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Abstract

In this paper, we present an efficient algorithm for point cloud registration in presence of low

overlap rate and high noise. The proposed registration method mainly includes four parts:

the loop voxel filtering, the curvature-based key point selection, the robust geometric

descriptor, and the determining and optimization of correspondences based on key point

spatial relationship. The loop voxel filtering filters point clouds to a specified resolution. We

propose a key point selection algorithm which has a better anti-noise and fast ability. The

feature descriptor of key points is highly exclusive which is based on the geometric relation-

ship between the neighborhood points and the center of gravity of the neighborhood. The

correspondences in the pair of two point clouds are determined according to the combined

features of key points. Finally, the singular value decomposition and ICP algorithm are

applied to align two point clouds. The proposed registration method can accurately and

quickly register point clouds of different resolutions in noisy situations. We validate our pro-

posal by presenting a quantitative experimental comparison with state-of-the-art methods.

Experimental results show that the proposed point cloud registration algorithm has faster

calculation speed, higher registration accuracy, and better anti-noise performance.

1. Introduction

With the development of novel sensing technologies, such as Kinect, 3D LiDAR [1, 2] and ter-

restrial laser scanners (TLS), 3D point cloud becomes more convenient to acquire. And those

technologies have been used widespreadly in the fields of 3D reconstruction, archaeology,

medical image analysis etc. Point cloud processing has become a research hotspot. To recon-

struct a complete 3D model, it is necessary to obtain the point cloud from different viewpoints.

But each point cloud is in different coordinate systems. Therefore, point clouds of multi-view

in different coordinate systems should be transformed to one coordinate system. This process

is called point cloud registration. Point cloud registration is a key step in point cloud process-

ing and has the profound value in computer vision, computer graphics, robotics and so on.
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According to the initial conditions and accuracy, point cloud registration can be divided

into coarse registration and fine registration. The coarse registration can quickly estimate a

rough transformation matrix without strict requirements of initial spatial positions of point

clouds. The fine registration can obtain a good result of registration. There are numerous algo-

rithms for point cloud registration proposed by scholars. Of these algorithms, the Iterative

Closest Point (ICP) algorithm is an important registration method for fine registration [3].

The ICP algorithm proposed by Besl et al. can obtain the best transformation matrix according

to correspondences iteratively. However, the ICP algorithm also has some shortcomings, such

as high requirements for initial positions of point clouds. Chen et al. presented a new approach

which works on range data directly and aligns successive scans with enough overlapping area

to get an accurate transformation between scans [4].

Ji et al. proposed a hybrid algorithm which integrated the GA algorithm and the ICP algo-

rithm [5]. In the literature [6], Zhu et al. deployed an improved Iterative Closest Point (ICP)

algorithm in which an adaptive threshold was introduced to accelerate iterative convergence.

Meng combined kd-tree and extrapolation to improve the speed and accuracy of the ICP algo-

rithm [7]. In order to improve the accuracy of point cloud registration and the convergence

speed of registration, Liu et al. took point pairs with smaller Euclidean distances as the points

to be registered, and designed the depth measurement error model and weight function [8].

Agamennoni et al. presented a point cloud registration method based on probability distribu-

tion which is another type of fine registration [9].

In general, common coarse registration methods are based on local geometric features

description, which includes the extraction of geometric features and the determination of cor-

respondences. Many approaches of extracting the feature point have been widely reported. Li

proposed an improved Harris algorithm by combining the discrete curvature and the normal

vector to extract feature [10]. The SIFT operator can reduce the influence of scale change on

key point search, but its computation is complex [11, 12]. In the paper [13], a registration

method combining with color moment information improves the registration accuracy. In the

literature [14], the future points are obtained via 3D Difference of Gaussians over geometric

scalar values of the points which ensures obtaining salient features. Prakhya S M calculated the

HoNo (Histogram of Normal Orientations) at every point and detected the key point by evalu-

ating the properties of both the HoNo and the neighborhood covariance matrix [15]. The

point feature histogram (PFH) algorithm and the fast point feature histogram (FPFH) algo-

rithm are popular algorithms of feature description [16–18], which generate a feature histo-

gram for each point based on feature information. Prakhya S M et al. applied a binary

quantization method on a state-of-the-art 3D feature descriptor [19], SHOT [20], and created

a new binary 3D feature descriptor, B-SHOT. Kleppe A L introduced a descriptor of key point

using conformal geometric algebra [21]. Instead of feature descriptor’s calculating and feature

matching, the 4-Points Congruent Sets (4PCS) and semantic-key point based 4PCS (SK-4PCS)

determine the corresponding four-point base sets by exploiting the rule of intersection ratios

[22, 23]. Mellado et al. improved 4PCS and proposed SUPER 4PCS and speedups the registra-

tion process [24]. Another idea of coarse registration is Sample Consensus algorithm. For

example, Ye et al. used Random Sample Consensus (RANSAC) algorithm to eliminate the

wrong matches [25]. In the literature [26], during coarse registration stage, Random Sample

Consensus (RANSAC) algorithm is used to obtain the transformation between two 3D point

clouds. The Normal distributions transform (NDT) algorithm is used to solve 2-D registration

problem in the paper [27]. And Magnusson applied it in a 3-D space [28]. The NDT algorithm

uses statistical probability method to determine the corresponding point pairs according to the

normal distribution. Hong et al. proposed a probabilistic normal distributions transform

(PNDT) representation which improves the accuracy of point cloud registration by using the
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probabilities of point samples [29]. Huan Lei et al. present a robust global approach for point

cloud registration from uniformly sampled points, based on eigenvalues and normals com-

puted from multiple scales [30].

Different from the above methods, this paper presents a key point selection algorithm

which has a better anti-noise and fast ability. The feature descriptor of key points is highly

exclusive which is based on the geometric relationship between the neighborhood points and

the center of gravity of the neighborhood. We validate our proposal by presenting a quantita-

tive experimental comparison with state-of-the-art methods. Experimental results show that

the proposed point cloud registration algorithm has faster calculation speed, higher registra-

tion accuracy, and better anti-noise performance.

The rest of the paper is structured as follows. In Section 2, We introduce the principle of the

algorithm in detail. In Section 3, the effectiveness of the algorithm is shown by experiment.

Section 4 concludes this paper.

2. Point cloud registration based on the feature histogram of local

surface

The registration process in our method mainly includes Loop voxel filtering, Finding key

points, The Feature Descriptor, Point cloud registration and other parts. The flow chart for the

registration process is shown in Fig 1.

2.1. Loop voxel filtering

The resolutions between different point clouds by using different acquisition equipment for

different objects have a large difference, which leads that the multiple parameters should be set

manually during the registration process. If the point clouds have too many points, the regis-

tration time will greatly increase. The point cloud filtering can deal with above problems.

Compared to the filtered point cloud, original dense point cloud uses more points to describe

the object surface. As shown in Fig 2, in order to describe the same surface, it requires 17

points in the original dense point cloud, but in filtered point only 7 points. Over-filtered point

cloud cannot describe the surface correctly as shown in Fig 2(C).

The resolution of a point cloud is the average of the distances between each point and its

nearest neighborhood point in the point cloud. The resolution describes the sparsity of point

clouds. The greater the resolution, the sparser the point cloud. In order to achieve fast auto-

matic registration, the point cloud resolution should to be calculated first:

s ¼

Xn

i¼1

kpi � p0ik2

n
ð1Þ

where pi is the i-th point in the point cloud, p0i is its nearest neighbor point and n is the number

of points in the point cloud.

In order to reduce point cloud size, voxel filtering will be used. The three-dimensional

voxel grid is created in which each point is represented by the center of gravity of the grid. In

this paper, an automatic voxel filtering on the point cloud is designed.

To improve registration efficiency, point clouds are filtered with uniform resolution of 1.0

mm. Automatic loop voxel filtering is adopted which calculates the maximum and minimum

values of the x, y and z axis of the input point cloud, and establishes a three-dimensional

bounding box according to these values and divides the bounding box into small cubes with

the assigned voxel size, and represents all points in the small cube with the center of gravity of
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Fig 1. Flow chart of registration process.

https://doi.org/10.1371/journal.pone.0238802.g001
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the small cube. In this way, multiple points inside the voxel are represented by one point, and

the point cloud is reduced.

The filtering algorithm in this paper is implemented as follows:

1. Filter the original point cloud by using voxel filtering, and set the final voxel size, starget, to

1.0 mm.

2. Calculate the resolution of filtered point cloud, snow.

3. If 1.02� snow is greater than starget, end the filtering process, else take voxel filtering on the fil-

tered point cloud again, and the voxel size sloop is determined by:

sloop ¼ starget þ 0:2� ðstarget � snowÞ ð2Þ

4. Go to step 2.

The filtered point cloud after above steps will be used as the initial point cloud for registra-

tion in the following sections, and its resolution is represented by sn which will be used in the

following sections also.

2.2. Finding key points

After the point cloud filtering, the points are still redundant for the registration of point

clouds. Most of the points locate at locations where local features are not apparent such as flat

region. To improve the speed of registration, the key points are found for the registration. In

order to find key points, classic algorithms based on a single point feature is sensitive to noise.

In order to strengthen the resistance to noise, a finding algorithm of key point based on the

biggest mean curvature of the pre-keypoint in its neighborhood is proposed. The algorithm

proposed in this paper has better performance than the algorithm which only relies on single

point’s curvature value. The key points finding algorithm is shown in Fig 3.

The key points are obtained based on point neighborhood. The neighborhood of a point pi
is defined as the set which includes all points within the sphere with center pi and the radius r,
where r = 5�sn. sn is the current point cloud resolution. The covariance matrix E with dimen-

sion 3�3 and the eigenvalues λ1, λ2, λ3 based on the neighborhood of pi are calculated:

E ¼
1

m

Xm

a¼1

ðpa
i � �piÞ � ðp

a
i � �piÞ

T
ð3Þ

E � υj ¼ l � υj; j 2 f1; 2; 3g ð4Þ

where pa
i , a 2(1, m) is the a-th point in the Neighborhood of pi and m is the number of points

in the neighborhood of the point pi. �pi is the centroid of the neighborhood of pi. λj and νj are

the eigenvalue and eigenvector of the covariance matrix E, correspondingly. λ1 is the smallest

Fig 2. Point clouds of different densities. (a) The original dense point cloud; (b) the filtered point cloud; (c) the over-

filtered point cloud.

https://doi.org/10.1371/journal.pone.0238802.g002
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eigenvalue. The curvature can be estimated from the above eigenvalues. The curvature ci of the

point pi is obtained by the following formula:

ci ¼
l1

l1 þ l2 þ l3

ð5Þ

To speed up searching key points, the points whose curvatures are greater than the thresh-

old cth are chosen as candidate key points. The threshold of curvatures is cth = cmax—(cmax-

cmin)/3, where cmax and cmin are the maximum and minimal curvatures in the whole cloud

points, respectively. An n-dimensional column vector pre is established to store the flags

which indicate whether each point in the point cloud is a candidate key point. Where n is the

number of points of the point cloud. The initial value of pre is an all-zero vector, i.e. prei = 0,

i2(1, n). It means that the i-th point is not a pre-key point. If the curvature of i-th point is

greater than cth, prei is set to 1 and make it as a pre-key point.

We use the symbol aci to represent the mean value of curvature of all points in the neigh-

borhood of the ith point. The neighborhood radius is r. If the point pi is not a pre-key point, its

curvature mean value is set to 0, aci = 0. If the point pi is a pre-key point, the mean curvature

of its neighborhood aci would be calculated:

aci ¼

Xm

a¼1

cai

m
ð6Þ

where cai is the curvature of the point pa
i and m is the number of neighborhood points. The

neighborhood point is denoted by pa
i .

In the process of determining whether the pre-key point has the largest mean value of the

curvature, the point’s pre-key point flag prei is set to 0 when its curvature mean aci is less than

its surrounding points’ value. It can reduce the number of pre-key points and accelerate the

calculation of curvature mean. The mean value of the curvature of the pre-key point would be

compared with those of its neighbor points. If the mean value of the curvature of the pre-key

point is larger than all its neighbor points, the pre-key point flag would be set to 1 and the pre-

key point flag of its neighbor points would be set to 0. After above procedure, the points whose

pre-key point flag are still 1 are taken as the final key points pk.

Fig 3. Key points finding algorithm.

https://doi.org/10.1371/journal.pone.0238802.g003
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The anti-noise principle of the finding algorithm of key point is shown in Fig 4, where cth =

0.02. The curvature of the circular points are less than 0.02, which indicates these points are

normal. Since curvature of the square points are greater than 0.02, they are pre-key points. The

curvature of the triangle point is abnormal, it is a noise point. The mean curvature of the

neighborhood of the hexagonal point is the maximum in its neighborhood, which is the key

point. Due to the abnormal curvature of the noise point, the noise point would be mistaken as

a key point according to its curvature only. Selecting the key point according to the mean of

the neighborhood curvature can improve the anti-noise ability of the key point search algo-

rithm. Although the curvature of the noise point is large, the mean of the neighborhood curva-

ture of the neighborhood points are increased, the red hexagonal point can still be correctly

selected as the key point.

2.3. The feature descriptor

The classical feature descriptor depends on the relationship between the key point and its

neighborhood points. Due to abnormal information such as the normal of the noise point,

when noise is mistaken as a key point, feature descriptors cannot correctly describe the geo-

metric features of key point based on its neighbor information. For this reason, we propose a

feature descriptor in which the local surface histogram is calculated according to the distance

between the neighbor points and the gravity center of neighborhood of the key point, as well

as normal of points in the neighborhood.

The radius of the neighborhood of the key point pk is denoted by r. The center of gravity �pk

of the neighborhood is shown in Fig 5. The da is the distance from the neighborhood point pa
k

Fig 4. Anti-noise principle of finding algorithm of key points.

https://doi.org/10.1371/journal.pone.0238802.g004
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to the center of gravity �pk. The nearest distance is dmin and farthest distance is dmax. The dmax-

dmin is divided into 10 parts.

The length of each part dres is:

dres ¼
dmax � dmin

10
ð7Þ

For the neighborhood point pa
k, according to the distance da, bina

d2(1, 10) is computed as:

bina
d ¼

da � dmin

dres

� �

ð8Þ

where demeans to round up to an integer.

The ca2(-1,1) is cosine of the angle between the normal of the neighborhood point pa
k and

the line from pa
k to the center of gravity �pk, as shown in Fig 6. Where the hexagonal point pk is

key point. The cosine value ca is averagely divided into 12 parts.

Each part cres is calculated as:

cres ¼
ðþ1Þ � ð� 1Þ

12
ð9Þ

Fig 5. Grouping schematic of distances.

https://doi.org/10.1371/journal.pone.0238802.g005
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For the neighbor point pa
k, its cosine value group number, bina

c2(1,12) is calculated as

bina
c ¼

ca þ 1

cres

� �

ð10Þ

The feature descriptor is calculated according to the geometric relationship between the

center of gravity and neighbor points in the neighborhood of the key point. So the effect, when

a noise is mistakenly chosen as a key point, can be reduced.

The anti-noise principle of the feature descriptors is shown in Figs 7 and 8, respectively.

Where the hexagonal point pk is the true key point and the square point �pk is the gravity center

of its neighborhood. The triangle point p0k is a noise point and the diamond point �p0k is the cen-

ter of gravity of the neighborhood when the noise point p0k is mistakenly chosen as a key point.

As it can be seen from the figures, when the noise point is mistaken as a key point, the distinc-

tion between the two centers of gravity is small. At the same time, for the neighbor point pa
k,

the values (bina
c ; bin

a
d) calculated by the wrong center of gravity also has small difference. The

feature descriptor based on the noise point p0k can still correctly describes the neighborhood.

A two-dimensional array f12×10 is used to store neighborhood information of the key point

with 12×10 zeroes as initial values.

According to the values of binc and bind of neighbor point pa
k, the value in the correspond-

ing position of the 2D array f12×10 are added by one. As shown in Fig 9, the [binc, bind] of the

neighbor point pa
k is [2, 3]. So the value in the position [2, 3] of the feature descriptor f12×10 of

the key point pk are added by one.

To normalize the value in each position of the two-dimensional array f12×10, it is divide by

the number of neighborhood points. After all points in the neighborhood of the key point are

traversed, the two-dimensional array f12×10 is obtained and it is flattened to a column vector f
of 120 rows. The column vector f is used as the feature descriptor for the key point pk.

2.4. Point cloud registration

The correspondences are determined based on the Euclidean distances of the descriptors of

key points. The feature vector of key point psk of the source point cloud is represented by sym-

bol f sk and the feature vector of key point ptk of the target point cloud is f tk:

f sk ¼ ½f
s
k1

f sk2
� � � f sk120

�
T

ð11Þ

f tk ¼ ½f
t
k1

f tk2
� � � f tk120

�
T

ð12Þ

Fig 6. Schematic diagram of grouping cosine value.

https://doi.org/10.1371/journal.pone.0238802.g006
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The Euclidean distance between the feature vectors f sk and f tk is calculated by:

dðf sk; f
t
kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP120

j¼1
ðf skj � f tkjÞ

2
q

ð13Þ

Fig 7. Anti-noise principle of distance grouping.

https://doi.org/10.1371/journal.pone.0238802.g007

Fig 8. Anti-noise principle of cosine value grouping.

https://doi.org/10.1371/journal.pone.0238802.g008
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Since the feature descriptor has been normalized already, the average value of each dimen-

sion of the 120-dimensional feature descriptor, favg, is:

favg ¼
1

120
ð14Þ

When the difference between the key point feature descriptors of source point cloud and

target point cloud is less than 0.5� favg, the mean square error mse satisfies:

mse < 120� ð0:5� favgÞ
2
� 0:002 ð15Þ

The kd-tree based on the descriptors of key points in source point cloud is generated. The

closest key point in the target point cloud is searched in the generated kd-tree. If the mean

square error of key point in the target point cloud is less than 0.002, the corresponding point

pair will be added to the initial correspondence set O.

Because the feature descriptor describes the neighborhood information of the key point, if

the neighborhoods of different key points are similar, some incorrect initial correspondences

would be generated. In order to remove the incorrect correspondences, the neighborhood

composite feature of the initial matching point pair is proposed in this paper.

Using the information of the Euclidean distance and feature descriptor of the nearest key

point as a combined feature, the incorrect correspondence relationship is discarded according

to the combined features. The nearest neighbor point pson
k for the key point pso

k in source point

cloud is found, as shown in Fig 10. The dson
k is the distance between the point pson

k and pso
k . The

mean value of the descriptors of the point pso
k and the point pson

k is taken as the neighborhood

composite feature f sok of the point pso
k . The nearest neighbor pton

k for the key points pto
k in the tar-

get point cloud is found. The dton
k is the distance between the points pton

k and pto
k . The mean

value of the descriptors of the point pto
k and the point pton

k is taken as the neighborhood com-

posite feature f tok of the point pto
k . If the absolute value of the difference between dson

k and dton
k is

greater than 10 times resolution of source point cloud, the correspondence will be discarded.

Otherwise, if the Euclidean distance between the vectors f sok and f tok is greater than 0.002, the

correspondence is discarded. After above procedures, the final correspondence set is obtained.

As shown in Fig 10, solid lines represent mismatches and dashed lines represent correct

matches. Although the mean square error of feature descriptors of points pso
k and pto

k is small,

the closest points distance dson
k and dton

k are quite different. And the neighborhood composite

Fig 9. Calculation principle of the feature descriptor.

https://doi.org/10.1371/journal.pone.0238802.g009
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features f sok and f tok are quite different. The incorrect correspondence can be effectively

removed by comparing the closest point distance of the initial corresponding point pair with

the neighborhood composite feature.

According to the final correspondence set, the rotation matrix and the translation vector

between source point cloud and target point cloud are calculated by using the SVD algorithm

and coarse registration is completed. Then the fine registration is finished by using ICP

algorithm.

3. Experiment

The initial positions of the point clouds are shown in Fig 11. The cheff_source, dragon_source,

armadillo_source, happy_source and boy_source are source point clouds represented by green

color. The cheff_target, dragon_target, armadillo_target, happy_target and boy_target are tar-

get point clouds represented by blue color.

Fig 10. The removal principle of error correspondences.

https://doi.org/10.1371/journal.pone.0238802.g010

Fig 11. Initial positions of point clouds. (a) Cheff; (b) Dragon; (c) Armadill; (d) Happy; (e) Boy.

https://doi.org/10.1371/journal.pone.0238802.g011
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The dense point clouds can be simplified to a specified resolution by using proposed algo-

rithm in this paper. Table 1 shows the resolutions of point cloud during loop filtering where

the specified resolution is 1mm. After several loops of voxel filtering, the point cloud can be

automatically adjusted to the specified resolution. So the registration can deal with point

clouds obtained by different scanners from different distance automatically, eliminating man-

ual turning registration parameters which are based on point clouds with different sizes. After

filtering, the resolution of source point cloud is almost the same as the target cloud with the

error about 1.2%.

The key point distributions of point cloud dragon_source under Gaussian noise with vari-

ance σ� sn are shown in Fig 12. It can be seen that the key points obtained by the proposed

algorithm based on the mean curvature of points in its neighborhood are more evenly distrib-

uted. The key points are located in the surface where the curvature changes greatly. After add-

ing Gaussian noise, the key points are found in same place almost for different σ values that

means the obtained key points are robust to noise.

The registration error is defined as the average distance between corresponding point pairs

in the source point cloud and the target point cloud after registration. The smaller the registra-

tion error, the better the registration result. Table 2 shows that the registration algorithm pro-

posed in this paper is fast and has high registration accuracy. When the noise is small, the

registration accuracy of these registration algorithms is similar. With the increase of noise, the

registration algorithm proposed in this paper is more accurate than PFH, FPFH and SHOT.

Table 1. Number of points in the process of loop voxel filtering.

Counts of iteration dragon_source dragon_target armadillo_ source armadillo_ target

point number resolution (mm) point number resolution (mm) point number resolution (mm) point number resolution (mm)

0 100250 0.221882 43572 0.218354 172974 0.457438 83636 0.453643

1 59515 0.745332 26330 0.745497 54787 0.717815 27926 0.708482

2 45820 0.864262 20347 0.861433 39987 0.859273 20350 0.847701

3 40086 0.935212 17873 0.933344 33827 0.934583 17362 0.926101

4 36500 0.989653 16370 0.984749 30572 0.985521 15567 0.982849

Consuming time (ms) 218 94 203 109

https://doi.org/10.1371/journal.pone.0238802.t001

Fig 12. Key point distribution under noises. (a) σ = 0; (b) σ = 0.1; (c) σ = 0.2; (d) σ = 0.3; (e) σ = 0.4; (d) σ = 0.5.

https://doi.org/10.1371/journal.pone.0238802.g012
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Table 3 shows the calculation time of feature descriptors for different radiuses. As the radius

of the neighborhood increases, the calculation time of PFH and FPFH grows faster, while the

calculation time of SHOT and the algorithm proposed in this paper grows slower.

When the same accuracy is achieved, the correspondence optimizing algorithm proposed

in this paper has a shorter time than RANSAC, as shown in Table 4.

The descriptors of two correct corresponding points obtained by using the PFH, FPFH,

SHOT and our method are roughly similar. Figs 13–17 shows the wrong corresponding points

and their feature descriptors obtained by these methods. The left side is the source point cloud,

the right side is the target point cloud, and the big point is the corresponding point. Because

the local features are similar, PFH, FPFH, and SHOT cannot distinguish the wrong corre-

sponding points, but the feature descriptor proposed in this paper can still distinguish subtle

differences. The feature descriptor proposed in this paper has better distinct ability with fewer

dimensions.

As shown in Fig 18, there are many error correspondences through first matching. By using

our method to remove the error correspondences, the final correspondences are basically

correct.

The Table 5 is parameters and results of registration used by the algorithm proposed in this

paper. The registration process is implemented automatically without human intervention.

Table 2. Registration error under noises.

Noises Registration error of cheff (mm) Registration error of dragon (mm)

PFH FPFH SHOT our method PFH FPFH SHOT our method

0 0.224574 0.273543 0.213564 0.192364 0.163234 0.152315 0.125342 0.134274

0.1 0.374634 0.425436 0.323743 0.204072 0.214734 0.225462 0.152362 0.147342

0.2 0.574965 0.567244 0.434583 0.321691 0.324374 0.337345 0.274245 0.252324

0.3 0.824546 0.765364 0.534296 0.384844 0.454536 0.473745 0.394554 0.355267

0.4 1.011268 0.950696 0.845454 0.515503 0.573454 0.601235 0.523512 0.512315

0.5 1.157674 1.157645 1.012543 0.634767 0.734572 0.953742 0.585596 0.561351

Time (ms) 6231 3257 2526 1423 4231 3021 2834 1637

https://doi.org/10.1371/journal.pone.0238802.t002

Table 3. The comparison of time of calculating feature descriptors.

Neighborhood radius (mm) Time spent on calculating 300 feature descriptors (ms)

PFH FPFH SHOT Our method

10 1346 970 186 124

20 14500 6406 250 164

30 76504 14312 410 228

40 240594 24906 532 376

50 556628 37532 906 504

https://doi.org/10.1371/journal.pone.0238802.t003

Table 4. Results of RANSAC and proposed algorithm for removing the error correspondence.

Algorithm Consuming time (ms) Registration error (mm)

cheff dragon cheff dragon

Our method 332 316 0.141291 0.134632

RANSAC 1109 938 0.149769 0.132017

https://doi.org/10.1371/journal.pone.0238802.t004
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Table 6 shows the results of registration by tuning algorithm’s parameters manually. The fil-

tering algorithm is voxel filtering. The voxel size is determined by multiple trials. The finding

key point algorithm is based on uniform sampling. The sampling interval is 20 times the voxel

size. The feature descriptor SHOT is adopted. The fault correspondences are removed by the

RANSAC algorithm. Finally, ICP fine registration is performed.

Compared with the manually turning parameter algorithm, the filtering algorithm of this

paper can automatically adjust the parameters according to the point cloud resolution. Despite

the merely increased time, it is suitable for registration without manual intervention. Fig 19

shows the registration results of our algorithm with high registration accuracy.

Fig 13. Wrong corresponding points in cheff.

https://doi.org/10.1371/journal.pone.0238802.g013

Fig 14. Corresponding points feature descriptors using PFH.

https://doi.org/10.1371/journal.pone.0238802.g014
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Fig 20 shows the six different scan directions to generate six point clouds of cheff. The six

point clouds have different overlap rates. The overlap rate of two aligned point clouds is calcu-

lated as following. First search the closest point pairs in two aligned point clouds. When the

distance between two closest points is less than five times the point cloud resolution, the points

are viewed as overlapping point. The number of overlapping points is divided by the number

of points in the point cloud as the overlap rate.

Fig 15. Corresponding points feature descriptors using FPFH.

https://doi.org/10.1371/journal.pone.0238802.g015

Fig 16. Corresponding points feature descriptors using SHOT.

https://doi.org/10.1371/journal.pone.0238802.g016
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As shown in Table 7, Figs 21 and 22, when the overlap rate is greater than or equal to

43.72%, our register algorithm has better accuracy. When the overlap rate is less than or equal

to 37.52%, our algorithm fails to register. When the overlap rate is greater than or equal to

57.58%, the PFH algorithm can accurately register. When the overlap rate is less than or equal

to 43.72%, the PFH algorithm fails to register. Due to the small number of key points in our

registration algorithm, the difficulty of key point matching can be reduced and the registration

effect can be maintained for the situation with a low overlap rate.

Fig 17. Corresponding points feature descriptors using our method.

https://doi.org/10.1371/journal.pone.0238802.g017

Fig 18. Comparison of the initial correspondences and correspondences after removing the errors. (a) Initial

Correspondences Between a_s and a_t; (b) Final Correspondences Between a_s and a_t; (c) Initial Correspondences

Between d_s and d_t; (d) Final Correspondences Between d_s and d_t.

https://doi.org/10.1371/journal.pone.0238802.g018

PLOS ONE Automatic point cloud registration algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0238802 September 11, 2020 17 / 22

https://doi.org/10.1371/journal.pone.0238802.g017
https://doi.org/10.1371/journal.pone.0238802.g018
https://doi.org/10.1371/journal.pone.0238802


Table 5. Parameters and results of registration.

Point cloud cheff_s cheff_t dragon_s dragon_t

Point number of clouds 89024 85794 187121 176930

Initial resolutions (mm) 0.59141 0.59243 0.22188 0.23245

Point number after filtering 35123 32634 31674 29457

Filtering time (ms) 145 132 215 228

Resolutions after filtering (mm) 0.983531 0.982354 0.987564 0.990124

Number of key points 226 215 263 274

The time of computing feature (ms) 156 163 175 179

Initial correspondences (pair) 142 157

The time of determining initial correspondences (ms) 32 36

Optimized correspondences (pair) 84 79

The time of optimizing correspondences (ms) 146 147

The time of SVD (ms) 344 323

The time of ICP (ms) 425 585

Registration error (mm) 0.190132 0.136213

https://doi.org/10.1371/journal.pone.0238802.t005

Table 6. Parameters and results of registration.

Point cloud cheff_s cheff_t dragon_s dragon_t

Point numbers of clouds 89024 85794 187121 176930

Initial resolutions (mm) 0.59141 0.59243 0.22188 0.23245

Voxel size 1.45 1.45 1.35 1.35

Point numbers after filtering 24019 23508 22412 21536

Filtering time (ms) 47 35 74 71

Resolutions after filtering (mm) 1.04143 1.04626 0.951742 0.922374

Number of key points 160 155 184 186

The time of computing feature (ms) 231 215 205 195

Initial correspondences (pair) 196 161

The time of determining initial correspondences (ms) 42 63

Correspondences after removal process (pair) 74 84

The time of removal process (ms) 1134 1237

The time of ICP (ms) 863 910

Registration error (mm) 0.210131 0.124432

https://doi.org/10.1371/journal.pone.0238802.t006

Fig 19. The results of point cloud registration. (a) Cheff; (b) Dragon; (c) Armadill; (d) Happy; (e) Boy.

https://doi.org/10.1371/journal.pone.0238802.g019
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4. Conclusion

In this paper, the filter parameters are adaptively turned according to the resolution of the

point cloud. A key point finding algorithm based on the mean value of the curvature of the

neighborhood of the pre-keypoint is proposed. It did not adopt common key point finding

algorithms which rely on single point curvature values and enhances robustness to noise,

reduces the repetitiveness of key points at the same local region. In this paper, we proposed a

computation method of feature descriptor based on distances and normal relationship

between the center of gravity and each points in its neighborhood. Robustness to noise and

uniqueness of the descriptor are improved. The wrong correspondences are removed effec-

tively based on neighborhood combined feature of original matching point pair. It ensures

accuracy of registration and reduces time of ICP. The proposed registration algorithm has

good accuracy, computing efficiency and robustness to noise. It is suitable for automatic regis-

tration of point clouds with low overlapping rate and big noise.

Fig 20. Six scan directions.

https://doi.org/10.1371/journal.pone.0238802.g020

Table 7. Registration data of different overlap rate.

c_t c_s1 c_s2 c_s3 c_s4 c_s5

Point numbers of clouds 86884 90019 82949 76890 77467 81933

Rate of overlap (%) 89.74 71.55 57.58 43.72 37.52

Registration error of our paper 0.120578 0.143751 0.218378 0.242352 0.967535

Registration error of SHOT 0.132231 0.263515 0.326346 0.936345 0.977345

https://doi.org/10.1371/journal.pone.0238802.t007
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S1 File. PCDATA. Point cloud data used in the paper.

(RAR)

Author Contributions

Conceptualization: Jun Lu.

Data curation: Zhuo Wang, Bowen Hua, Kun Chen.

Methodology: Jun Lu.

Project administration: Jun Lu.

Resources: Jun Lu, Zhuo Wang, Kun Chen.

Software: Bowen Hua.

Supervision: Jun Lu.

Validation: Bowen Hua, Kun Chen.

Visualization: Bowen Hua.

Fig 21. Registration results by using proposed algorithm. (a) c_s1 Registration Result; (b) c_s2 Registration Result; (c)

c_s3 Registration Result; (d) c_s4 Registration Result; (e) c_s5 Registration Result.
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Fig 22. Registration results by using PFH algorithm. (a) c_s1 Registration Result; (b) c_s2 Registration Result; (c)

c_s3 Registration Result; (d) c_s4 Registration Result; (e) c_s5 Registration Result.

https://doi.org/10.1371/journal.pone.0238802.g022
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