [23].

In this paper, we propose a novel centroid estimator that arises

from a more refined and arguably more natural loss function and

that can, in contrast to previous approaches, be fully characterized

as a function of marginal posteriors in the space of binding site

configurations. In this sense, we argue that the proposed estimator

is a better representative of the posterior space of configurations.

In addition, as a by-product of its derivation, we obtain

informative summaries of the distribution of posterior mass. To

this end, we adopt a Bayesian model for motif discovery on

multiple sequences with multiple possible binding sites that is an

extended version of the classic model from Liu, Neuwald, and

Lawrence [14]. The motivation for this extended model is twofold:

to obtain a feasible computational method while still retaining a

realistic interpretation and to allow us to focus the discussion on

the proposed estimator.

Methods

We present our approach starting from a simple model and

building up to the most general setup in the next sections.
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One Sequence, One Binding Site
Suppose we observe a sequence R, DRD ¼: n, and wish to infer the

location of the only binding site Y , Y[f1, . . . ,n{Lz1g.
Following the Bayesian model from [14], we assume that there

is only one motif of fixed length L and that sequences are generated

conditionally independently according to a product multinomial

model given binding site positions and motif and background

compositions. Thus, for an alphabet S, we define h0~(h0,s)s[S as

background probabilities of generating each letter in S and, for

each position i~1, . . . ,L in the motif, hi~(hi,s)s[S as the

probabilities of generating each letter at the i-th position in the

motif. To simplify the notation we denote H~(h0,h1, . . . ,hL). The

likelihood is then:

P(R DY ,H)~ P
s[S

P
j[BG

h
I(Rj~s)

0,s P
L

j~1
h

I(RY{jz1~s)

j,s ,

where j[BG means position j in background.

Setting a non-informative prior on Y , P(Y )~(n{Lz1){1, we

have the posterior:

P(Y DR,H)~
P(R DY ,H)P(Y DH)Pn{Lz1

~YY~1
P(R D ~YY ,H)P( ~YY DH)

~
P(R DY ,H)Pn{Lz1

~YY~1
P(R D ~YY ,H)

:

One traditional estimator is the maximum a posteriori (MAP)

estimator,

ŶYM~ argmax
~YY~1,...,n{Lz1

P( ~YY DR,H),

but we argue for an estimator that accounts for differences in

positions when comparing binding site configurations. Using

Bayesian decision theory [24] we look for an estimator that

minimizes, on average, a more refined loss function H :

ŶYC~ argmin
~YY~1,...,n{Lz1

EY DR,H½H( ~YY ,Y )�: ð1Þ

We adopt a generalized Hamming loss H ,

H( ~YY ,Y )~
Xn

i~1

h(li( ~YY ),li(Y )),

where li(Y ) returns the ‘‘state’’ of position i: if i is a background

position, li(Y )~0, otherwise li(Y )~i{Yz1, that is, li(Y )
returns the position in the motif. Loss function H compares

configurations position-wise according to h, which in turn

compares states. If we define m(i) ¼: I(iw0) to indicate if state i

is a motif state then one option for h is h(i,j) ¼: I(m(i)=m(j)),
which yields a loss H that accounts for overlap in binding sites.

Such metric is commonly adopted to measure binding site level

accuracy, as in the performance coefficients in [4,5,25].

Estimator ŶYC is a generalized centroid estimator; for instance, if h is a

common zero-one loss, h(i,j)~I(i=j), H corresponds to Ham-

ming loss, and thus ŶYC is the regular centroid estimator [19,20].

As Carvalho and Lawrence [26] argue, centroid estimators more

effectively represent the space since they are closer to posterior

means; in contrast, it can be shown that ŶYM arises from a zero-one

loss function which yields the posterior mode [26].

Let us now derive more specific expressions for H and ŶYC . We

first notice that if D ~YY{Y D§L then the binding sites do not overlap

and so H( ~YY ,Y )~2
PL

j~1 h(j,0) ¼: H�, the null overlap distance

between two configurations. Alternatively, when D ~YY{Y DvL then

H( ~YY ,Y )~
Xj ~YY{Y j

j~1

h(j,0)z
XL

j~L{j ~YY{Y jz1

h(j,0)z

XL{j ~YY{Y j

j~1

h(j,jzj ~YY{Y j),

ð2Þ

since the common backgrounds in ~YY and Y do not affect

H( ~YY ,Y ), the first two terms above account for the left and right

‘‘tails’’ where binding sites in one sequence are matched with

background in the other sequence, and the last term accounts for

the overlap in binding sites. We also note that H( ~YY ,Y ) is actually

a function of D ~YY{Y D.
Instead of a loss function we can also define our estimator in

terms of a gain function G( ~YY ,Y ) ¼: 1{H( ~YY ,Y )=H�. Note that

0ƒG( ~YY ,Y )ƒ1; in particular, when D ~YY{Y D§L there is no gain,

G( ~YY ,Y )~0, and if ~YY~Y we have G( ~YY ,Y )~1. As a conse-

quence, we can simply write G( ~YY ,Y )~I(D ~YY{Y DvL)

(1{H( ~YY ,Y )=H�) with H from Equation 2. Noting that G, like

H , is also a function of D ~YY{Y D, we obtain the following

characterization:

Theorem 1 The centroid estimator ŶYC is

ŶYC~ argmax
~YY~1,...,n{Lz1

G( ~YY ,:) � P(: DR,H),

a convolution between G and the posterior distribution on Y .

Proof. The result follows directly from the definition in Equation

1:

ŶY C ~ argmin
~YY~1,...,n{Lz1

EY DR,H½H( ~YY ,Y )�

~ argmax
~YY~1,...,n{Lz1

EY DR,H½I(D ~YY{Y DvL)(1{H( ~YY ,Y )=H�)�

~ argmax
~YY~1,...,n{Lz1

Pminfn{Lz1, ~YYzL{1g

Y~maxf1, ~YY{Lz1g
G( ~YY ,Y )P(Y DR,H)

~ argmax
~YY~1,...,n{Lz1

G( ~YY ,:) � P(: DR,H),

as required.

When contrasted to ŶYM we can see the effect of having a higher

resolution loss function: ŶYC gathers probability support from

nearby, relative to H, binding site configurations instead of just

picking the most likely configuration. More specifically, for h that

corresponds to the overlap in binding sites, we have H�~2L,

H( ~YY ,Y )~2 minfD ~YY{Y D,Lg, and so G( ~YY ,Y )~I(D ~YY{Y DvL)

(1{D ~YY{Y D=L)~maxf0,1{D ~YY{Y D=Lg, a ‘‘step pyramid’’ con-

volution filter that weights farther contributions less heavily. From

now on we will be adopting this loss/gain function.

Other choices of G could be used, but they do not necessarily

correspond to a generalized Hamming loss, and thus not to a

centroid estimator (as defined here) either. The centroid estimator

in [21,22], for instance, adopts the thresholded gain

G( ~YY ,Y )~I(D ~YY{Y DvL=2)½1{I( ~YY=Y )e�, close to a ‘‘half pla-
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teau’’ filter, where e is an infinitesimal meant to break ties. Besides

offering less resolution when comparing binding site configura-

tions—binding sites are only compared for a ‘‘significant’’

overlap—this gain function does not result from a generalized

Hamming loss since positional information is needed to assess if an

overlap is significant or not. Finally, to get some insight into the

new estimator, check the first example in the Results section.

One Sequence, Multiple Binding Sites
We now allow for multiple binding sites by defining Y~fYkg

as the collection of non-overlapping binding sites Yk. The likelihood

is similar, but accounts for the multiple binding sites:

P(R DY ,H)~ P
s[S

P
i[BG

h
I(Ri~s)

0,s P
DY D

k~1
P
L

i~1
h

I(RYkzi{1~s)

i,s :

Given the ‘‘entropic’’ effect of possibly having many binding sites,

we need to adopt a better prior for Y that takes into account the

number of possible configurations for the binding sites. So, instead

of naively electing P(Y )!1, we explore a hierarchical structure: if

c(Y )~DY D, the number of binding sites in Y , we note that

P(Y )~P(Y ,c(Y ))~P(Y Dc(Y ))P(c(Y )), then first set

P(Y Dc(Y ))!1—binding site configurations are equally likely

given the number of binding sites—and next define P(c(Y )).

In what follows we settle on a prior distribution for c(Y ) that is

based on a Markov chain with two states, background and motif,

where the probability of transitioning to background, either from

background or motif, and of starting at background is p; this

approach results in

P(c(Y ))!
n{c(Y )(L{1)

c(Y )

� �
pn{c(Y )L(1{p)c(Y ), ð3Þ

since there needs to be c(Y ) transitions to the motif state. This

prior structure offers a good degree of flexibility through p: we can

further set a hyperprior distribution on p, or specify it directly

based on the expected number b of binding sites in the sequence; if

n is large compared to b, as usual, then p should be close to one,

c(Y ) is approximately Poisson with mean n(1{p) and thus

p ¼: 1{b=n becomes a good candidate.

Going back to our inferential goal we note that, in contrast to

the one binding site case from last section, posterior inference is

more difficult since comparing configurations with different

number of binding sites is not amenable to a systematic approach.

Our first approximation is to consider local estimators for each

group of configurations with a fixed number of binding sites and

then appeal to a triangle inequality:

H(Y ,ŶY )ƒH(Y ,ŶYc)zH(ŶYc,ŶY ),

where Y is a configuration with c binding sites, ŶYc is the

constrained estimator for all configurations with c binding sites,

and ŶY is the (overall) centroid estimator. Let C ¼: tn=Ls be the

maximum number of binding sites in R, and recall that for the

centroid estimator we wish to find ~YY that minimizes

EY DR,H½H( ~YY ,Y )�~
XC

c~0

X
Y :c(Y )~c

H( ~YY ,Y )P(Y DR,H):

Using the triangle inequality for each group we then have

EY R,Hj ½H( ~YY ,Y )�ƒ
XC

c~0

X
Y :c(Y )~c

½H( ~YY , ~YYc)zH( ~YYc,Y )�P(Y jR,H)

~
XC

c~0

½H( ~YY , ~YYc)z
X

Y :c(Y )~c

H( ~YYc,Y )P(Y jc(Y )

~c,R,H)�P(c(Y )~c R,H),j

ð4Þ

where ~YYc is an arbitrary point in fY : c(Y )~cg. Our task is now

to find an estimator—let us still call it centroid—that minimizes

the right-hand bound in Equation 4 above. This goal suggests a

two-step strategy:

1. For each number of binding sites, c~1, . . . ,C, find the local

centroids

ŶYc~ argmin
~YY :c()~c

EY D c(Y )~c,R,H½H( ~YY ,Y )� ð5Þ

as the ~YYc in Equation 4.

2. Find the global centroid given the local centroids fŶYcgC
c~1,

ŶY~ argmin
~YY

Ec(Y ) DR,H½H(ŶYc(Y ), ~YY )�: ð6Þ

We note that this strategy does not guarantee that the bound is

minimized; the main goal here is computational convenience. Let

us tackle each step of this heuristic next. To this end we need

P(c(Y ) DR,H) and marginal posteriors P(Yk Dc(Y ),R,H); obtain-

ing these posterior probabilities is a standard procedure, but we

provide details on how they can be computed in File S1 for

completeness.

Local Centroids
Even when the number of binding sites is fixed, minimizing the

conditional posterior expectation of H( ~YY ,Y ) can be challenging:

we would still have to consider for each candidate configuration ~YY
the posterior probability of configurations with all binding sites to

the left of the first binding site in ~YY , in-between binding sites in ~YY ,

and so on. We adopt another approximation and decide to

minimize a paired Hamming loss HA where binding site positions

are matched according to their order:

HA( ~YY ,Y )~
Xc(Y )

k~1

H1( ~YYk,Yk),

where H1( ~YYk,Yk) is Hamming loss when comparing sequences

with only one binding site at ~YYk and Yk, respectively, that is,

H1( ~YYk,Yk)~2 maxfD ~YYk{Yk D,Lg. From the definition we have

that HA upper bounds H: HA( ~YY ,Y )§H( ~YY ,Y ). As a bad

approximation example, if ~YYk~Ykz1 for k~1, . . . ,c(Y ){1 then

HA( ~YY ,Y )~c(Y )L, since each pair of binding sites ~YYk and Yk

does not overlap, while H( ~YY ,Y )~2L since only Y1 and ~YYc(Y ) are

in disagreement with background.

The next result adapts Theorem 1 to yield the paired local

centroids.

Lemma 2 If Pk(: Dc(Y )~c,R,H) is the marginal conditional posterior

on Yk then the paired local centroids are

Bayesian Centroid Estimation for Motif Discovery

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e80511



ŶYc~ argmax
~YY :c( ~YY )~c

Xc

k~1

G( ~YYk,:) � Pk(: Dc(Y )~c,R,H)

Proof. In the same spirit of Theorem 1, we use the conditional

estimator in Equation 5 with the paired loss HA:

ŶYc ~ argmin
~YY :c( ~YY )~c

EY j c(Y )~c,R,H½HA( ~YY ,Y )�

~ argmin
~YY :c( ~YY )~c

X
Y :c(Y )~c

Xc

k~1

H1( ~YYk,Yk)P(Y jc(Y )~c,R,H)

~ argmin
~YY :c( ~YY )~c

Xc

k~1

Xn{(c{kz1)Lz1

Yk~(k{1)Lz1

H1( ~YYk,Yk)P(Yk jc(Y )~c,R,H)

~ argmax
~YY :c( ~YY )~c

Xc

k~1

Xminfn{(c{kz1)Lz1, ~YYkzLg

Yk~maxf(k{1)Lz1, ~YYk{Lg

G( ~YYk,Yk)P(Yk jc(Y )~c,R,H)

~ argmax
~YY :c( ~YY )~c

Xc

k~1

G( ~YYk,:) � Pk(: jc(Y )~c,R,H),

and the result follows.

We can spot in Lemma 2 the familiar convolutions, but now

with the marginal posteriors P(Yk Dc(Y ),R,H) and in a more

restricted range. We have a nice characterization, but we still have

to optimize a sum to obtain the local centroids; to this end we

explore the same recursive structure that allows us to compute

forward and backward sums (see File S1 for details.) Let us define

f ( ~YYk) ¼: G( ~YYk,:) � Pk(: Dc(Y )~c,R,H) as the convolution against

the marginal posterior on Yk; then we should have

max
~YY :c( ~YY )~c

Xc

k~1

f ( ~YYk)~

max
~YYc~(c{1)Lz1,...,n{cLz1

½f ( ~YYc)z max
~YY1,..., ~YYc{1

Xc{1

k~1

f ( ~YYk)�:
ð7Þ

This important observation allows us to obtain ŶYc using the

dynamic programming approach listed in Algorithm 1, as

Theorem 3 formalizes.

Algorithm 1 Find ŶYc using dynamic programming.

Construct partial maxima and backtrack pointers:

Step 1. Set m1( ~YY1)~f ( ~YY1) for ~YY1~1, . . . ,n{cLz1.

Step 2. For k~2, . . . ,c and ~YYk~(k{1)Lz1, . . . ,
n{(c{kz1)Lz1 do: set backtrack pointers

Ak{1( ~YYk)~ argmax
~YYk{1~(k{2)Lz1,..., ~YYk{L

mk{1( ~YYk{1):

and set partial maximum sum mk as

mk( ~YYk)~f ( ~YYk)zmk{1(Ak{1( ~YYk)):

Reconstruct centroid ŶYc using backtrack pointers:

Step 3. Set last binding site position:

ŶYc,c~ argmax
~YYc~(c{1)Lz1,...,n{Lz1

mc( ~YYc):

Note that, by construction, max ~YY :c( ~YY )~c

Xc

k~1
f ( ~YYk)~mc(ŶYc,c).

Step 4. For k~c, . . . ,2 do: recover the remainder of ŶYc by

setting ŶYc,k{1~Ak{1(ŶYc,k).

Theorem 3 Algorithm 1 correctly identifies the paired local centroids

ŶYc~ argmin
~YY :c( ~YY )~c

EY D c(Y )~c,R,H½HA( ~YY ,Y )�:

Proof. From Lemma 2 we know that ŶYc is the argument of

max ~YY :c( ~YY )~c

Xc

k~1
f ( ~YYk). The key device in Algorithm 1 is to

exploit the recursion in Equation 7 to define m1( ~YY1)~f ( ~YY1) and

mk( ~YYk)~f ( ~YYk)z max
~YYk{1~(k{2)Lz1,..., ~YYk{L

mk{1( ~YYk{1), ð8Þ

for kw1, to store partial sum maxima. Now it follows that

max
~YY :c( ~YY )~c

Xc

k~1

f ( ~YYk)~ max
~YYc~(c{1)Lz1,...,n{cLz1

mc( ~YYc),

and so Step 3 must be correct. The correctness of Step 4 relies on

the right specification of m in Steps 1 and 2; but these steps are a

straightforward application of Equation 7 using the definition of

m1 and a formulation of Equation 8 based on the backtrack

pointers A, and so the algorithm is correct.

We note that the paired local centroids minimize an expected

posterior upper bound HA on the loss H, and so the actual local

centroid might not be attained. We expect, however, that for

common cases in which the motif coverage c(Y )L is much smaller

than n that the bound is tight since HA approximates H well and

thus the two local centroids often coincide.

Global Centroid
While the local centroids already convey information about the

distribution of posterior mass in the space of binding site

configurations, the end goal of the analysis is a point estimate

that is, in itself, a good representative of the space. Following the

strategy we outlined in the beginning of this section, we can further

summarize the information in the local centroids by identifying a

configuration ŶY that minimizes the expected conditional Ham-

ming loss, as in Equation 6. This approach, however, entails the

same difficulties as defining the centroid based on all points in the

space, and it is thus not treatable by a systematic approach—we

are now just restricting the configurations to the local centroids.

The global centroid can be defined by direct enumeration of all

possible configurations while keeping the minimizer of the

expected conditional posterior loss, but this ‘‘brute-force’’

approach considers an exponential number of solutions. A simple

heuristic is to restrict the global centroid to be one of the local

centroids,

ŶY~ argmin
~YY[fŶYcgCc~0

Ec(Y ) DR,H½H(ŶYc(Y ), ~YY )�: ð9Þ

Another alternative is to just take as global centroid the local

Bayesian Centroid Estimation for Motif Discovery
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centroid of the modal number of binding sites, ŶY~ŶYc� , where

c� ¼: argmax
c~0,...,C

P(c(Y )~c DR,H). From now on we adopt the global

centroid in Equation 9 for simplicity and, again, computational

expediency.

Constrained Global Centroid
A constrained, on the number of binding sites, global centroid

might be more computationally feasible since we are restricting the

space of available configurations. For instance, consider the 1-

global centroid,

ŶYo ¼: argmin
~YY :c( ~YY )~1

EY DR,H½H( ~YY ,Y )�:

As when defining local centroids, we can approximate ŶYo using a

paired loss, and since

EY DR,H½HA( ~YY ,Y )� ~
XC

c~0

X
Y :c(Y )~c

Xc

k~1

H1( ~YY ,Yk)P(Y DR,H)

~
Xn

i~1

XC

c~0

X
Y :c(Y )~c

Xc

k~1

H1( ~YY ,i)P(Yk~i DR,H)

~
Xn

i~1

H1( ~YY ,i)
XC

c~0

X
Y :c(Y )~c

Xc

k~1

P(Yk~i DR,H)

~
Xn

i~1

H1( ~YY ,i)Pc(i DR,H),

where

Pc(i DR,H) ¼:
XC

c~1

X
Y :c(Y )~c

Xc

k~1

P(Yk~i DR,H), ð10Þ

we have that

ŶYo~ argmin
~YY :c( ~YY )~1

EY DR,H½HA( ~YY ,Y )�~ argmax
~YY :c( ~YY )~1

G( ~YY ,:) � Pc(: DR,H):

It is important to note that while the restriction of one binding site

might seem artificial, the derivation of ŶYo is helpful in recognizing

sequence regions that are likely to host binding sites. In fact, since

Pc captures the posterior probability of having a binding site

starting at each position, and considering the overlap gain G, the

convolution of G and Pc highlights positions that have higher

posterior probability of being covered by a binding site.

Multiple Sequences, Multiple Binding Sites per Sequence,
Random Motif

We are now ready to address our model in broader generality:

the dataset now comprises m sequences, R~fRigm
i~1, and thus

binding site configurations are also indexed by sequence,

Y~fYigm
i~1. As before, we have that Y is independent of motif

parameters H, but we further assume that sequences and

configurations are conditionally independent given H:

P(R,Y DH)~ P
m

i~1
P(Ri,Yi DH)~ P

m

i~1
P(Ri DYi,H)P(Yi): ð11Þ

Given H we would be able to apply the methods discussed this

far to each sequence separately: compute forward and backward

sums to obtain marginal posterior probabilities for each Yi and

then find local centroids and the i-th global centroid. We will,

however, assume that H is random, say,

hj*Dir(aj), j~0,1, . . . ,L, ð12Þ

independently with the usual conjugacy [14], and we thus wish to

also conduct inference on background and motif compositions.

This assumption, albeit more realistic, complicates matters, since

the marginal unconditioned posterior distributions of Y and H are

not readily available; we are now required to estimate them before

obtaining centroid estimates.

To obtain the centroids we follow the procedure described in

the last section, but adopting Monte Carlo estimates of the

marginal posterior distributions, for i~1, . . . ,m,

bPP(c(Yi)~c jR) &
1

T

XT

t~1

I(c(Y
(t)
i )~c),

bPP(Yik~j jc(Yi)~c,R) &

XT

t~1
I(Y

(t)
ik ~j)I(c(Y

(t)
i )~c)XT

t~1
I(c(Y

(t)
i )~c)

,

k~1, . . . ,c,

where T is the number of samples. In File S1 we present a Gibbs

sampler [27,28] that draws Yi for each sequence given H and then

samples H conditional on the binding site configurations Y ,

similar to the approach in [14].

Results

Illustrative Examples
Example 1: One Sequence, One Binding Site. Consider

the following sequence of length n~200 from the nucleotide

alphabet S~fA, C, G, Tg,
10 20 30 40 50

| | | | |

GCCACTTTCGGGCCCGTGTCTAACGCACCACGGGC-

TACGTGACGGTGTGG CTCTATACTGACGACGTGAAC-

CAAGCTTTACTGAAGGACTTGCTGTTCCC CGACCCA-

TTTCCTGCCAGAACCTCTGACCAGTGTCTAGGGCTAT-

CGCCCG TGATGTCTCATGGCGACGCGCGAGGCGGT-

TGCTCGCCTCACTCCGTTCTG

and a motif of length L~6 with parameters H given by Table 1.

Figure 1 shows the conditional marginal posterior P(Y DR,H) and

the convolution G � P(: DR,H) used to obtain the centroid

ŶYC~36, binding at the subsequence TACGTG, close to the

consensual motif. Note that since H is very informative the

posterior profile has clear peaks and in this case ŶYc~ŶYM , the two

estimators coincide.

Example 2: One Sequence, Multiple Binding Sites. We

revisit the same sequence from Example 1, but now allow for at

most C~tn=Ls~33 binding sites, and adopt the prior given in

Equation 3 with b~3 and thus p~1{b=n~0:985. Using

Algorithm 1 in File S1 we are able to compute the conditional

marginal posteriors P(c(Y ) DR,H) and P(Yk Dc(Y ),R,H) for
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k~1, . . . ,c(Y ). These posterior distributions yield the local

centroids—according to Algorithm 1—and the global centroid

from Equation 9. In Table 2 we list the marginal posterior

P(c(Y )~c DR,H) up to the smallest c such that

P(c(Y )ƒc DR,H)w0:95, along with the local centroids; the global

centroid ŶYC is highlighted. Interestingly, the global centroid

coincides with the local centroid from the modal number of

binding sites.

In Figure 2 we display the posterior probabilities of binding site

coverage Pc from Equation 10, along with the convolutions that

are needed to define the 1-global centroid ŶYo~36. As can be seen,

position 36 has a lot of support, being present in all the local

centroids listed in Table 2; in fact, the probability of a binding site

starting at position 36 is greater than 50%.

While Pc can provide us guidance for which positions are likely

to start a binding site, using Pc to define local centroids can be

misleading. For instance, we could expect that the local centroid

with three binding sites—the modal number of binding sites—

would be, following a decreasing order on Pc, 36, 63, and 147.

However, if we examine the marginal posteriors

P(Yk Dc(Y )~3,R,H) in Figure 3 we realize that position 13 is

favored over position 63 because, if Fk ¼: G � Pk(: Dc(Y )~3,R,H),
F1(13)zF2(36)wF1(36)zF2(63).

Example 3: Multiple Sequences, Multiple Binding Sites

per Sequence. For the random motif version of the last

example we simulate m~20 sequences of same length n~200
using H from Table 1 and the prior for Yi, i~1, . . . ,m, from

Equation 3 with p~1{1=n~0:995. We continue focusing on the

inference of binding site configurations in the same sequence from

previous examples, which is the first sequence in the simulated

dataset. We assume a non-informative prior on H by setting

aj,s~1 for s[S and j~0, . . . ,L; the prior on each sequence Yi is

the same prior from Example 2 with p~0:985. Algorithm 2 in File

S1 is run for 10,000 iterations to guarantee convergence

(diagnostics not shown.)

The marginal posterior distribution of H can be assessed in

Figure 4. Since most positions in the sequences are background

sequences h0 has very small posterior variances. Also note that the

canonical palindromic E-box motif, with consensus CACGTG, is

Table 1. Background and motif compositions.

S h0 h1 h2 h3 h4 h5 h6

A 0:2 0:1 0:7 0:1 0:1 0:1 0:1

C 0:3 0:7 0:1 0:7 0:1 0:1 0:1

G 0:3 0:1 0:1 0:1 0:7 0:1 0:7

T 0:2 0:1 0:1 0:1 0:1 0:7 0:1

Background is assumed to be CG-rich, while the motif represents a canonical
palindromic E-box, CACGTG [34].
doi:10.1371/journal.pone.0080511.t001

Figure 1. Conditional marginal probability distribution P(Y DR,H) in solid line and convolution G � P(: DR,H) in dotted line. The black

thick line close to the axis marks the binding site corresponding to the centroid ŶYC .
doi:10.1371/journal.pone.0080511.g001

Table 2. Centroids and marginal posterior distribution of
number of binding sites.

c ŶYc P(c(Y )~c DR,H) P(c(Y )ƒc DR,H)

0 – 0:014 0:014

1 36 0:075 0:089

2 36,147 0:181 0:270

3 13,36,147 0.254 0:524

4 13,36,63,147 0:233 0:757

5 13,36,63,147,167 0:147 0:904

6 3,29,36,63,147,167 0:067 0:971

The global centroid and the modal number of binding sites are highlighted in
bold.
doi:10.1371/journal.pone.0080511.t002
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recovered. The procedure is now similar to what we presented in

Example 2; the main difference is that the marginal posterior

distributions are estimated from Markov chain Monte Carlo

(MCMC) samples obtained as shown in File S1. Table 3 lists the

estimated marginal posterior distribution of the number of binding

sites, the local and global centroids. The global centroid does not

coincide with the local centroid for the modal number of binding

sites. Moreover, the local centroids here are different from the

(conditional) local centroids in the last example, most likely due to

the randomness of H being taken into account.

Figure 5 displays the estimated Pc, G � Pc, and the centroids.

We see that compared to the second example some posterior mass

has shifted to positions 29 and to the group of positions 166, 167,

and 168. Here we clearly see the advantage of a centroid

estimator: G � Pc, and later G � Pk(: DR), gathers evidence of motif

binding from nearby positions, yielding a better summary—

Figure 2. Posterior binding site coverage Pc in solid line and convolution G � Pc in dotted line. Local centroids are listed below in gray;
the global centroid is in black.
doi:10.1371/journal.pone.0080511.g002

Figure 3. Marginal posterior distributions P(Yk Dc(Y )~3,R,H) in solid line and convolutions G � P(: Dc(Y ),R,H) in dotted line. The local
centroid is displayed at the bottom.
doi:10.1371/journal.pone.0080511.g003
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according to our choice of loss function—of the distribution of

posterior mass.

The selection of position 167 in the second local centroid ŶY2

might seem puzzling since the peaks at positions 36, 63, and 147

hold higher coverage probabilities. Checking P̂P(Yk DR) in Figure 6

helps dismiss any doubts: most of the support for these positions

come from configurations with higher number of binding sites, as

evidenced by the respective local centroids, but these configura-

tions hold relatively low posterior mass. When c(Y )~2, the prior

on Y2,2 assigns more posterior probability to higher positions, close

to the end of the sequence, simply because there are more

configurations for Y2,2 on these positions. It is also important to

notice that while none of the positions in the cluster 166–168 has

higher marginal posterior mass than positions 63 and 147, the

convolution G � P̂P2(: DR) is maximized at position 167, that is, the

cluster when taken together has more support from the data, as

weighted by G.

Case Study
We end this section with an example from the real-world dataset

in [5], sequence set yst02r. The dataset contains m~4 sequences

each with n~500 letters. We set L~16 and adopt a non-

informative prior on H, as in the previous example, and the prior

on each Yi, for the i-th sequence, from Equation 3 with b~3 per

thousand positions, so p~1{3=1000~0:997. As in the previous

example, 10,000 iterations suffice to reach convergence.

Let us focus on the second sequence. Figure 7 pictures the

binding site coverage probabilities, along with the local centroids.

The global centroid ŶYC~f85,105,169g contains three binding

sites, and it is also the local centroid for the modal number of

binding sites, with P̂P(c(Y )~3 DR)~0:32. Since most of the

posterior mass in concentrated in configurations with c(Y )~3,

the posterior profiles P̂P(Yk Dc(Y )~3,R) are similar to Pc and are

thus omitted.

From the MCMC samples we can produce the MAP estimate

ŶYM~f86,105,174g as the configuration with highest frequency

among the samples: P̂P(ŶYM DR)~0:032. In fact, we can estimate

the posterior probability of each sampled binding site configura-

tion and then, using classic multidimensional scaling [29], visualize

the estimated posterior distribution in Figure 8. It is interesting to

note that the null configuration—that is, without binding sites—is

also very likely with posterior probability 0:024. In contrast, the

global centroid has very small posterior probability, close to 0:001;

Figure 4. Boxplots of MCMC samples for H. (Outliers are not shown).
doi:10.1371/journal.pone.0080511.g004

Table 3. Centroids and estimated marginal posterior
distribution of number of binding sites.

c ŶYc
bPP(c(Y )~c DR,H) bPP(c(Y )ƒc DR,H)

0 – 0:026 0:026

1 29 0:107 0:133

2 29,167 0:210 0:343

3 29,63,167 0.274 0:617

4 13,36,147,167 0:201 0:818

5 13,29,63,147,167 0:120 0:938

6 13,29,36,63,147,167 0:046 0:984

The global centroid and the modal number of binding sites are highlighted in
bold.
doi:10.1371/journal.pone.0080511.t003
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it sits, however, closer to configurations with high posterior mass,

including the local centroids with one, two, and four binding sites.

To better assess how the centroid estimator is closer to a mean

than a mode estimator, we plot the estimated posterior distribution

of the generalized loss function H centered at both ŶYC and ŶYM in

Figure 9. Since EY DR½H(ŶYM ,Y )�~42:40 and EY DR½H(ŶYC ,Y )�~
40:22, we see that the binding sites in the centroid configuration

are, on average, overlapping two extra positions with the binding

sites in all the configurations when compared to the MAP

estimate’s binding sites. Both estimates are fairly similar, but the

centroid reminds us that placing the third binding site at position

169, instead of 174, yields an unlikely configuration, but with a

higher chance of overlapping with binding sites in positions 160–

175 that have high posterior probability. In the context of Figures 8

and 9, the centroid places itself between two clusters that

Figure 5. Estimated posterior binding site coverage Pc in solid line and convolution G � Pc in dotted line. Local centroids are listed
below in gray; the global centroid is in black.
doi:10.1371/journal.pone.0080511.g005

Figure 6. Estimated marginal posterior distributions P(Yk Dc(Y )~2,R,H) in solid line and convolutions G � P(: Dc(Y ),R,H) in dotted
line. The local centroid is displayed at the bottom.
doi:10.1371/journal.pone.0080511.g006
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concentrate posterior mass: one with configurations Y such that

25ƒH(ŶYC ,Y )ƒ40 and another with configurations further away,

satisfying 40ƒH(ŶYC ,Y )ƒ50.

Discussion

In this paper we have presented a Bayesian approach, similar to

the Gibbs motif sampler in [12,14], that jointly models motif and

background compositions and binding site locations in a set of

Figure 7. Estimated posterior binding site coverage Pc and convolution G � Pc for real-world dataset, second sequence. Binding site
coverage Pc in solid line and convolution G � Pc in dotted line. Local centroids are listed below in gray; the global centroid is in black.
doi:10.1371/journal.pone.0080511.g007

Figure 8. Estimated posterior distribution of configurations Y based on MCMC samples and projected using multidimensional
scaling. The colors code configurations with different number of binding sites. Bold points mark local centroids, while a square (bold) point
highlights the global centroid.
doi:10.1371/journal.pone.0080511.g008
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sequences. More importantly, we discuss and formalize an

inferential procedure based on the centroid estimator proposed

by Carvalho and Lawrence [20]. As in any Bayesian analysis, we

wish to evaluate features of interest in a model based on their

posterior distribution; however, if we are required to pick a

representative configuration, a point in the parameter space, then

a principled approach is to elect a loss function and conduct

formal statistical decision analysis. In this sense, by exploring a

more refined loss function that depends on position-wise

comparisons between sequence states—background or motif

positions—we are able to identify a better representative of the

posterior space of binding site configurations. Perhaps more

importantly, this loss function is meaningful to investigators since is

commonly adopted as a metric to measure binding site level

accuracy [4,5,25], and so the centroid estimator should be

preferred over MAP estimation in principle. Moreover, as pointed

out in [20], the centroid estimator better accounts for the

distribution of posterior mass; it is more similar to a median than

to a mode, and can thus offer better predictive resolution than the

MAP estimator [18]. When applied to motif discovery, the

centroid estimator captures information in the vicinity of binding

site positions through a convolution in marginal posterior

distributions of binding sites.

Given the combinatorial number of possible configurations in

the parameter space it is not straightforward to identify the

centroid estimate through enumeration or even a systematic

approach. Yet, we devise an approximative scheme that efficiently

optimizes an upper bound on the posterior expected loss and thus

provides a related centroid. Despite its heuristic nature, the

proposed method has another advantage besides computational

convenience: it allows for an informative depiction of the posterior

distribution on binding site configurations. First, when defining the

local centroids, we are able to assess the contributions from each

binding site through their marginal posterior distributions

conditional on the number of binding sites, and, in particular,

through the convolution of these marginal profiles with the gain

filter; secondly, when finding the global centroid we explore the

marginal posterior distribution on the number of binding sites.

Moreover, other representations might be helpful in understand-

ing the distribution of posterior mass, as in the use of Pc (in

Equation 10) to pinpoint the 1-global centroid and measure the

overall support of the configurations to a binding site at some

specific position in the sequence. These comments are in the spirit

of an estimator being also a communicator of the posterior space

and the particular choice of prior distribution (see, e.g., Section

4.10 in [24].)

It is important to note that even when the model is accurate,

poor inference might fail in recovering relevant features of the

space. In Example 2, the MAP estimate is the null configuration,

while the centroid indicates three binding sites that represent a

group of configurations that jointly pool significant posterior mass.

It is also common that the posterior distribution is too complex to

be reasonably captured by a single representative; in this case the

expected posterior loss could also be used to partition the space

and further define additional representatives as conditional

estimates on each subspace. This is a direction of work that

warrants interest and that we intend to follow next.

Product multinomial and product Dirichlet models are justified

as a good working, first approximation based on position

independence. There are many extensions to this model that

consider DNA strand complementarity [30], a more informative

Markov structure for the background composition [31], and an

explicit representation of the number of binding sites per sequence

[32]. While we adopted a simple hierarchical model to guide the

discussion, the proposed methodology is actually broader and the

centroid estimators can be obtained from any Bayesian procedure

that reports marginal posterior probabilities P(c(Y ) DR) and

P(Yk Dc(Y ),R), k~1, . . . ,c(Y ), for sequence R and binding site

configuration Y .

Further improvements can be obtained by specifying a more

complex model that accounts, for example, for higher order

Markov chains with more states for the background, as in [30,31],

Figure 9. Estimated posterior distribution of loss function centered at ~YY for the MAP ( ~YY~ŶYM ) and centroid ( ~YY~ŶYC ) estimates.
doi:10.1371/journal.pone.0080511.g009
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phylogenetic profiles [22], structural information [33], a variable

motif length, or dependency among motif positions. As pointed

out by Hu, Li, and Kihara [4], motif discovery using sequence

only is well known for low signal-to-noise ratio; future extensions

would also incorporate other data sources, such as gene expression

or ChIP-Seq data, to increase the signal-to-noise ratio. In addition,

for future work we intend to extend the model to account for

multiple motifs, either from multiple TFs or from a single TF with

alternative motifs. While the problem then becomes computation-

ally more challenging, we expect that recursions and estimators

similar to the ones discussed here will follow from extra

bookkeeping on which motifs are bound at each binding site.

Supporting Information

File S1 Derivation of conditional and marginal posteri-
or probabilities for Y and c(Y ) and Gibbs sampler for

the posterior joint on Y and H. Derivation of conditional

posterior probabilities P(c(Y ) DR,H) and marginal posterior

probabilities P(Yk Dc(Y ),R,H), along with a routine to compute

them in Algorithm 1. A Gibbs sampler to iteratively sample

H DY ,R and Y DH,R is given in Algorithm 2.

(PDF)
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