
RESEARCH ARTICLE

Drug-target interaction prediction using

Multi Graph Regularized Nuclear Norm

Minimization

Aanchal MongiaID
1, Angshul Majumdar2*

1 Dept. of Computer Science and Engineering, IIIT-Delhi, Delhi, India, 2 Dept. of Electronics and

Communications Engineering, IIIT-Delhi, Delhi, India

* aanchalm@iiitd.ac.in

Abstract

The identification of potential interactions between drugs and target proteins is crucial in

pharmaceutical sciences. The experimental validation of interactions in genomic drug dis-

covery is laborious and expensive; hence, there is a need for efficient and accurate in-silico

techniques which can predict potential drug-target interactions to narrow down the search

space for experimental verification. In this work, we propose a new framework, namely,

Multi-Graph Regularized Nuclear Norm Minimization, which predicts the interactions

between drugs and target proteins from three inputs: known drug-target interaction network,

similarities over drugs and those over targets. The proposed method focuses on finding a

low-rank interaction matrix that is structured by the proximities of drugs and targets encoded

by graphs. Previous works on Drug Target Interaction (DTI) prediction have shown that

incorporating drug and target similarities helps in learning the data manifold better by pre-

serving the local geometries of the original data. But, there is no clear consensus on which

kind and what combination of similarities would best assist the prediction task. Hence, we

propose to use various multiple drug-drug similarities and target-target similarities as multi-

ple graph Laplacian (over drugs/targets) regularization terms to capture the proximities

exhaustively. Extensive cross-validation experiments on four benchmark datasets using

standard evaluation metrics (AUPR and AUC) show that the proposed algorithm improves

the predictive performance and outperforms recent state-of-the-art computational methods

by a large margin. Software is publicly available at https://github.com/aanchalMongia/

MGRNNMforDTI.

Introduction

The field of drug discovery in Pharmaceutical Sciences is plagued with the problem of high

attrition rate. The task is to find effective interactions between chemical compounds (drugs)

and amino-acid sequences/ proteins (targets). This is traditionally done through wet-lab

experiments which are costly and laborious.
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An effective and appropriate alternative to avoid costly failures is to computationally pre-

dict the interaction probability. A lot of algorithms have been proposed for DTI (Drug-target

interaction) prediction in recent years [1, 2], which use small number of experimentally vali-

dated interactions in existing databases such as ChEMBL [3], DrugBank [4], KEGG DRUG

[5], STITCH [6] and SuperTarget [7]. Identification of drug-target pairs leads to improve-

ments in different research areas such as drug discovery, drug repositioning, polypharmacol-

ogy, drug resistance and side-effect prediction [8].

For example, Drug repositioning [9, 10] (reuse of existing drugs for new indications) can

grant polypharmacology (multi-target effect) to a drug. One of the many successfully reposi-

tioned drugs is Gleevec (imatinib mesylate). Earlier, it was known to interact only with the

Bcr-Abl fusion gene which is indicative of leukemia. However, later discoveries showing that it

also interacts with PDGF and KIT, repositioned it for the treatment of gastrointestinal stromal

tumors [11, 12].

There are three major classes of computational methods for predicting DTI: Ligand-based,

Docking based, and Chemogenomic approaches. Ligand-based approaches leverage the simi-

larity between target proteins’ ligands to predict interactions [13]. The idea is that molecules

with similar structure/property would bind similar proteins [14]. But, the reliability of results

might get compromised due to limited information about known ligands per protein. Dock-

ing-based approaches use the 3D structure of both drugs and proteins to predict the interac-

tion likelihood [15–17]. This, although is well-accepted, but is very time-consuming and

hence, cannot be used for protein families for which the 3D structure is either difficult to pre-

dict or is unavailable [18] like the G-protein coupled receptors (GPCRs).

Chemogenomic approaches overcome the challenges of traditional methods and thus, have

recently gained much attention. The approaches under this category can work on the huge

amount of biological data, publicly available in existing online databases and can process meta-

data (chemical structures and genomic sequences) for both the drug and target, respectively.

These approaches can further sub-classified based on the representation of the input data: Fea-

ture-based techniques and Similarity-based techniques. Feature-based techniques take their

inputs in the form of features and class labels (binary values here) and leverage machine learn-

ing for classifying if an input instance corresponds to a positive interaction or a negative one.

Examples of typical feature based methods include Decision Trees (DT), Random Forests (RF)

and Support Vector Machines (SVM) to build classification models based on the labeled fea-

ture vectors [19]. In the training set, positive instances are the experimentally known interac-

tions while the negative ones are either non-interactions or unknown interactions. The other

category of chemogenomic techniques, Similarity-based methods, use two similarity matrices

corresponding to drug and target similarity, respectively, along with the drug-target interac-

tion matrix.

Let us discuss the similarity between the said DTI problem and the problem of collaborative

filtering (CF). CF is a standard problem in information retrieval. It is used in recommenda-

tions systems (e.g. in Netflix movie recommendations and Amazon product recommenda-

tions). There is a database of user’s and their ratings on items (movies, products, etc.).

Obviously, not all the ratings are available; users typically rate only a small subset of items. The

objective is to estimate the ratings of all the users on all the items. If that can be done accu-

rately, recommendation accuracy increases. The similarity between DTI and CF should be

straightforward now; the drugs play the role of users and the targets play the role of items. The

interactions are similar to the ratings. Over the years, many approaches originally developed

for CF have been leveraged to solve the DTI problems.

In both CF [20] and DTI [21–23], the initial techniques were based on simple neighbor-

hood-based models. In order to predict the interaction of a (active) drug on a target, the first
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step is to find out similar (neighbor) drugs by computing some kind of a similarity score. Once

the neighborhood is obtained, the interaction value from the drugs in the neighborhood are

weighted (by the normalized similarity score) to interpolate the interaction of the active drug

on the target. This is similar to KNN (K-nearest neighbor) based approaches in DTI prediction

literature [24]. Another approach was based on bipartite local models. In such models, a local

model is built for every drug and target. For example in [25] an SVM was trained for each to

predict the interaction of each drug on all targets and each target on all drugs. Finally, the deci-

sion from the two was fused. This is just an example, there are other techniques falling under

this generic approach like [26, 27]. The above-mentioned methods can be categorized as classi-

fication based approaches where the chemical/biological information is used to generate fea-

tures for drugs and targets individually and these two types of features are then concatenated

and the corresponding interaction is assumed to the class corresponding to this feature. Any

standard classifier is generally used for the final classification. In such class of techniques, the

emphasis is on different feature selection mechanisms [28, 29]. Both semi-supervised [30, 31]

and supervised [32, 33] classification based prediction approaches have been leveraged in

Drug-Target interaction prediction.

The second category is based on network diffusion models. One technique for DTI predic-

tion based on such models is based on a random walk on the network with a predefined transi-

tion matrix [34]. Another work falling under this category, predicts interactions by finding a

simple path (without loops) between nodes of the network.

The third approach is based on matrix factorization. These techniques were originally

developed for collaborative filtering [35]. It is assumed that drugs and targets are characterized

by latent factors. The probability of interaction is high when the latent factors match; i.e. when

the inner product has a high value. Therefore, it is logical to express the interaction matrix as a

(an inner) product of drug and target latent factors. This allows matrix factorization (and its

variants) to be applied [36, 37].

In a very recent review paper [2] it was empirically shown that matrix factorization based

techniques yields by far the best results. The fundamental assumption behind matrix factoriza-

tion to work is that there are very few (latent) factors that are responsible for drug target inter-

actions. This is the reason, one can factor the DTI matrix into a tall (drug) latent factor matrix

and a fat (target) latent factor matrix. Mathematically speaking, the assumption is that the DTI

matrix is of low-rank. Matrix factorization is being used to model low-rank matrices for the

past two decades since the publication of Lee and Seung’s seminal paper [38]. However, matrix

factorization is a bi-linear non-convex problem; there are no convergence guarantees. In

order to ameliorate this problem, mathematicians proposed an alternative approach based on

nuclear norm minimization [39–41]. The nuclear norm is the closest convex surrogate to the

rank minimization (known to be NP-hard) problem and there are provable mathematical

guarantees on its equivalence to rank minimization.

The standard versions of both the matrix factorization and nuclear norm minimization

techniques are unable to incorporate similarity information of the drugs and the targets. In

recent studies [37, 42], it was shown that the best results are obtained when these technique

incorporate graph regularization penalties into them. But, these works regularize the objective

function by taking into account, just the standard chemical structure similarity for drugs (Sd)
and the genomic sequence similarity for targets (St). No study in literature gives a clear picture

of which kind of similarities would be the best for DTI prediction. We, therefore, incorporate

different other kinds of similarities and a combination of them as a multi-graph Laplacian reg-

ularization with Nuclear Norm Minimization for DTI prediction. The algorithm uses four

new similarity measures over the drugs and targets, apart from the standard similarities to con-

struct the graph Laplacians. The four newly incorporated similarities are computed from the
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interaction matrix and take into account the Cosine similarity, Correlation, Hamming distance

and Jaccard similarity between the drugs and targets. To the best of our knowledge, this is

the first work on multiple graph laplacian regularized nuclear norm minimization for DTI

prediction.

Materials and methods

Dataset description

We use the four benchmark datasets introduced in [21] having four different classes of pro-

teins: enzymes (Es), ion channels (ICs), G protein- coupled receptors (GPCRs) and nuclear

receptors (NRs). The data was simulated from public databases KEGG BRITE [43], BRENDA

[44] SuperTarget [7] and DrugBank [4] and is publically available at the given link: http://web.

kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.

The data from each of these databases is formatted as an adjacency matrix, called interac-

tion matrix between drugs and targets, encoding the interaction between n drugs and m tar-

gets as 1 if the drug di and target tj are known to interact and 0, otherwise.

Along with the interaction matrix, drug similarity matrix Sd and a target similarity matrix St
are also provided. In Sd, each entry represents the pairwise similarity between the drugs and

is measured using SIMCOMP [45]. It represents the chemical structure similarity between

drugs; measured using the number of shared substructures within the chemical structures of

two drugs. In St, the similarity score between two proteins is the genomic sequence similarity.

It is based on the amino acid sequences of the target protein and is computed using normalized

Smith–Waterman [46].

The similarity matrices Sd and St constitute the most standard similarities that have been

used in the DTI prediction task hitherto. We use these similarities along with the following

four more similarities computationally derived from the drug-target interaction matrix to

form the graph laplacian terms:

• Cosine similarity: measures the cosine of the angle between two drug/target vectors pro-

jected in a multi-dimensional space. Its value ranges from -1 (exactly opposite) to 1 (exactly

the same). Given two n-dimensional drug (or target) vectors (A and B), the cosine similarity

is calculated as follows:

Scos ¼

Xn

i¼1

AiBi
ffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

A2
i

s ffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

B2
i

s

Here, Ai and Bi denote the components of vector A and B.

• Correlation: computes the Pearson’s linear correlation coefficient indicating the extent to

which two variables are linearly related. It has a value between +1 and −1, where 1 is total

positive linear correlation, 0 is no linear correlation, and −1 is total negative linear correla-

tion. For a pair (say A and B) of drugs/targets with sample size n, it is given by:

Scor ¼

Xn

i¼1

ðAi � �AÞðBi � �BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðAi � �AÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

ðBi � �BÞ2
s
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where

�A ¼
1

n

Xn

i¼1

Ai and �B ¼
1

n

Xn

i¼1

Bi

• Hamming similarity: has been computed using Hamming distance. For any two n-dimen-

sional drugs/targets (A and B), the hamming distance is the percentage of interaction posi-

tions that differ. We calculate Hamming distance based similarity by simply subtracting

hamming distance from 1, giving us its complementary (the percentage of common interac-

tion positions for a pair of drugs/targets). It can be calculated as follows:

Sham ¼ 1 �
#ðAi 6¼ BiÞ

n

• Jaccard similarity: is defined as the percentage of common non-zero interaction positions

for the two given sample sets of drugs/target vectors.

Sjac ¼
#½ðAi ¼ BiÞ \ ððAi 6¼ 0Þ [ ðBi 6¼ 0ÞÞ�

#½ðAi 6¼ 0Þ [ ðBi 6¼ 0Þ�

Table 1 summarizes the statistics of all four datasets.

Nuclear norm minimization

Let us assume that X is the adjacency matrix where each entry denotes interaction between a

drug and target (1 if they interact, 0 otherwise). Unfortunately, we only observe this matrix

partially because all interactions are not known. IfM denotes the partially observed adjacency

matrix, the mathematical relation between X andM is expressed as:

M ¼ AðXÞ ð1Þ

In the above equation, A denoted the sub-sampling operator, element-wise multiplied to X.

It is nothing but a binary matrix or a mask that has 0’s where the interaction X has not been

observed or is unknown and 1’s where they have been. The task is to recover X, given the

observationsM, and the sub-sampling mask A. It is known that X is of low-rank. Ideally, X

should be recovered by (2).

min
X
rankðXÞ such that M ¼ AðXÞ ð2Þ

Unfortunately, rank minimization is an NP-hard problem with doubly exponential com-

plexity, therefore solving it directly is not feasible.

Traditionally, a low-rank matrix has been modeled as a product of a thin and a fat matrix

and recovered using Matrix Factorization techniques [38]. But, Matrix Factorization is a bi-

Table 1. Drugs, targets and interactions in each dataset used for validation.

Datasets Nuclear Receptor (NR) G-Protein Coupled Receptor (GPCR) Ion channel (IC) Enzyme (E)

# Interactions 90 635 1476 2926

# Drugs 54 223 210 445

# Targets 26 95 204 664

https://doi.org/10.1371/journal.pone.0226484.t001
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linear non-convex problem, therefore there is no guarantee for global convergence. In the past

decade, mathematicians showed that the rank minimization problem can be relaxed by its con-

vex surrogate (nuclear norm minimization) with provable guarantees [39, 40] This turns out

to be a convex problem that can be solved by Semi-Definite Programming. More efficient solv-

ers have also been proposed. Problem (2) is expressed as (3)

min
X
kXk� such that M ¼ AðXÞ ð3Þ

Here the nuclear norm (|| ||�) is defined as the sum of singular values of data matrix X. It is

the l1 norm (sum of absolute values) of the singular values of X and is the tightest convex relax-

ation of the rank of the matrix, and hence its ideal replacement.

Here, (3) is a constrained formulation for the noiseless scenario, usually its relaxed version,

(4) is solved.

min
X
kM � AðXÞk2

F þ lkXk� ð4Þ

One of the efficient solvers for Nuclear Norm minimization is the Singular value shrinkage

(SVS) algorithm [47].

Algorithm 1 Singular value shrinkage
1: procedure MATRIX-SVS(M, A, λ)
2: Initialize: X = rand, a
3: For loop, iterate (k)
4: Bk ¼ Xk� 1 þ

1

a A
TðM � A � Xk� 1Þ

5: Compute SVD of B: Bk = USVT

6: Soft threshold the singular values: Σ = soft(S, λ/2)
7: Xk = UΣVT

8: Xk  Xþk
9: End loop 1

Multi Graph Regularized Nuclear Norm Minimization

Nuclear Norm based Low-rank Matrix Completion is not our contribution, it has been around

since the past decade. The problem with standard Nuclear norm minimization (NNM) is that

it cannot accommodate associated information such as Similarity matrices for Drugs and Tar-

gets. But, it has been seen in recent studies that accommodating the similarity information is

crucial for improving the DTI prediction results. The current works have incorporated the

standard similarity measures for drugs and targets in matrix factorization [37] and Matrix

completion [42] frameworks. It is imperative that NNM should be capable of taking into

account more types and combinations of similarities. To achieve this, we have augmented

four other types of similarities between drugs/targets and presented Multi-Graph regularized

Nuclear Norm Minimization (MGRNNM).

Graph regularization assumes that data points which are in the neighborhood of each other

in the original space should also be close to each other in the learned manifold (Local Invari-

ance assumption). So, Graph regularization would allow/enable the algorithm to learn mani-

folds for the drug and target spaces in which the data is assumed to lie. The multi graph

regularized version of Nuclear norm minimization, aims to prevent over fitting and greatly

enhance the generalizing capabilities. It is incorporated into the formulation/objective

MGRNNM for DTI prediction
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function as Laplacian weights corresponding to drugs and targets:

min
X
kM � AðXÞk2

F þ lkXk� þ m1TrðX
T
Xnos

i¼1

LidXÞ þ m2TrðX
Xnos

i¼1

LitX
TÞ ð5Þ

where λ� 0, μ1� 0 and μ2� 0 are parameters balancing the reconstruction error of NNM in

the first two terms and graph regularization in the last two terms, Tr(.) denotes the trace of the

matrix, nos stands for number of similarity matrices (nos = 5 in our case).

If, say we consider a single similarity matrix for drugs (Sd) and that for targets (St), then

Ld = Dd − Sd and Lt = Dt − St are the graph Laplacians [48] for Sd (drug similarity matrix) and

St (target similarity matrix), respectively, and Dii
d ¼ SjS

ij
d and Diit ¼ SjS

ij
t are degree matrices.

Problem (5) is solved using a variable splitting approach [49]. The augmented Lagrangian is

expressed as (6). We introduce two new proxy variables Z and Y such that ZT = X and Y = X.

min
X;Y;Z
kM � AðXÞk2

F þ lkXk� þ m1TrðZ
Xnos

i¼1

LidZ
TÞ þ m2TrðY

Xnos

i¼1

LitY
TÞþ

n1kZT � Xk
2

F þ n2kY � Xk
2

F

ð6Þ

The variables are updated using ADMM [50, 51]. This leads to the following subproblems

(7), (8) and (9)

X  min
X
kM � AðXÞk2

F þ n1kZ
T � Xk2

F þ n2kY � Xk
2

F þ lkXk� ð7Þ

Y  min
Y
m2TrðY

Xnos

i¼1

LitY
TÞ þ n2kY � Xk

2

F ð8Þ

Z  min
Z
m1TrðZ

Xnos

i¼1

LidZ
TÞ þ n1kZ

T � Xk2

F ð9Þ

Problem (7) can be expressed as a standard NNM probelm (by column stacking the variables).

M
ffiffiffiffi
n1

p ZT

ffiffiffiffi
n2

p Y

0

B
B
B
@

1

C
C
C
A
�

A
ffiffiffiffi
n1

p I
ffiffiffiffi
n2

p I

0

B
B
B
@

1

C
C
C
A
X

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

2

F

þlkXk� ð10Þ

To solve for Y and Z, we differentiate (8) and (9) wrt Y and Z, respectiveley.

Y ¼ arg min
Y
ðF1Þ where F1 ¼ m2TrðY

Xnos

i¼1

LitY
TÞ þ n2kY � Xk

2

F ð11Þ

Z ¼ arg min
Z
ðF2Þ where F2 ¼ m1TrðZ

Xnos

i¼1

LidZ
TÞ þ n1kZ

T � Xk2

F ð12Þ

@F1

@Y
¼ m2ðYð

Xnos

i¼1

LitÞ
T
þ Y

Xnos

i¼1

LitÞ þ 2n2ðY � XÞ ð13Þ
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@F1

@Y
¼ m2Y½

Xnos

i¼1

ðLitT þ L
i
tÞ� þ 2n2ðY � XÞ ð14Þ

Since Lt is a symmetric matrix, LTt ¼ Lt . So,

@F1

@Y
¼ 2m2Y

Xnos

i¼1

Lit þ 2n2ðY � XÞ

Equating the derivative to zero, we get:

n2Y þ m2Y
Xnos

i¼1

Lit ¼ n2X ð15Þ

The matrix equation of this form (AT+TB = C) cannot be solved directly for variable T and is

called Sylvester equation. Such an equation has a unique solution when the eigenvalues of A

and -B are distinct.

A similar Sylvester equation and update step for Z can be obtained by differentiating F2 and

equating to 0.

n1Z þ m1Z
Xnos

i¼1

Lid ¼ n1XT ð16Þ

It can be shown that computing the sum of the Graph Laplacians is equivalent to computing

the Laplacian from the sum of various similarity matrices involved. For instance, consider the

sum of drug Graph Laplacians:

Xnos

i¼1

Lid

¼
Xnos

i¼1

ðDi
d � S

i
dÞ

¼
Xnos

i¼1

Di
d �

Xnos

i¼1

Sid

¼
Xnos

i¼1

diagð
X

j

SjdÞ �
Xnos

i¼1

Sid

¼ diagð
X

j

ð
Xn

i¼1

SidÞ
j
Þ �

Xnos

i¼1

Sid

Let
Xnos

i¼1

Sid ¼ S
COM
d where SCOMd stands for combined similarity for drugs. Essentially,

SCOMd ¼ Sd þ Scosd þ S
cor
d þ S

ham
d þ S

jac
d ð17Þ
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łThen,

Xnos

i¼1

Lid ¼ diagð
X

j

SCOMd Þ � SCOMd ¼ DCOM
d � SCOMd ¼ LCOMd ð18Þ

Here, DCOM
d and LCOMd denote combined degree matrix and combined Laplacian matrix

(sum of graph laplacians) for drugs. Of note, the individual Laplacians or the similarities

can be weighted unequally to give more or less emphasis on a specific type of similarity. The

pseudo-code for MGRNNM has been given in Algorithm 2.

The standard NNM is a convex problem and the introduced graph regularization penalties

are also convex, so entire formulation (5), being a sum of convex functions, is convex. There-

fore it is bound to converge to a global minima. We chose the number of iterations such that

the algorithm halts when the objective function does not change with iterations. A sample con-

vergence plot for one of the datasets for drug-target pair prediction has been shown in Fig 1.

Algorithm 2 Multi Graph regularized Nuclear Norm Minimization
1: procedure MGRNNM(M;A; SCOMd ; SCOMt )
2: Sparsify: SCOMd ; SCOMt

3: Initialize: l; m1;m2; n1; n2; LCOMd ; LCOMt ;Y ¼ M; Z ¼ MT

4: AA 

A
ffiffiffiffi
n1

p I
ffiffiffiffi
n2

p I

0

B
B
@

1

C
C
A

5: For loop, iterate (k)

6: YYk  

M
ffiffiffiffi
n1

p ZT
ffiffiffiffi
n2

p Y

0

B
B
@

1

C
C
A

Fig 1. Converge plot of the MGRNNM algorithm for NR dataset with cross validation setting CVS1 (drug-target

pair prediction).

https://doi.org/10.1371/journal.pone.0226484.g001
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7: Xk  MATRIX − SVS(YYk, AA, λ)
8: Yk  solve � sylvesterðn1I;m1LCOMd ; n1X0kÞ
9: Zk  solve � sylvesterðn2I; m2LCOMt ; n2XkÞ
10: End loop 1

Time complexity of MGRNNM

The algorithm is iterative, so we only discuss the time complexity per iteration. In each itera-

tion, we solve the two Sylvester equations and one NNM. NNM itself is an iterative algorithm

that requires solving Singular value decomposition in each iteration, the order of complexity

of which is O(n3). The complexity of solving Sylvester equation is O(nb.log(n)) [52] where b is

between 2 and 3.

Results and discussion

Experimental setup

We validated our proposed method by comparing it with recent and well-performing predic-

tion methods proposed in the literature. Out of the 7 approaches with which we compare,

• Five are specifically designed for DTI task (WGRMF: Weighted Graph Regularized Matrix

Factorization, CMF: Collaborative Matrix Factorization, RLS_WNN: Regularized Least

square Nearest neighbor profile, NRLMF: Neighborhood Regularized Logistic Matrix Fac-

torization for Drug-Target Interaction Prediction and TMF: Triple matrix factorization) [23,

37, 53–55]. Of note, the code available for TMF does not reproduce the results stated in the

corresponding paper; the results obtained after running their code has been reported in this

work.

• One being traditional matrix completion (MC: matrix completion) [47] and

• Last one being a naive solution to our problem, available as an unpublished work (MCG:

matrix completion on graphs). Of note, the Space complexity of MCG is O(n4) while that of

MGRNNM is O(n2). [56])

All baselines designed for DTI problem are recent and are already compared against older

methods.

We have performed 5 runs of 10-fold cross-validation (CV) for each of the algorithms

under three cross-validation setting (CVS) [2]:

• CVS1/Pair prediction: random drug–target pairs are left out for testing set to be used in pre-

diction. It is the conventional setting for validation and evaluation.

• CVS2/Drug prediction: the complete drug profiles are left out for the testing set. It tests the

algorithm’s ability to predict interactions for novel drugs i.e. drugs for which no interaction

information is available.

• CVS3/Target prediction: the complete target profiles are left out for the testing set. It tests

the algorithm’s ability to predict interactions for novel targets.

In 10-fold CV, the given data was divided into 10 folds and out of those 10 folds, one

was left out for testing whereas the remaining 9 folds were used as the training set. As

the evaluation metrics, we have used AUC (Area under ROC curve) and AUPR (Area

under the precision-recall curve). In biological drug discovery, AUPR is a practically more

important metric since it penalizes high ranked false positive interactions much more than

MGRNNM for DTI prediction
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AUC. This is because those pairs would be biologically validated later in the drug discovery

process.

Preprocessing

Each of the drug and target similarity matrices were summed up to compute the combined

similarity matrices SCOMd and SCOMd (Eq (17)). The combined similarity matrices were further

sparsified by using p-nearest neighbor graph which is obtained by taking into account only the

similarity values which correspond to the nearest neighbors for each drug/target. The usage of

such a pre-processing, as shown by [37], helps learn a data manifold on or near to which the

data is assumed to lie which, in turn, is expected to preserve the local geometries of the original

data and hence give more accurate results.

8i; j

Nij ¼

1; j 2 NpðiÞ&i 2 NpðjÞ

0; j =2 NpðiÞ&i =2 NpðjÞ

0:5; else

8
>>>>><

>>>>>:

where Np(i) is the set of p nearest neighbors to drug di. Similarity matrix sparsification is done

by element-wise multiplying it with Nij. In the next step, the combined graph laplacian terms

are computed. Also, instead of graph laplacians (LCOMd and LCOMt ), we have used normalized

graph laplacians (ðDCOM
d Þ

� 1=2LCOMd ðDCOM
d Þ

� 1=2
and ðDCOM

t Þ
� 1=2LCOMt ðDCOM

t Þ
� 1=2

) instead as nor-

malized graph Laplacians are known to perform better in many cases [57].

Parameter settings

For setting the parameters of our algorithm, we performed cross-validation on the training set

on the parameters p, λ, μ1, μ2, ν1, ν2 to find the best parameter combination for each dataset,

under each cross-validation setting. As mentioned earlier, the individual laplacians or the simi-

larities can be weighted unequally to give more or less emphasis on a specific type of similarity,

we weigh the Cosine, Correlation and Jaccard similarities heavily (4 times) relative to Ham-

ming similarity. This was done because hamming similarity showed the least improvement

in prediction accuracy as compared to the other three similarities when taken into account

along with standard similarities. For the other methods, we set the parameters to their optimal

(which were found to be already optimal) in [2].

Interaction prediction

Tables 2 and 3 show the AUPR results and the AUC results for the CVS1 cross validation set-

ting respectively. The following tables (Tables 4, 5, 6 and 7) report the CVS2 and CVS3 valida-

tion setting results. The second column in each table shows the results of our algorithm when

only the standard similarity matrices (Sd: chemical structure similarity for drugs, St: Genomic

sequence similarity for target proteins) were used for prediction.

The results clearly show that the interaction prediction in MGRNNM, not only shows great

improvement on incorporation of new similarity types but also outperforms all the state-of-

the-art prediction methods in terms of AUC and AUPR evaluation metrics in almost all test

cases except in CVS3 (where the difference between AUPR obtained by the best-performing

method: TMF and MGRNM is not much).
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Table 2. AUPR results for interaction prediction under validation setting CVS1.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF NRLMF TMF

E 0.9660

(0.0006)

0.9014

(0.0018)

0.7882

(0.0022)

0.7621

(0.0025)

0.8768

(0.0020)

0.8093

(0.0045)

0.8837

(0.0026)

0.8749

(0.0017)

0.7886

(0.0020)

IC 0.9585

(0.0013)

0.9298

(0.0026)

0.8868

(0.0028)

0.8346

(0.0025)

0.9225

(0.0022)

0.8459

(0.0106)

0.9373

(0.0019)

0.8674

(0.0056)

0.8654

(0.0041)

GPCR 0.8515

(0.0033)

0.7483

(0.0039)

0.6481

(0.0116)

0.5956

(0.0102)

0.7370

(0.0024)

0.6933

(0.0226)

0.7543

(0.0017)

0.7115

(0.0144)

0.6600

(0.0059)

NR 0.8791

(0.0019)

0.6408

(0.0234)

0.3950

(0.0298)

0.4558

(0.0202)

0.6016

(0.0378)

0.7072

(0.0290)

0.6383

(0.0149)

0.7390

(0.312)

0.4248

(0.0163)

Average 0.9138 0.8051 0.6795 0.6620 0.7845 0.7639 0.8034 0.7982 0.6847

https://doi.org/10.1371/journal.pone.0226484.t002

Table 3. AUC results for interaction prediction under validation setting CVS1.

AUC MGRNNM standard MC MCG WGRMF RLS_WNN CMF NRLMF TMF

E 0.9955

(0.0003)

0.9798

(0.0004)

0.8753

(0.0023)

0.9596

(0.0015)

0.9647

(0.0013)

0.9635

(0.0014)

0.9705

(0.0013)

0.9761

(0.0017)

0.8943

(0.0030)

IC 0.9947

(0.0004)

0.9829

(0.0012)

0.9415

(0.0015)

0.9539

(0.0010)

0.9747

(0.0022)

0.9786

(0.0026)

0.9832

(0.0008)

0.9838

(0.0009)

0.9433

(0.0017)

GPCR 0.9785

(0.0020)

0.9531

(0.0028)

0.8110

(0.0055)

0.8977

(0.0047)

0.9432

(0.0010)

0.9458

(0.0044)

0.9493

(0.0031)

0.9620

(0.0023)

0.8373

(0.0038)

NR 0.9660

(0.0056)

0.9083

(0.0058)

0.5882

(0.0253)

0.8315

(0.0165)

0.8892

(0.0153)

0.9329

(0.0114)

0.8679

(0.0124)

0.9479

(0.0045)

0.5496

(0.0296)

Average 0.9837 0.9560 0.8040 0.9107 0.9429 0.9552 0.9427 0.9674 0.8061

https://doi.org/10.1371/journal.pone.0226484.t003

Table 4. AUPR results for interaction prediction under validation setting CVS2.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF NRLMF TMF

E 0.8603

(0.0095)

0.4089

(0.0104)

0.0114

(0.0005)

0.0457

(0.0008)

0.4019

(0.0128)

0.2409

(00272)

0.3848

(0.0094)

0.3582

(0.0101)

0.3748

(0.0113)

IC 0.9026

(0.0197)

0.3650

(0.0178)

0.0473

(0.0035)

0.0925

(0.0013)

0.3666

(0.0169)

0.3090

(0.0200)

0.3538

(0.0137)

0.3414

(0.0148)

0.3371

(0.0112)

GPCR 0.8538

(0.0112)

0.4175

(0.0076)

0.0404

(0.0017)

0.1091

(0.0044)

0.4247

(0.0113)

0.3463

(0.0106)

0.4059

(0.0104)

0.3671

(0.067)

0.3866

(0.0078)

NR 0.8773

(0.0125)

0.5620

(0.0262)

0.1120

(0.0206)

0.2404

(0.0337)

0.5695

(0.0136)

0.5373

(0.0216)

0.5203

(0.0250)

0.5296

(0.0348)

0.4912

(0.0230)

Average 0.8735 0.4384 0.0528 0.1219 0.4407 0.3584 0.4162 0.3990 0.3974

https://doi.org/10.1371/journal.pone.0226484.t004

Table 5. AUC results for interaction prediction under validation setting CVS2.

AUC MGRNNM standard MC MCG WGRMF RLS_WNN CMF NRLMF TMF

E 0.9460

(0.0033)

0.8260

(0.0108)

0.5060

(0.0090)

0.7413

(0.0118)

0.7982

(0.0144)

0.7755

(0.0093)

0.7952

(0.0110)

0.8151

(0.0062)

0.8204

(0.0111)

IC 0.9714

(0.0095)

0.7913

(0.0090)

0.5512

(0.0034)

0.7196

(0.0071)

0.7902

(0.0149)

0.7669

(0.0140)

0.7576

(0.0125)

0.7881

(0.0140)

0.8030

(0.0184)

GPCR 0.9567

(0.0084)

0.8805

(0.0024)

0.5855

(0.0039)

0.7745

(0.0027)

0.8800

(0.0025)

0.8524

(0.0072)

0.8067

(0.0067)

0.8841

(0.0054)

0.8452

(0.0044)

NR 0.9533

(0.0127)

0.8452

(0.0215)

0.5294

(0.0200)

0.6992

(0.0244)

0.8615

(0.0244)

0.8390

(0.0261)

0.8124

(0.0228)

0.8804

(0.0179)

0.8435

(0.0225)

Average 0.9568 0.8357 0.5430 0.7337 0.8325 0.8085 0.7930 0.8419 0.8280

https://doi.org/10.1371/journal.pone.0226484.t005
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The degradation in performance in CVS3 setting can be attributed to the comparatively

unstable results obtained for mainly NR dataset. This can be due to its excessively small size, as

also concluded by [58].

It is also observed that inference of MGRNNM under CVS1 is always better than in CVS2/

CVS3 because novel drugs/target proteins have no interaction available and hence CVS1 vali-

dation setting provides more information in the training data.

If we compare the performance of MGRNNM under CVS2 and CVS3 in all the datasets, an

important factor which influence the results in these two cross-validation settings is the “drug

to target ration” (say DTR). DTR for NR, GPCR, IC and E datasets are 54:26, 223:95, 105:102

and 445:664 respectively. Since, more information is the prior condition to achieve better infer-

ences, performance under CVS2 should be better than in CVS3 for NR and GPCR datasets,

performance under CVS2 and CVS3 should be similar for IC dataset and performance under

CVS3 should be better than in CVS2. The results from MGRNNM perfectly follow this trend.

We also analyze the performance of MGRNNM with the two regularization parameters μ1

and μ2, which govern the incorporation of the two graph laplacian terms in our algorithm. As

an example, Fig 2 shows how these two parameters affect the prediction in case of GPCR data-

set under cross-validation setting CVS1. When μ1 and μ2 are close to zero, the value of AUPR

is 0.67; whereas when μ1 and μ2 gradually increase, the value of AUPR improves (more steep

increase with μ1 than with μ2), achieving the best value (0.85) at μ1 = 0.5 and μ2 = 0.1 validating

the effectiveness of multiple graph Laplacian components.

Validation of multiple similarities

To precisely analyze the consequence of multiple similarities incorporation, we observed the

mean AUPR for several cases:

Table 6. AUPR results for interaction prediction under validation setting CVS3.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF NRLMF TMF

E 0.9041

(0.0125)

0.8087

(0.0156)

0.0124

(0.0005)

0.0691

(0.0009)

0.8070

(0.0185)

0.5465

(0.0144)

0.7808

(0.0131)

0.8112

(0.0166)

0.8000

(0.0167)

IC 0.9029

(0.0024)

0.8079

(0.0096)

0.0421

(0.0043)

0.2256

(0.0038)

0.8128

(0.0069)

0.7437

(0.0088)

0.7786

(0.0108)

0.7753

(0.0072)

0.7893

(0.0073)

GPCR 0.7228

(0.0323)

0.5963

(0.0336)

0.0549

(0.0105)

0.1061

(0.0027)

0.6093

(0.0314)

0.5397

(0.0193)

0.5989

(0.0323)

0.5515

(0.0234)

0.6001

(0.0243)

NR 0.5418

(0.0309)

0.4356

(0.0177)

0.0850

(0.0227)

0.2669

(0.0288)

0.4643

(0.0183)

0.4907

(0.0326)

0.4774

(0.0173)

0.5207

(0.0247)

0.4709

(0.0256)

Average 0.7679 0.6621 0.0486 0.1669 0.6734 0.5801 0.6589 0.6646 0.6650

https://doi.org/10.1371/journal.pone.0226484.t006

Table 7. AUC results for interaction prediction under validation setting CVS3.

AUC MGRNNM standard MC MCG WGRMF RLS_WNN CMF NRLMF TMF

E 0.9683

(0.0043)

0.9246

(0.0091)

0.5234

(0.0057)

0.8065

(0.0012)

0.9338

(0.0071)

0.9067

(0.0105)

0.9272

(0.0050)

0.9465

(0.0052)

0.9436

(0.0072)

IC 0.9541

(0.0019)

0.9346

(0.0041)

0.4724

(0.0065)

0.7871

(0.0069)

0.9460

(0.0034)

0.9286

(0.0046)

0.9368

(0.0032)

0.9587

(0.0027)

0.9476

(0.0042)

GPCR 0.8975

(0.0093)

0.8798

(0.0134)

0.5683

(0.0310)

0.6289

(0.0151)

0.8892

(0.0110)

0.8694

(0.0146)

0.8966

(0.0073)

0.9205

(0.0052)

0.8735

(0.0160)

NR 0.7502

(0.0285)

0.7263

(0.0211)

0.3767

(0.0204)

0.6522

(0.0297)

0.7967

(0.0132)

0.8124

(0.0202)

0.8373

(0.0083)

0.8613

(0.0097)

0.8407

(0.0202)

Average 0.8909 0.8618 0.4575 0.7486 0.8922 0.8826 0.9004 0.9217 0.9013

https://doi.org/10.1371/journal.pone.0226484.t007
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• standard: When only the standard similarity matrices (Sd: chemical structure similarity for

drugs, St: Genomic sequence similarity for target proteins) were used for prediction.

• standard+Cosine: When Cosine similarity between each pair of drugs/targets (Scosd , Scost ) was

taken into account along with standard similarities.

• standard+Correlation: When Pearson’s linear Correlation between each pair of drugs/targets

(Scord , Scort ) was taken into account along with standard similarities.

• standard+Hamming: When Hamming similarity between each pair of drugs/targets (Shamd ,

Shamt ) was taken into account along with standard similarities.

• standard+Jaccard: When Jaccard similarity between each pair of drugs/targets (Sjacd , Sjact ) was

taken into account along with standard similarities.

• COMBINED: When all five similarity types between each pair of drugs/targets (SCOMd , SCOMt )

were taken into account.

The analysis was carried out for every dataset under all the three cross-validation settings.

Fig 3 clearly depicts that incorporating all the similarities for drugs and targets for prediction

task yields the best results.

Conclusion

Drug-target interaction prediction is a crucial task in genomic drug discovery. Many computa-

tional techniques have been proposed in the literature. In this work, we presented a novel

Fig 2. Three-dimensional mesh depicting the variation of AUPR with the parameters μ1 and μ2 for drug-target interaction prediction using MGRNNM.

https://doi.org/10.1371/journal.pone.0226484.g002
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chemogenomic approach for predicting the drug-target interactions, MGRNNM (Multi-

Graph regularized Nuclear Norm Minimization). It is a graph regularized version of the

traditional Nuclear Norm Minimization algorithm which incorporates multiple Graph Lapla-

cians over the drugs and targets into the framework for an improved interaction prediction.

The algorithm is generic and can be used for prediction in protein-protein interaction [59],

RNA-RNA interaction [60], etc.

The evaluation was performed using three different cross-validation settings, namely CVS1

(random drug-target pairs left out), CVS2 (entire drug profile left out) and CVS3 (entire target

profile left out) to compare our method with 5 other state-of-the-art methods (three specifi-

cally designed for DTI prediction). Inalmost all of the test cases, our algorithm shows the best

performance, outperforming the baselines. This work can be extended by accounting for more

types of drug and target similarities which could be either chemically/biologically driven or

obtained from the metadata itself to improve the prediction accuracy even further.

Supporting information

S1 File. Supplementary file showing the experimental results on the analysis of the

improvements achieved by the MGRNNM algorithm and statistical significance of the

Fig 3. Bar plots depicting that incorporating all the similarities for drugs and targets for prediction task yields best

results for every dataset (a) E (b) IC (c) GPCR and (d) NR under the three cross-validation settings in comparison

to the cases where each type of similarity was considered separately. Here, “standard” represents the case when only

the chemical structure similarity for drugs and genomic sequence similarity for targets were taken into account and

“COMBINED” refers to the use case where all the similarity matrices (standard similarity, Cosine similarity, Correlation,

Hamming similarity and Jaccard similarity) were considered.

https://doi.org/10.1371/journal.pone.0226484.g003
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improvement of MGRNNM over the other methods.
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