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A B S T R A C T

Streamlined Quantitative BOLD (sqBOLD) is an MR technique that can non-invasively measure physiological
parameters including Oxygen Extraction Fraction (OEF) and deoxygenated blood volume (DBV) in the brain.
Current sqBOLD methodology rely on fitting a linear model to log-transformed data acquired using an Asymmetric
Spin Echo (ASE) pulse sequence. In this paper, a non-linear model implemented in a Bayesian framework was
used to fit physiological parameters to ASE data. This model makes use of the full range of available ASE data, and
incorporates the signal contribution from venous blood, which was ignored in previous analyses. Simulated data
are used to demonstrate the intrinsic difficulty in estimating OEF and DBV simultaneously, and the benefits of the
proposed non-linear model are shown. In vivo data are used to show that this model improves parameter esti-
mation when compared with literature values. The model and analysis framework can be extended in a number of
ways, and can incorporate prior information from external sources, so it has the potential to further improve OEF
estimation using sqBOLD.
1. Introduction

Quantitative measurements of the BOLD signal can be used to non-
invasively construct maps of parameters related to brain metabolism,
which have been shown to be useful in clinical assessment of stroke (Seiler
et al., 2017), as well as for understanding baseline healthy brain function
(Rodgers et al., 2016). Oxygen extraction fraction (OEF) is of particular
relevance as a measure of activity, and can be combined with measure-
ments of cerebral blood flow to directly quantify metabolism. The quan-
titative BOLD (qBOLD) model (Yablonskiy and Haacke, 1994) relates
oxygen extraction fraction and deoxygenated blood volume (DBV) to the
measured reversible transverse relaxation rate R’

2 (where R’

2 ¼ R*
2 � R2).

Streamlined quantitative BOLD (sqBOLD - Stone and Blockley, 2017) uses
a simplified version of this model with R’

2-weighted measurements made
using an asymmetric spin echo pulse sequence (ASE - Wismer et al., 1988)
to provide fast and robust quantitative BOLD measurements. Simplifica-
tion of the qBOLD model is made possible by minimising the signal
contribution of confounding factors during data acquisition, such as
macroscopic magnetic field gradients using GESEPI (Yang et al., 1998) and
cerebrospinal fluid (CSF) using FLAIR (Hajnal et al., 1992).
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sqBOLD uses the following stepwise process: first, R’

2 is measured
from ASE volumes with a large spin echo displacement τ; then, DBV is
calculated from the mismatch between a linear exponential model fit and
the measured spin echo data; finally, OEF is calculated as a function of
the ratio of R’

2 and DBV. This procedure could propagate noise resulting
in poor signal-to-noise ratio (SNR), and could introduce bias into the
estimates. A curve-fitting approach in which multiple parameters are
fitted simultaneously to a more complete qBOLD model (He and
Yablonskiy, 2007; Simon et al., 2016) could overcome the limitations
imposed by fitting the linear model required in the existing analysis.

Non-linear model fitting, as is required for the qBOLD model, is
notoriously challenging on data with limited SNR. Bayesian methods
provide a valuable framework for approaching this problem and have
been used in similarly challenging applications such as for perfusion
estimation from Arterial Spin Labelling (Chappell et al., 2009). In
particular, Bayesian methods allow for the incorporation of prior
knowledge about physiological parameters (such as might be obtained
from both imaging and non-imaging sources), which are used to regu-
larise the fitting. Bayesian methods also give an estimate of the uncer-
tainty in model parameters, which could provide extra information about
ust 2019
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the validity or interpretability of the results.
In this paper, simulated ASE data are used to evaluate different ver-

sions of the qBOLDmodel in a Bayesian framework with the primary aim
of selecting a model that could provide the most reliable estimates of
OEF. In vivo data are then used to compare a fully model-based parameter
estimation procedure against the existing method.

2. Theory

2.1. Quantitative BOLD model

The qBOLD model, proposed by Yablonskiy and Haacke (1994) de-
scribes how transverse magnetisation in bulk tissue changes in the
presence of susceptibility altering objects. In this case, those objects are
blood vessels whose susceptibility difference is proportional to OEF, and
the protons in the surrounding tissue are assumed to be relatively sta-
tionary with respect to the vessels (the static dephasing regime). When
modelled as randomly oriented, infinitely long cylinders with uniform
magnetic susceptibility, the signal originating from the surrounding tis-
sue, as a function of time, is given by (An and Lin, 2003):

StðtÞ¼exp
��Rt

2 �t
��exp��DBV �

Z 1

0

ð2þuÞ ffiffiffiffiffiffiffiffiffiffi
1�u

p

3�u2
�
1�J0

�
3
2
δωtu

��
du
�
(1)

where Rt
2 is the irreversible transverse relaxation rate of bulk tissue, J0ðxÞ

is the zero-order Bessel function of x, and δω is the characteristic fre-
quency, given by:

δω¼ 4
3
π � γB0 �Δχ0 �Hct �OEF (2)

where γ is the proton gyromagnetic ratio, Δχ0 is the susceptibility dif-
ference between the tissue and deoxyhaemoglobin contained within
blood vessels, and Hct is the fractional haematocrit. This model assumes
that deoxyhaemoglobin is the dominant source of magnetic susceptibil-
ity. Therefore, the presence of an additional source of susceptibility, such
as myelin in white matter or iron deposited in deep grey matter struc-
tures, will confound estimates of OEF and DBV. This has previously been
shown to result in the overestimation of R’

2 and DBV (Stone and Blockley,
2017). Hence the following analyses are restricted to grey matter.

2.1.1. One compartment model
Under ASE, a refocussing pulse is applied at time ðTE� τÞ =2, leading

to an effective echo time of TE � τ (Wismer et al., 1988). The signal is
read-out at time TE (which is constant across all echoes), and so can be
expressed as a function of τ. The integral in Equation (1) can be replaced
by two asymptotic forms (Yablonskiy and Haacke, 1994):

StðτÞ ¼

8>>>><
>>>>:

S0 � exp
�� Rt

2 �TE
� � exp�� 3

10
�DBV � ðδω � τÞ2

�
jτj < tc

S0 � exp
�� Rt

2 � TE
� � expðDBV � DBV � δω � τÞ jτj > tc

(3)

where the characteristic time tC depends on δω, and the factor S0 controls
for constant terms, including R2 decay and inter-voxel differences in
signal. Given that R’

2 ¼ DBV � δω, this equation can also be written in
terms of R’

2, removing explicit dependence on OEF:

StðτÞ ¼

8>>>>><
>>>>>:
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2 � τ
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: (4)

These equations are two forms of a normalized one-compartment
2

(1C) qBOLD model. The latter can be used to calculate OEF by rear-
ranging Equation (2):

OEF ¼ 3 �R’

2

4π � γB0 �Δχ0 �Hct �DBV
(5)

2.1.2. Log-linear model
The sqBOLD technique uses the long-τ, R’

2-dependent model (Equa-
tion (4b)) to fit R’

2 and DBV (Stone and Blockley, 2017). R’

2-weighted
images with τ > tc can be fit to a log-transformed model (L-model):

lnStðτÞ¼ � R’

2 � τ þ ln StSE þ DBV : (6)

Here R’

2 can be calculated as the gradient of lnStðτÞ, and DBV can be
obtained by subtraction of ln StSE from the intercept, where StSE is the
signal measured at the spin echo (τ ¼ 0). OEF can then be calculated
using Equation (5).

2.1.3. Two compartment model
The qBOLD model can be extended to include the signal which

originates from venous blood. Several models have been proposed which
describe this intravascular signal. The first assumes that the blood signal
Sb decays monoexponentially, and is reversible with respect to the spin
echo (Simon et al., 2016):

SbðτÞ¼ exp
�� Rb

2 �TE
� � exp�� Rb*

2 � jτj� (7)

where Rb
2 and Rb*

2 are functions of OEF (and Hct). This does not properly
consider the dephasing effects inside the blood vessel, which consists of a
bulk (plasma) containing susceptibility altering objects (red blood cells).
The intravascular dephasing can be parametrised in terms of Fresnel
functions (Sukstanskii and Yablonskiy, 2001; Yablonskiy et al., 2012):

SbðτÞ¼ exp
�
� Rb

2 � TE þ i
δω � τ
2

�
�CðηÞ � iSðηÞ

η
(8)

where CðηÞ and SðηÞ are Fresnel functions, and

η ¼
�
3 � δω � jτj

π

�1=2

: (9)

A recently proposed analytical model describes the blood signal under
the motional narrowing regime. This is valid because the size of a red
blood cell is significantly smaller than the distance a spin in the plasma
will diffuse during time TE. The signal in this regime is (Berman et al.,
2018):

SbðτÞ¼ exp
�� Rb;true

2 �TE� � exp	� γ2
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Here characteristic diffusion time tD ¼ Rrbc=Db where Rrbc ¼ 2:6 μm is
the characteristic size of red blood cells and Db ¼ 2 μm2ms�1 is their rate
of diffusion, Rb;true

2 is the intrinsic R2 of fully oxygenated blood and G0 is
the mean square field inhomogeneity in blood (Berman et al., 2018):

G0 ¼ 4
45

�Hct � ð1� HctÞ � ð4π �B0 �OEF �Δχ0Þ2: (11)

The total signal measured from a voxel in this two-compartment
model (2C) is the sum of the signal from each compartment, weighted
by their apparent volume fractions. Apparent DBV, denoted ζ’, is given
by:

ζ’ ¼mb � nb �DBV (12)

where mb is the steady-state magnetisation of the blood (which depends
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on its T1 and the sequence parameters TR, TE, and TI), and nb is the
relative spin density of blood (He and Yablonskiy, 2007). Total 2C signal
is therefore given by:

STOTALðτÞ¼ S0 �
�
ζ’ � SbðτÞ þ ð1� ζ’Þ � StðτÞ� (13)

where S0 is the signal without any transverse relaxation (at t ¼ 0). This
can be used as a forward model in a Bayesian framework to infer
parameter distributions for either OEF and DBV, or R’

2 and DBV (with
OEF calculated from those parameters afterward). A model such as this
expected to have most value in voxels which have a relatively small blood
volume and where this additional compartment can correct for the
presence of intravascular signal. In the presence of larger blood volume
fractions, whilst the intravascular signal would be appropriate, the
assumption of the extravascular signal model (Eq. (1)) would be invali-
dated (Yablonskiy and Haacke, 1994).
Table 1
Parameter values used for simulating data.

Parameter Value Reference

Hct 0.40 Nicoll et al. (2012)
Δχ0 0.264 ppm Spees et al., 2001
Rt
2 11.5 s�1 He & Yablonskiy (2007)

Rb;true
2

5.29 s�1 Berman et al. (2018)

tD 4.51ms Berman et al. (2018)
B0 3 T
TE 74ms
TR 3 s
τ range �28 to 64ms
τ step size 4 ms
2.2. Bayesian inference

Bayesian inference is built upon Bayes’ theorem, which defines how,
for a model M with parameters Θ, a posterior probability distribution of
those parameters can be formed by combining prior beliefs about the
parameter with some observed data Y :

PðΘjY ;M Þ ¼ PðΘjM ÞPðY jΘ; M Þ
PðY jM Þ (14)

where PðΘjY;M Þ is the posterior probability of the parameters, PðΘjM Þ
is the prior, PðY jΘ;M Þ is the likelihood of the data, given the parameters
and the model, and PðYjM Þ is the evidence for the data, given the model.
Often, analytically evaluating the posterior is impossible. It can, how-
ever, be easily sampled in a uniform pattern using a grid search. Though
exact, this method is wasteful and prohibitively time-consuming in high
dimensional space.

An alternative to sampling the true posterior is to approximate it, then
analytically solve the approximation. A variational Bayesian (VB) infer-
ence scheme has been developed for non-linear signal models similar to
those considered here and applied to imaging data to analytically
calculate approximate posterior parameter distributions (Attias, 2000;
Chappell et al., 2009).

This is significantly faster than sampling based methods, and still
allows prior information to be used to generate more physically
reasonable estimates from noisy data (Chappell et al., 2009). The priors
take the form of Gaussian distributions, with specified means μ0 and
standard deviations σ0. These values being chosen based on prior
knowledge of typical realistic parameter values (including the possibility
of pathological variation), but not so as to bias the results away from
what the underlying data would predict. Priors can also be used to
enforce physically reasonable conditions such as spatial smoothness by
means of a spatial prior distribution (Groves et al., 2009).

3. Material and methods

3.1. Simulations

Simulated qBOLD data were used to examine whether a Bayesian
model-based approach was able to estimate OEF more accurately than
least-squares fitting to a simplified log-linear model. In MATLAB
(MathWorks, Natick, MA), simulated two-compartment ASE qBOLD sig-
nals were generated using Equations (1), (10) and (13). Signals were
simulated with 50 OEF values from 20% to 70% (which includes the
expected range of healthy values (Marchal et al., 1992)) and 50 DBV
values from 0.3% to 15% (based on the expected range of total blood
volume (Roland et al., 1987)), for a total of 2500 artificial ASE signals.
Gaussian noise was added to simulate 7 SNR values between 5 and 500.
Each signal consisted of 24 R’

2-weighted images with spin-echo offsets τ
3

in steps of 4 ms between �28 ms and þ64 ms. This optimised range of τ
values were chosen to maximise the SNR of the R’

2 parameter estimate
(Stone and Blockley, 2017). Fractional haematocrit Hct was set at 0.40,
the literature value for general circulation (Nicoll et al., 2012), which is
similar to what has been used in other related studies (Simon et al., 2016;
Berman and Pike, 2017; Lee et al., 2018). Previous studies have used
lower values such as 0.34 (He and Yablonskiy, 2007; Stone and Blockley,
2017), in accordance with the Fahraeus effect (Fahraeus and Lindqvist,
1931), which suggests that Hct in small vessels (including capillaries and
venules) is lower than in general circulation. This effect has been quan-
tified as a reduction of between 14% (Calamante et al., 2016) and 25%
(Sakai et al., 1985). It is not clear to what extent the range of Hcts present
throughout the brain affect the qBOLD signal, or whether an average
value can be assumed throughout. Other physiological and sequence
parameters were held to constant values, which are given in Table 1.

In order to assess the differences between the OEF-based and
R’

2-based models (Equations (3) and (4) respectively), a single simulated
dataset (OEF¼ 40%, DBV¼ 3%) was analysed in a grid search scheme.
The posterior probability of each pair of values in the intervals OEF 2
f20%; 70%g and DBV 2 f0:3%; 15%g, given the 2C model, was evalu-
ated. The OEF-based and R’

2-based models were compared in their ac-
curacy of DBV estimation by marginalizing over OEF and R’

2 respectively.
Whilst the grid search technique is prohibitive for analysis of in vivo data,
it enables direct comparison of parameter distributions to determine
separability. Grid searches were used to determine which of the OEF-
based or R’

2-based models were more suitable, based on whether OEF-
DBV or R’

2-DBV distributions were more separable.
The full set of simulated data were analysed in a VB scheme, using the

Fast ASL and BOLD Bayesian Estimation Routine (FABBER) (Chappell
et al., 2009; Groves et al., 2009, Woolrich and Behrens, 2006). The 1C
and 2C models were used, with parameters DBV and either OEF or R’

2.
Prior means μ0 were taken from the literature for healthy subjects
(Derdeyn et al., 2001; Roland et al., 1987) and are presented in Table 2.
The effect of different μ0 and σ0 were investigated in order to choose
values that would not bias the results in the case of very different (e.g.
pathological) true values.

VB inference was performed using the 2C model with a range of σ0
(between 10�1/2 and 1000) for each parameter at the highest simulated
SNR (SNR¼ 500), with μ0 fixed to the values in Table 2. The absolute
difference between the estimate of each parameter and its true value was
then computed and averaged over all simulated pairs of OEF and DBV
values. In order to minimise the risk of biasing the parameter estimates,
the least precise prior which still resulted in a low error was chosen for
each parameter, and used in all later inference. Once appropriate pre-
cisions were chosen, extreme values of μ0 were tested to ensure that the
chosen prior mean did not significantly affect the results. μ0ðR’

2Þ ¼
f3 s�1; 7 s�1;15 s�1g and μ0ðDBVÞ ¼ f0:5%; 3:6%; 10%g were tested,
and errors in estimates of DBV and R’

2 calculated as above.
Least-squares regression (LS), and VB inference, using each model (L,

1C, and 2C), was performed on the same data, for all OEF-DBV pairs and
SNR values. The absolute error between true and estimated OEF and DBV



Table 2
FABBER Variational Bayes parameters, with their prior means and standard de-
viations, and the means and standard deviations used to initialize the approxi-
mate posterior. Mean values for R’

2 and DBV are taken from Stone and Blockley
(2017). Other model parameters are fixed to assumed values (Table 1).

Parameter Prior Initial Posterior

Mean Standard Deviation Mean Standard Deviation

DBV (%) 3.6 103/2 3.6 103/2

R’

2 (s�1) 2.6 103/2 2.6 103

500 103 500 103
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values were averaged across all OEF and DBV values for each SNR, in
order to assess the utility of a more complete model, and the effect of
noise on estimates. These were compared at the voxel level using two-
way ANOVA and Tukey-Kramer (honestly significant difference) pair-
wise comparisons.

Another aspect of the qBOLD model was tested using simulated data.
The point at which the asymptotic models transition, tC (Equations (3)
and (4)) was defined originally as tC ¼ 1:5=δω (Yablonskiy and Haacke,
1994), whereas, more recently, Lee et al. (2018) used tC ¼ 1= δω. Since
the model itself is phenomenological, parameters such as tC should be
chosen so that the asymptotic model most closely matches the analytical
version. For all OEF-DBV pairs, in the absence of noise, the analytical
qBOLD model (Equation (1)) was compared with the asymptotic model
(Equation (3)), and an optimal value for the transition constant τ � δωwas
found using a golden section search (MATLAB’s fminbnd).

In light of recent efforts to reduce the scan duration for application in
clinical research (Stone et al., 2019), a supplementary analysis was
performed using alternative acquisition parameters. The acquisition
consisted of 11 R’

2-weighted images with spin-echo offsets τ in steps of 8
ms between�16 ms andþ64 ms, which represents a scan time reduction
of 54%. This data was formed by retroactively removing τ values from
already-simulated data.

3.2. Data collection

All imaging was performed on a 3 T S Verio system (Siemens
Healthineers, Erlangen, Germany) using the body transmit coil and the
vendors 32-channel receive coil. Subjects were scanned under a technical
development protocol agreed with local ethics and institutional
committees.

Scan data from seven healthy participants (aged 24–32, 4 female),
which was collected as part of a previous study (Stone and Blockley,
2017), were used to compare non-linear model inference using VB
against a linear-least-squares fitting procedure in vivo.

For each subject, a GESEPI ASE (GASE) scan (Blockley and Stone,
2016) with FLAIR preparation (TIFLAIR¼ 1210ms) was acquired, with
TR/TE¼ 3000/74ms, 64 � 64 matrix, ten slabs, 3.75 � 3.75 � 5mm
resolution, and 24 τ values ranging from �28ms to 64ms in steps of
4ms. Each 5mm slab was constructed by averaging four 1.25mm slices
(acquired as 8 k-space partitions including 100% partition oversampling
to reduce aliasing) to correct for macroscopic field gradients. Total
acquisition time was 9min 36 s. Data were acquired as part of a previous
study (Stone and Blockley, 2016 - see Appendix: Data Access Statement).
The GESEPI acquisition compensates for the effect of macroscopic mag-
netic field gradients by effectively applying multiple z-shim levels and
integrating them using a Fourier transform, which is equivalent to the
acquisition of several thin partitions in a 3D acquisition (Yang et al.,
1998).

3.3. Image analysis

Data pre-processing was performed in FSL (Jenkinson et al., 2012).
GASE data were motion corrected using MCFLIRT (Jenkinson et al.,
2002), and smoothed with a Gaussian kernel (σ¼0.85mm). This
4

sub-voxel smoothing was chosen to reduce the impact of noisy voxels,
while maintaining the effective spatial resolution of the parameter esti-
mates. The spin-echo volumes (τ ¼ 0) were segmented using FAST
(Zhang et al., 2001) to create grey matter masks that were used to define
the region of interest. Grey matter masks were obtained by thresholding
the segmented ASE data at 60%, to exclude voxels where partial volumes
of white matter or nulled CSF, where the assumptions of the qBOLD
model are violated, may severely affect the signal. This approach was
chosen over segmenting the MPRAGE images because it produced more
consistent results, and does not require registration from MPRAGE-space
to GASE-space.

Grey matter SNR was calculated for each subject across all τ values, in
order to determine the approximate range of values from simulation that
would be most appropriate. This was done by dividing the mean voxel
intensity values within the grey matter mask by the standard deviation of
values outside the head.

In vivo ASE data were analysed using the L model, implemented in
MATLAB, and the R’

2-DBV 1C and 2Cmodels in VB both with and without
spatial regularization. The 1C and 2C models were fit to data for all 24 τ
values; whereas the L model only applies to τ ¼ 0 and τ > tC (for a total of
14 data points). In addition to the motional narrowing model for intra-
vascular signal (Equation (10)), a supplementary analysis of the linear
and powder models (Equations (7) and (8)) was also performed. Infer-
ence was performed using a 2C model incorporating each different
intravascular signal for all subjects (without spatial regularization) in
order to compare their impact on final parameter estimates.

Priors and initial posteriors were defined using literature mean values
and the standard deviations determined from testing simulated data (see
Section 4.1). These are given in Table 2. Mean grey matter parameter
estimates were compared for each analysis method, for each subject and
across the group. Under spatial regularization, each voxel’s prior was
defined by aggregating the posterior distributions from the 6 adjacent
voxels, across 10 iterations. This imposes a degree of spatial smoothness
in the parameter distributions.

To determine similarity, estimates were subjected to a two-way
ANOVA test to determine whether the group means for each method
were equal. In the case of significantly different group means, the Tukey-
Kramer (honestly significant difference) method was used to perform
pairwise comparisons.

In a Bayesian framework, it is also possible to assess goodness of fit
using the model evidence term (PðY jM Þ in Equation (14)). The VB routine
aims to minimise the Kullback Liebler divergence between the (intrac-
table) true posterior and a (tractable) approximate posterior. Since PðY jM Þ
is constant for a given model, it can be shown (by rearranging Equation
(14)) that this minimization is equivalent to maximizing the free energy of
the approximate posterior (Attias, 2000; Chappell et al., 2009). A model
that results in a higher average free energy across grey matter therefore
provides a better explanation of the data. The median grey matter free
energy values for each method were analysed across subjects with the
same two-way ANOVA test, and Tukey-Kramer pairwise comparisons. This
was to ensure that applying additional constraints, such as spatial
smoothness in parameters, did not negatively impact the fitting.

A supplementary comparison of L, 1C, and 2C models (using VB
inference) was also carried out on the same data, analysing only 11 of the
originally acquired 24 τ values, from �16 ms to þ64 ms in steps of 8 ms.
The resulting grey matter mean parameter values were compared be-
tween models, and between the 24-τ and 11-τ datasets.

To determine the impact of the assumed value of Hct ¼ 0:40 (Nicoll
et al., 2012), a further supplementary analysis was performed in which
the same data (with 24 τ values) were analysed with all models with
Hct ¼ 0:34 (as in He and Yablonskiy, 2007, and Stone and Blockley,
2017). It is expected that in the L and 1C models, Hct will act purely as a
scaling constant on OEF (Equation (5)); but since it occurs in the intra-
vascular compartment (Equation (11)) its effect on R’

2 and DBV estimates
from the 2C model should also be investigated.
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4. Results

4.1. Simulated data

Asymptotic qBOLD models given in terms of OEF and R’

2 were
compared using grid search posterior sampling of simulated data. The
results of this are shown in Fig. 1. In OEF-DBV space, there is a large
region of collinearity between the two parameters, which is likely to
prevent accurate estimation of both parameters. In contrast, the R’

2-DBV
space has a posterior distribution in which the two parameters are largely
separable and also which can more readily be approximated as a multi-
variate normal distribution within the VB inference method. Marginal-
izing over these results with respect to OEF and R’

2 yielded DBV
likelihood distributions that are directly comparable. The standard de-
viation in DBVwas 1.05% for the OEF-based model, and 1.14% for the R’

2
model, suggesting that there is very little difference between the two in
their estimation of DBV. The same analysis of OEF estimates derived from
each method yielded a standard deviation of 14.5% for the OEF-based
model, and 15.8% for the R’

2 model.
Simulated ASE signals were used to compare the L model with the

more complicated 1C and 2C models analysed in VB. First, the optimal
parameters for VB inference were determined by testing a range of
standard deviations for the priors on R’

2 (between 105/2 and 1000) and
DBV (between 10�5 and 1). The results of these are shown in Fig. 2. They
suggest that σ0ðR’

2Þ ¼ 103=2 and σ0ðDBVÞ ¼ 103=2 are the least precise
values that consistently produce reasonable results, although using an
even broader σ0ðR’

2Þ is not detrimental. Using these σ0, the choice of prior
mean μ0 was also investigated by testing extreme values. The error in R’

2

and DBV estimates was calculated using each combination of μ0ðR’

2Þ and
μ0ðDBVÞ, and the standard deviation of these was 0.76 s�1 for R’

2, and
0.47% for DBV, showing that the choice of μ0 does not significantly bias
the results.

Simulated data were also used to determine the optimal transition
point between the two asymptotic regimes, as a function of δω. This was
calculated for each simulated OEF and DBV value, in intervals OEF 2
f20%; 70%g and DBV 2 f0:3%; 15%g. Averaging across the entire
parameter space, the optimal transition point was found to be 1:76 =δω.
This value was used in all further analysis of simulated and in vivo data,
for all models.

Using optimised parameters, the simulated ASE signals were analysed
Fig. 1. Results of grid-search posterior sampling on simulated ASE qBOLD data, w
(simulated) values shown as solid black lines. b) Posterior probability of R’

2-DBV pairs
and the posterior density distribution does not have a Gaussian-like form. By contrast
can more easily be approximated by a multivariate normal distribution, which is a r
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using each of the three models (L, 1C, and 2C) at 7 SNR values. Each
model was evaluated with both least squares regression (LS) and VB. For
each signal, the absolute error between the true value of each parameter
and the estimate was calculated. The average errors across the whole
parameter space, at each SNR and for each model, are shown in Fig. 3.
The 2C model in LS performed better than any other at estimating R’

2.
Two-way ANOVAwith pairwise comparisons showed that there were not
significant differences in estimates of R’

2 between all the other methods.
The 1C and 2C models in LS performed significantly worse in estimating
DBV, and there were no significant differences between the others. At all
tested SNRs except 100, the 1C and 2C models in VB performed signifi-
cantly (p < 0:001) better than the L model, or any LS implementations, at
estimating OEF. Apart from at very low SNR (SNR � 10) and at SNR ¼
500 there were not significant differences in parameter estimates be-
tween the LS and VB implementations of the L model.

Across the range of data simulated OEF 2 f20%; 70%g and DBV 2
f0:3%; 15%g, the 1C and 2C models performed similarly well; however,
in the high DBV regime (DBV > 10%), the 2C model estimated both R’

2

and DBV more accurately than L or 1C models. R’

2 error was 14� 3%
lower with 2C estimation (p < 0:001, based on a one-sample t-test), and
DBV error was 24� 9% lower (p < 0:05).

The results of the analysis using alternative acquisition protocol are
presented in Supplementary Information. Fig. S1 parallels Fig. 3 dis-
playing the error in estimations of R’

2, DBV, and OEF, as a function of
SNR. The error in OEF estimation across all SNRs are higher in the case of
fewer τ values, but in this case the 2C model offers an even greater
improvement over the L model than 1C, especially at lower SNR
(SNR � 50).

4.2. In vivo data

The analysis methods (L model in least squares fitting, and 1C and 2C
models in VB with and without spatial regularization) were tested on
GASE data from 7 healthy subjects. Computation time for the L model
analysis averaged 2.5 s per subject, for the entire volume, and for both 1C
and 2C models in VB was 10.3 s each per subject. VB with spatial regu-
larization took, on average, 11.8 s per subject (for 1C and 2C models).

Grey matter SNR was calculated by dividing the mean GASE voxel
intensity within grey matter by the standard deviation of the noise in
empty space outside the head. Across all subjects and τ values, SNR was
89� 16.
ith SNR 50. a) Posterior probability of OEF-DBV parameter pairs, with true
, using the same data. In the OEF-DBV model, there is a large area of collinearity,
, the R’

2-DBV model has more separable parameters, and a distribution shape that
equirement for VB inference as implemented here.



Fig. 2. Optimization of prior standard deviations σ0 based on error in parameter estimates on simulated data. a) The effect of priors on R’

2 error, which is not strongly
affected by σ0, except at σ0ðR’

2Þ � 1. b) The effect of priors on DBV error, which diverges quickly at low σ0ðR’

2Þ, but is consistently at σðR’

2Þ � 10. c) The effect of priors
on OEF error, which was lowest for σ0ðR’

2Þ > 1.

Fig. 3. Error in parameter estimates of a) R’

2, b) DBV, and c) OEF as a function of SNR, for each model. Across all SNR levels, the least squares (LS) implementations of
the 1C and 2C models performed poorly in estimating DBV and OEF. At SNRs below 100, the variational Bayesian (VB) implementations of the 1C and 2C models
estimated OEF significantly (p < 0:001) more accurately than other models.
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Grey matter mean parameter values for R’

2, DBV, and OEF for each
subject are presented in Table 3, as well as inter-voxel standard de-
viations of parameter estimates, which account for physiological varia-
tion as well as uncertainty in model fitting. Maps from an example subject
are shown in Fig. 4, and a group-level comparison is shown in Fig. 5. The
group-average grey matter OEF estimate from the L model was 21� 2%,
the 1C model estimated 17� 2% without spatial regularization, and
19� 2% with spatial regularization. The 2C model estimated OEF at
18� 2% and 20� 2% (without and with spatial regularization, respec-
tively). Group-average grey matter DBV was 5.38� 0.62%,
5.99� 0.43%, and 6.58� 0.26% for L, 1C, and 2C models respectively.

At the inter-subject level, the variance in R’

2 improved significantly
(based on an F-test with α ¼ 0:05) with the 1C model (both with and
without spatial regularization) compared to the L model. Group-average
grey matter standard deviation of R’

2 was 2.7s�1 in least-squares fitting,
compared to 1.21s�1 under VB. Variances in OEF and DBV were lower in
spatially-regularized VB, but were not statistically significant. At the
intra-subject level, the improvements of VB were statistically significant
in all subjects for R’

2, and in 4 of 7 subjects for DBV and OEF (based on an
F-test with 100 degrees of freedom). Spatially regularized VB made a
significant improvement in the variances of all parameters across all
subjects. This effect can be seen in the relative number of voxels which
contain values that are not physically plausible, such as those with OEF or
DBVs greater than 100%. Across the group, the proportion of grey matter
voxels with OEF estimates greater than 100% was 33.7% under VB
6

without spatial regularization, compared to 8.6% with spatial regulari-
zation (under the L model, the proportion was 18.8%). Fig. 4 illustrates
this improvement. Using the 2C model also resulted in a decrease in the
proportion of voxels with OEFs or DBVs above 100% (17.7% and 8.1%
without and with spatial regularization, respectively).

Two-way ANOVA showed statistically significant differences in
average grey matter estimates of R’

2 between L model and the 1C and 2C
models inferred under VB. There was a significant difference between L
model and 1C model estimates of DBV, but not between L and 2C. There
were significant differences between the L model and all others (except
non-spatially regularized 1C model) in estimates of OEF. For both 1C and
2C, across all parameters, there were no group-level statistically signifi-
cant differences between estimates made with and without spatial reg-
ularization.

Additional analysis of the 2C model was performed using different
models of the intravascular signal, which is shown in the Supplementary
Material. Fig. S2 parallels Fig. 5, and shows that there is no significant
difference in R’

2 or OEF estimation between the three intravascular signal
models. There is significant difference in DBV estimation, and the
motional narrowing model results in DBV estimates that are closest to
what is expected from the literature.

Another supplementary comparison of the L, 1C, and 2C models was
carried out on the same data with only 11 τ values. Inter-subject grey
matter average parameter estimates are shown in Supplementary Fig. S3.
There a statistically significant difference (p < 0:001) between OEF
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estimates made with the L model on 11-τ versus 24-τ data, but no sig-
nificant difference between estimates made with the 1C or 2C models,
suggesting that these more complete models are more robust to changes
introduced by undersampling in τ.

Supplementary Table S1 (which parallels Table 3) shows the results of
inference using the 2C model, with an assumed Hct of 0.34. DBV esti-
mates were higher under the spatially-regularized 2C model with Hct ¼
0:34, which is to be expected given the dependence on Hct in the
intravascular compartment model’s field inhomogeneity parameter G0

(Equation (11)). OEF estimates were also higher with a lower Hct for the
2C model, both with and without spatial regularization. As expected,
there was no difference in R’

2 or DBV estimates based on Hct using the L
or 1C models (not shown). Therefore, the OEF estimates from the L or 1C
model were scaled as the ratio of the Hct values i.e. ~17% increase in
OEF with Hct ¼ 0:34.

Median grey matter free energy was used to compare the goodness of
fit with each regularization method. Group-average free energy was
�235� 53 and �208� 51 for 1C model (without and with spatial reg-
ularization, respectively), and �230� 58 and �207� 50 for 2C. Both
these differences were statistically significant with p � 10�3. There were
no significant differences in free energy between the two models when
the same regularization was used.

5. Discussion

5.1. Improvements to model fitting using simulated data

Previously published work (Christen et al., 2014; Lee et al., 2018) has
shown that the qBOLD model is not optimally suited for simultaneous
estimation of OEF and DBV, which are important parameters in research
or clinical assessment of brain metabolism. In this study, simulated data
was used to demonstrate the collinearity between OEF and DBV that
makes accurate estimation difficult. It also showed that the likelihood
distribution in R’

2-DBV space (Fig. 1b) has visibly lower correlation be-
tween the parameters, providing the opportunity to accurately estimate
them simultaneously. Furthermore, the distribution is relatively smooth
and symmetrical in both the R’

2 and DBV dimensions, so the assumption
of a multi-variate normal distribution is reasonable, making these pa-
rameters suitable for VB analysis.

Simulated ASE-qBOLD data were used to optimise parameters for
VB inference. In particular, prior standard deviations were chosen that
resulted in the most accurate estimation across a broad range of OEF
values (from 20% to 70%, encompassing both healthy and patholog-
ical values (Marchal et al., 1992)) and DBV values (from 0.3% to 15%
(Roland et al., 1987)). The prior mean values were chosen based on
relevant prior work (Stone and Blockley, 2017). It would also be
possible to use values from other imaging modalities to define prior
means. For example, a hyperoxia experiment could be used to estimate
venous cerebral blood volume in grey matter (Blockley et al., 2013),
which could be used to inform the prior on DBV. It was, however,
shown that significantly changing the prior means does not have a
detrimental effect on the accuracy of parameter estimation. This is to
be expected given the deliberate choice of broad standard deviations
for the priors.

Simulated data with a range of SNRs were also used to compare
least-squares fitting of a log-linear model with VB inference on the
asymptotic qBOLD model with one or two compartments. The model
used for the second (intravascular) compartment is one that accounts
for the fact that spins inside blood vessels diffuse over a significantly
greater distance than the size of a red blood cell in TE, so they are in
the motional narrowing regime (Berman and Pike, 2017). Fig. 3
showed that VB inference using the 1C or 2C models produced OEF
estimates that were significantly more accurate than the L model at
SNRs below 100, and estimated both OEF and DBV more accurately
than the 1C and 2C models fit using least squares regression. Though



Fig. 4. Example parameter maps for a single subject, showing estimated R’

2 (top), DBV (middle) and OEF (bottom), using the L model (first column), 1C model (second
column), 1C model with spatial regularization (third column), 2C model (fourth column), and 2C model with spatial regularization (fourth column). For all pa-
rameters, the use of spatial regularization drastically reduces the number of bright voxels, where parameters were previously estimated as extreme values.

Fig. 5. Group (N¼ 7) average grey matter estimates of a) R’

2, b) DBV, and c) OEF, with error bars indicating inter-subject standard deviation, for the L model, and 1C
and 2C models; (s) indicates spatial regularization. Two-way ANOVA and pair-wise comparisons show that the 1C and 2C models produce similar R’

2 estimates as the L
model, although the DBV estimates are different except in the non-regularized 1C model. The 1C and 2C models with spatial regularization produce estimates of OEF
that are not statistically significantly different from those of the L model.
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LS regression of the 2C model estimated R’

2 more accurately than other
methods, it also performed worse in DBV estimation, leading to poorer
OEF estimates overall, compared with the VB implementation of the
same model.

Across all parameters, there was not a substantial difference in
performance between the 1C and 2C models. This is likely to be
because in voxels with normal DBV, the intravascular compartment
contributes a very small amount to the overall signal, and so could
potentially be ignored. Similarly, additional analysis showed that the
1C and 2C models were more accurate at estimating R’

2 and OEF on
sparser data, particularly at low SNR (see Supplementary Fig. S1). The
difference in OEF error between L and 2C models in Fig. S1 is greater
than in Fig. 3., suggesting that the use of this analysis framework is
even more important when used with shorter acquisition times, such
as in a clinical protocol.

One of the limitations of this study is the use of the analytical qBOLD
model as the ground truth. Generation of synthetic qBOLD signals using a
more detailed model incorporating different vascular compartments and
vessel sizes would be more representative of in vivo data. Future work will
concentrate on the integration of such models to validate and optimise
new sqBOLD implementations.
8

5.2. In vivo validation

The same analyses were applied to GASE data from 7 healthy subjects,
and grey matter mean parameter estimates were compared at the group
level. Statistically significant differences were found between the L
model and 1C and 2C models in R’

2 and OEF estimation (but not between
1C and 2C), and between the L model and 1C model (but not 2C) in DBV
estimation. The grey matter inter-voxel standard deviations of all pa-
rameters were significantly lower in VB estimation than the L model. This
suggests that VB inference with a more complete model is less susceptible
to fitting extreme values. Inter-voxel standard deviations are higher than
the errors reported for simulated data of the same SNR because they also
account for physiological variation across grey matter. The number of
voxels with un-physiological values was reduced when using the 2C
model compared with the 1C model, suggesting that modelling the blood
signal provides an improvement to overall model fitting. The choice of
intravascular signal model within the 2C model affected estimates of
DBV, but not of R’

2 or OEF, at the group level. The motional narrowing
model was preferred, because it has been shown from a theoretical
perspective to accurately model signal evolution in the blood following a
refocussing pulse (Berman and Pike, 2017).
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The expectation of spatial homogeneity of parameters can be incor-
porated into VB analysis using spatial regularization, in which the esti-
mated posterior distributions of adjoining voxels are used as priors in an
iterative process. The effect of spatial regularization was tested in both
the 1C and 2C models. In both cases, though there was not a significant
change in group-level parameter averages, the median free energy
increased significantly, suggesting a better fit of the model to the signal.
The resulting parameter maps (exemplified in Fig. 4) were also more
homogeneous, and had fewer voxels where parameters had been esti-
mated as having un-physiological values (such as OEFs above 100%).

The parameter estimates obtained from all methods are susceptible to
partial volume effects from infiltrating white matter (where the as-
sumptions of the qBOLD model do not hold), especially given the large
voxel size used. By defining the grey matter segmentation thresholdmore
strictly, it is possible to reduce this effect and to obtain a more accurate
grey matter average, although the whole-brain maps still contain mixed
voxels where estimates are not accurate. A model that describes the
qBOLD signal in white matter could be used alongside a partial volume
correction paradigm, as used in the analysis of arterial spin labelling data
(Chappell et al., 2011), to correct for this effect.

5.3. Comparison of parameter estimates with literature values

Parameter estimates compared with literature values can be found in
Table 4. The average grey matter R’

2 estimate of 3.7� 0.4s�1 was higher
than the 2.9� 0.4s�1 reported by He and Yablonskiy (2007) and the
3.1� 0.3s�1 reported by Simon et al. (2016). However, both of those
apply the qBOLD model to GESSE data, which requires simultaneous
quantification of R2 and R’

2, whereas the GASE data used here is not
sensitive to R2.

Grey matter DBV was here estimated to be 7.00� 0.55%, which is
significantly higher than reported elsewhere, although there is consid-
erable variation in the literature, with DBV ranging from 1.75� 0.13%
(He and Yablonskiy, 2007) to 4.9� 2.0% (Lee et al., 2018) or up to 5%
(An and Lin, 2003). This may be due to uncertainty introduced by
assuming values of parameters used to calculate actual DBV from
apparent DBV (Equation (12)), or due to the signal transient often
observed at τ ¼ 0 (He and Yablonskiy, 2007, see, in particular, Fig. 1C).
Here, signal is consistently higher at τ ¼ 0 than would be expected,
which may lead to underestimation of apparent DBV in the linear model.
The 1C and 2Cmodels, which are not dependent on a single data point for
their DBV estimation, should be more robust against this error than the L
model. The 2C model, had less inter-subject variation in DBV estimates
than the 1C model.

OEF estimates obtained using sqBOLD (with any analysis method) are
significantly lower than those obtained using GESSE-qBOLD (He and
Yablonskiy, 2007; Domsch et al., 2018) or non-qBOLD methods such as
TRUST (Lu and Ge, 2008) and oxygen-15 tracer based PET (Derdeyn
Table 4
Group grey-matter average parameter values for R’

2, DBV, and OEF, showing
group mean � group standard deviation, with comparisons with other methods
from the literature.

Method R’

2 (s�1) DBV (%) OEF (%)

Log-Linear qBOLD 3.2�0.3 5.39�0.62 21.4�2.1
1C qBOLD (spatially regularized) 3.8�0.3 7.59�0.70 19.2�1.6
2C qBOLD (spatially regularized) 3.7�0.4 7.00�0.55 19.1�1.8
qBOLD (He and Yablonskiy, 2007) 2.9�0.4 1.75�0.13 38.3�5.3
qBOLD (Simon et al., 2016) 3.1�0.4 – –

GESFIDE (Ni et al., 2015) 2.7�0.4 – –

GESSE (Ni et al., 2015) 2.7�0.3 – –

Neural network qBOLD (Domsch et al., 2018) – 4.2�0.1 40�1
Conventional qBOLD (Lee et al., 2018) – 4.9�2.0 31.8�6.0
Interleaved qBOLD (Lee et al., 2018) – 3.1�0.5 39.9�3.3
TRUST (Lu and Ge, 2008) – – 35�6
PET (Derdeyn et al., 2001) – – 41�9
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et al., 2001). This is in part due to the over-estimation of DBV that is
consistently reported in ASE-based qBOLD studies. It may also be due to
the assumed value ofHct ¼ 0:40. The supplementary analysis withHct ¼
0:34 led to an increase in estimated OEF to 21% (with the 2C model),
which is closer to literature values, but was accompanied by an increase
in estimated DBV to 8.4%, which is even further from what would be
expected. The exact value of average Hct in GM is not known, although a
reduction of around 15% from arterial Hct (around 0.40) is supported by
Calamante et al. (2016). It is possible that larger veins (with Hct ¼ 0:40)
may contribute more to the ASE qBOLD signal than smaller vessels with
lower Hct. Similarly, this study assumed Δχ0 ¼ 0:264 ppm (Spees et al.,
2001) as opposed to Δχ0 ¼ 0:18 ppm used in older studies (An and Lin,
2003). However, despite this systematic offset it has been demonstrated
elsewhere that OEF estimates using this experimental technique are
modulated by pathology (Stone et al., 2019).

OEF overestimation may also be due to error in R’

2 estimation, which
could be caused by diffusion in the tissue compartment, which is ignored
in the static dephasingmodel (Yablonskiy and Haacke, 1994). Simulation
and in vivo studies have shown that diffusion of water in brain paren-
chyma affects the BOLD signal measured under the GESSE sequence
(Kiselev and Posse, 1999; Dickson et al., 2010) and ASE (Ni et al., 2015).
A qBOLD model which accounts for diffusion in ASE, like that con-
structed by Dickson et al. (2010) may enable more accurate estimation of
R’

2 and DBV, although it requires quantification (or assumption) of the
rate of diffusion, and the distribution of vessel sizes in grey matter. The
GESEPI acquisition used (Yang et al., 1998; Blockley and Stone, 2016)
reduces the effect of magnetic field inhomogeneities, which improves the
physiological specificity of R’

2 estimation, but does not perfectly remove
them, which may explain why DBV estimates are higher than those ob-
tained after retrospective magnetic field gradient correction (Yablonskiy,
1998).

The clinical utility of OEF estimation is primarily in quantitative
inter-subject and inter-regional comparisons. The group level standard
deviation of OEF among young healthy subjects reported here was
similar to, or smaller than, those of other methods. Normalized variance,
accounting for differences in mean OEF, is lower under spatially regu-
larized VB than other methods. This suggests that the 2C, spatially
regularized method proposed here may be useful in identifying differ-
ences across a population. Similarly, OEF is expected to be uniform across
the healthy brain, and the spatially regularized 1C and 2C models pro-
duced smooth maps. These methods may, therefore, be useful in identi-
fying regions of altered OEF, such as the ischaemic penumbra, by
comparison with healthy tissue.

Other literature methods required precise initialization of parameter
values in order to obtain reasonable results after model fitting. This is not
required in a Bayesian framework, as broad, minimally-informative
priors can be used to produce accurate results across a range of param-
eter values, as was shown in simulated data. Model-based fitting of
sqBOLD data does, therefore, have considerable potential utility,
although there are significant limitations which must be investigated
further.

6. Conclusions

This study has shown that a Bayesian framework can be used to es-
timate parameters in the qBOLD model reliably and consistently, when
compared with previous analysis methods. It provides additional infor-
mation in the form of parameter uncertainties, allows for the possibility
of using priors to inform estimates, and can incorporate spatial regula-
rization which improves parameter distributions. The non-linear model
used can be extended in a number of ways, such as including contribu-
tions to the signal from the intravascular compartment. The resulting
parameter maps of R’

2 and DBV can be used to quantify OEF, whose
spatial distribution signifies clinically useful information, especially in
the case of acute stroke, where it could be used to distinguish the
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ischemic penumbra from the ischemic core (Hossmann, 1994; Liu and Li,
2016). Grey matter average parameter estimates obtained using VB have
significantly lower variation than those of the simpler model, leading to
more homogeneous distributions and more precise average values. The
distributions are even more homogeneous, and the average values more
precise, when using a model that includes the intravascular signal
contribution.

It has also been shown that ASE-qBOLD consistently estimates
parameter values that are different from those obtained through other
methods. In particular, DBV estimates tend to be higher than literature
values, leading to lower OEF estimates. These differences could be the
result of motional narrowing effects in the tissue compartment. Further
work is required to determine whether these measurements can provide
clinically relevant information without further correction. In addition,
alternative qBOLD techniques, including those that use data acquired by
other modalities such as GESSE, could be analysed in the same VB
framework, in order to produce a comparison between the various
methods for measuring R’

2 (and hence, OEF) in vivo. Comparing other
methods of OEF estimation (such as TRUST), or DBV estimation (using
hyperoxia BOLD), in the same subjects, would also be very useful for
validation.

The method presented here estimates parameters more accurately
from simulated data, and leads to significantly less variance at the intra-
subject level in vivo. Its utility could be reinforced by being applied to
GASE data from clinical populations such as acute stroke patients, in
order to distinguish between regions of the brain with varying OEF.
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