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Abstract

Purpose: To develop a method for automatically detecting needles from CT images,

which can be used in image-guided lung interstitial brachytherapy to assist needle

placement assessment and dose distribution optimization.

Material and Methods: Based on the preview model parameters evaluation, local

optimization combining local random sample consensus, and principal component

analysis, the needle shaft was detected quickly, accurately, and robustly through the

modified random sample consensus algorithm. By tracing intensities along the axis,

the needle tip was determined. Furthermore, multineedles in a single slice were seg-

mented at once using successive inliers deletion.

Results: The simulation data show that the segmentation efficiency is much higher

than the original random sample consensus and yet maintains a stable submillimeter

accuracy. Experiments with physical phantom demonstrate that the segmentation

accuracy of described algorithm depends on the needle insertion depth into the CT

image. Application to permanent lung brachytherapy image is also validated, where

manual segmentation is the counterparts of the estimated needle shape.

Conclusions: From the results, the mean errors in determining needle orientation

and endpoint are regulated within 2° and 1 mm, respectively. The average segmen-

tation time is 0.238 s per needle.
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1 | INTRODUCTION

Lung cancer has been the most common incident cancer with over 4

million new cases diagnosed and 2 million cancer deaths taking place

in China each year.1 As an important branch of radiotherapy, intersti-

tial brachytherapy has been widely used for cancer therapeutic, such

as lung, liver, prostate, and many other organs with great conformal-

ity, short treatment time, and high rate of local dose control.2–4

The standard workflow of the lung interstitial brachytherapy

generally consists of three parts: First, an optimal dose treatment

plan should be made by the physicist based on the treatment

planning system.5 Second, all the needles are inserted into the

target along the directional slots on the coplanar template. The

radioactive sources are implanted into planned positions sequentially

through the hollow shaft of the needle. Finally, verifying the quality

of the operation by postoperative CT.6

Placing all seeds in the planned positions to ensure sufficient

dose to cover the target, while maintaining a low dose of the organs

at risk is the key to surgery success.7 However, preoperative plan

cannot be implemented well due to factors such as tissue
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deformation and needle deviation.8 Suboptimal dose distribution

leads to decreased biochemical control and high risk of damage to

surrounding tissues. An image-based automatic needle detection

algorithm makes it possible to perform efficient intraoperative dose

correction based on the actual needle paths. In the treatment plan-

ning system, the planned seeds can be imported into the corre-

sponding detected needle paths for dose calculation. If any dose

deficiency and hot spot are identified within the lung target, position

adjustment of seeds and additional needles will be done. However,

needle artifacts, image attenuation, signal dropouts, and low contrast

between the needle and the ribs have brought many obstacles to

automatic needle detection in CT data, as shown in Fig. 1. Therefore,

accurately and quickly identifying the needle from a large amount

complex of CT data has become the nodus of this technique.

A wide variety of research studies have been performed on auto-

matic long straight surgical instruments segmentation from two-di-

mensional (2D) and three-dimensional (3D) ultrasound (US) images.

Radon, Hough transform (HT), and parallel projections are three

common detection algorithms. An example that using a form of the

Radon transform, Barva et al.9 proposed that the electrode axis can

be found through maximizing parallel integral projection (PIP).

Although the accuracy of this method is high with tip error within

0.2-0.3 mm, it is not a pragmatic approach in a clinical environment

due to a long processing time in MATLAB (tens of minutes). Addi-

tional PIP speedup achieved through harnessing the computational

power of the GPU and using a fast search schema to track the surgi-

cal instruments real time.10 Uhercik et al.11 presented a multiresolu-

tion PIP method, achieving faster electrode axis localization in 3D

US data than generalized PIP and yet maintain the same accuracy.

Qiu et al.12 used the 3D HT-based method for locating the prostate

therapy needle, which achieved endpoint localization accuracy of

1 mm in vivo patient images and the mean time cost is 2 s. By modi-

fying the HT algorithm with coarse-fine search strategy and a four

parameter representation of lines in 3D space, Zhou et al.13 seg-

mented needles quickly, accurately, and robustly. Quick randomized

Hough transform (RHT) reduced the computational effort to 1 s in a

35 MB data by doing the RHT only on coarse resolution volumes.14

Okazawa et al.15 generalized the HT to address needle curvature in

2D ultrasound images. Ding et al.16 used two orthogonal image pro-

jections to segment needles from 3D US images and a similar seg-

ment algorithm can be used to detect curved needle found by

Aboofazeli et al.17 For higher preciseness, these methods of projec-

tion need images with low noise and good contrast. Regarding local-

izing the needle position and estimate the endpoint in real time, Yan

et al.18 presented the shape information and level set technique,

which had been validated in prostate phantoms.

The general disadvantages of aforementioned methods are their

high sensitivity to interference, computational complexity, and focus-

ing on single needle separation. Hence, a more robust and computa-

tional efficient approach that functions well within a complicated

environment is still required. In this paper, a modified needle detec-

tion algorithm has been proposed and evaluated, which estimates

the entire needle shape utilizing image preprocessing and an

improved random sample consensus (RANSAC) algorithm. RANSAC

has been successfully used in surgical tool localization from 3D US

images19 and multiple transverse US images,20 but so far has not

been applied to CT transverse data. In this algorithm, the iteration

process has been accelerated through pretesting technology to

improve the overall needle segmentation efficiency. Meanwhile, the

accuracy is guaranteed by combining locally optimized RANSAC21

with principal component analysis (PCA).22 Furthermore, by cycling

out of the current best model inliers, all needles in a single trans-

verse image are detected. Finally, the algorithm is comprehensively

evaluated in simulation data, physical phantom, and in vivo CT-

guided lung brachytherapy images.

2 | MATERIALS AND METHODS

2.A | CT image preprocessing

The distance between adjacent needles is usually 5 or 10 mm, which

has been proved with minimal damage to the human body.5 The

F I G . 1 . An instance of the needle
appearance during lung interstitial
brachytherapy performed on CT images.
The ROI is displayed on the right.
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thickness of CT slices used for lung brachytherapy is normally 5 mm

to ensure that all needles and seeds can be detected while obtaining

distinct tissue imaging. Using a locating device and lasers to adjust

and position the coplanar template before scanning can ensure that

each needle is exactly on the CT slice. It is assumed that the

acquired images contain all the needles, and the count of needles on

each slice is known. The planned contours are manually adjusted by

the physicist to account for the anatomic deformation, and then

imported into intraoperative CT images. According to literature,23 we

found that the deformation of the 18-gauge brachyneedle occurs

mainly in the direction perpendicular to the bevel of the needle and

no bending occurs during insertion.

2.A.1 | Region of interest (ROI) extraction

Comparing with the manual extraction, a semiautomatic ROI detec-

tion method is used based on the modified target contour. First, a

smallest enclosing rectangle of the target area is calculated through

the pixels on the contour. Then, the rectangle is expanded by 3 mm

to ensure all the needle information within the ROI. If any needle

point candidates are located outside the enlarged rectangle, the

expansion distance will be increased manually. In the end, the image

surrounded by the updated rectangle is cropped for subsequent pro-

cessing. A ROI for one of the clinical CT images is shown in Fig. 1.

2.A.2 | Contrast enhancement

In order to improve the contrast between the needle and the exte-

rior background noise, an intensity mapping function is applied to

the cropped image after localizing the search area. The function is

i f ¼ ihigh_out� ilow_out
� � i� ilow_in

ihigh_in� ilow_in

� �γ

þ ilow_out (1)

with i f , i, ilow_in , ihigh_in, ilow_out, ihigh_out representing the normalized

intensity value in the range 0,1½ �. i f refers to the pixel intensities

desired in the transformed image and i represents the original pixel

intensities. The range ilow_in, ihigh_in
� �

specifies the minimum and maxi-

mum saturation thresholds in the input intensities. The value ilow_out

and ihigh_out defines the intensities span of the desired spectrum. The

significance of the transformation is shown in Fig. 2a. It maps the

intensity values in inchoative grayscale image to new values in the

transformed ROI. In the transformation process, the original pixels

with intensities smaller than ilow_in are given the value of intensity

ilow_out. Likewise, pixels having the intensities higher than ihigh_in are

assigned to ihigh_out. As for the parameter γ, which defines the shape

of the convert curve. When γ<1, the pixel intensities of the low-in-

tensity are expanded and compressing those of the high-intensity

pixels. Contrarily, when γ>1, the low-intensity pixels are com-

pressed and the high-intensity pixels are expanded.

In our algorithm, the values ilow_in and ihigh_in are chosen to 15%

and 100% of the maximum intensity value 1, and the desired spec-

trum is set to range 0,1½ �. By setting γ>1, additional expansion

toward higher intensity pixels, allowing for enhancing contrast

between the needle and external background noise. Fig. 2b,c present

the comparison between the original cropped image and the contrast

enhanced image.

2.A.3 | Thresholding process

After process of contrast enhancement, the histogram of the gray

distribution in the ROI is obtained. Based on thresholding α, intensi-

ties IðxÞ∈ 0,1½ � is separated into two disjoint sets: Xn (needle pixels)

and Xb (background pixels).

Xn ¼ x∈X : IðxÞ≥ αf g
Xb ¼X�Xn

�
(2)

where X is a series of pixel coordinate. Threshold α is identified

based on empirical results, because the needle grayscale distribution

of each patient case is different. Through Eq. (2), pixels with inten-

sity larger than α are identified as candidate needle points. Note that

Xn just provides an approximate estimation of the candidate needle

points and contains some false points. A modified RANSAC method

for needle axis identification is described in the following section.

2.B | Needle axis segmentation

2.B.1 | Improved RANSAC algorithm for needle
detection

Assuming that N interrelated data points are contained in a dataset

X. RANSAC algorithm24 randomly samples a subset of size m from X,

F I G . 2 . (a) is the principle of the contrast mapping function, (b) is the original cropped image, and (c) refer to the contrast enhanced image.
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among them m is the minimum data collection for determining the

parameterized model and its value is respond to the complexity of

the geometry model. Once a model is presumed by calculation from

the minimum dataset, entire data points in dataset X are used to

examine the model and then determine the inliers of it. The sampling

process will be repeated until meeting the final evaluation criteria. It

means that the minimum samples required for a smallest subset

without outliers can be screened at least on the given confidence

probability P. Finally, the model with the highest support rate (most

inliers) is the desired model. Supposing that the incorrect outlier

occupancy rate is ɛ, and the probability of choosing an un-contami-

nated m inliers sample point is 1� ɛð Þm. Similarly, k samples are cho-

sen and the probability of contamination of these sample data (at

least one outlier) is ð1�ð1� ɛÞmÞk . Therefore, to make sure that the

probability of confidence is above P, the least number of samples k

must satisfy the following relationship:

k ≥
logð1�PÞ

logð1�ð1� ɛÞmÞ (3)

Through aforementioned step, the time complexity of RANSAC

algorithm is considered to T:

T¼ k∗ðTX þTC∗NÞ (4)

where TX is the time of each random sampling, TC is the average

time of validating the model for each data point; N is total number

of data points in X. In general, TX and TC are considered invariant

for a specific issue, so the time complexity of RANSAC algorithm is

decided by k and N.

From Eq. (3), we can see that k is exponential with ɛ and m.

Under a certain confidence probability, the value of k and N will

heighten with the increasing complexity of the data set and the

model. Meanwhile, the time intricacy T will be increased accordingly.

Hence, the technology of combination of preview model parameters

evaluation and local optimization is proposed to improve the speed

of the algorithm with a high accuracy.

2.B.2 | Preview model parameters evaluation
technology

Assuming that the sample data for pretesting is n and the probability

of existence at least nf inliers is Pt. In other words, at the confidence

probability Pt, the inliers are at least nf for correct model under n

tests. If the number of inliers is less than nf , this model’s parameters

are contaminated by outliers, which no need to participate in the

subsequent verification of all the data. For the correct model param-

eters, the probability of passing the pretesting is:

Pt ¼1� ∑
nf�1

i¼0
Ci
nɛ

ðn�iÞð1�ɛÞi (5)

where Ci
n is a combination of i data selected from sample data n. In

the actual calculation, the maximum nf and the corresponding Pt, that

satisfy the condition are calculated by testing different nf under the

minimal limit of Pt. According to the standard deviation of the error,

the point whether belonging to inliers is determined25 and as shown

in Eq. (6):

point¼ inliers, dj j≤ t¼1:96σ

outliers, otherwise

�
(6)

when n≥ 2m, the error standard deviation σ can be estimated as fol-

lows:

σ¼1:4826 1þ 5
n�m

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medi dij j

p
(7)

where di is the data error shown in Fig. 3, medi dij j is the median of

the absolute value of error.

After pretesting, the correct model might be regarded as wrong

and removed. The probability of choosing an un-contaminated m

inliers sample point is changed to ð1� ɛÞmPt, and then the Eq. (3)

becomes:

k ≥
logð1�PÞ

logð1�ð1� ɛÞmPt
(8)

The impact of the pretesting process on the calculation results is

transferred to the sampling process through the Eq. (8). When set-

ting Pt < 1, the corresponding samples k is more than that used in

general RANSAC algorithm. However, the added model parameters

are very few compared with the model that can be filtered out dur-

ing the pretesting, since most of the model parameters were

affected by outliers.

2.B.3 | Local optimization technique

As the criteria for stopping operation of algorithm are too idealized,

a contaminated model may also get high support (more inliers) and

lead to an incorrect result. The combination of local RANSAC and

PCA is proposed to tackle the accuracy problem. Through pretesting

technology, an initial solution and a consensus set that match can be

F I G . 3 . Diagram illustrating needle and di for the ith point in the
dataset X.
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acquired. The local RANSAC is sampling on this suboptimal inlier

dataset and the new model is also tested on these data points.

Unlike the ordinary RANSAC algorithms, there is no need to mini-

mize the number of samples because sampling is done at inliers. In

general, to reduce the overall computation time, the number of sam-

ples kL in local RANSAC is set between 10 and 20 times.

After using local RANSAC, an optimized model parameters and

dataset of inliers can be obtained. Nevertheless, the parameters are

not the best solution because it is calculated from the smallest sam-

ple subset. Therefore, the PCA is applied to obtaining the desired

model fit by minimizing the error estimation of the consensus data-

set. The optimized approximation of the needle shape will be per-

formed in next experiment section.

2.C | Needle tip localization

Once the needle axis has been identified, the intensities of all pix-

els along the axis are obtained and the endpoint of the needle

can be found as a mutation point by the method of Barva et al.9

An instance of intensity profile along the estimated axis is shown

in Fig. 4. Given the intensity I, the priori estimated probability dis-

tributions of the tool pixel PðNe IÞð Þ and the background pixel

PðBg IÞð Þ are applied to determine the value T, which meet the

relationship PðNe TÞð Þ¼ PðBg TÞð Þ. The estimate distribution of nee-

dle and background pixel is obtained from dataset with known

tool positions.

2.D | Multineedles detection

Note that the RANSAC program can only take one needle at a time.

To extract all the needles in a slice, we have adopted a method of

successive deletion. It refers to labeling all inliers corresponding to

the current optimal model after a modified RANSAC routine and

removing these data from the overall sample, then using the updated

sample dataset for next detection. As the sample data are updated,

the outlier occupancy rate ϵ for current needle must also be chan-

ged:

ɛ¼Nj�nen
Nj

(9)

nen ¼N0∗ð1� ɛnoiseÞ
nneedles

(10)

where nneedles is the total needle number in current slice, ɛnoise is the

noise occupancy rate after image processing, nen refers to the maxi-

mum inliers number of each needles, N0 is the initial count of the

sample dataset and Nj is the points number after j times updating.

The successive deletion method is repeated until there is no subset

in the total data that satisfies the best model conditions. A flowchart

showing the complete needle shape estimation steps is shown in

Fig. 5.

2.E | Experimental methods

Three different experiments including simulation data, physical phan-

tom images, and case images of lung interstitial brachytherapy were

applied to test the performance of proposed approach. For simula-

tion data and phantom data, the ground truths of the needle param-

eters were obtained through theoretical calculations. For the case

data, since the actual needles information cannot be obtained, the

manual segmentation results were used as the ground truths. The

needle parameters obtained by the automatic detection algorithm

would be compared with the ground truths to calculate the angle

deviation β and the needle tip position deviation ξ to measure the

performance of the algorithm.

The angle deviation β refers to the angle between the detected

needle shaft and the actual needle shaft:

β¼ arccos
xsxlþysylj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2s þy2s
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2l þy2l

q (11)

where xs,ysð Þ is the detected needle shaft vector, xl,ylð Þ is the actual

needle shaft vector. The needle tip position deviation ξ refers to the

Euclidean distance on the 2D slice between the detected needle tip

position x2,y2ð Þ and the actual needle tip position x1,y1ð Þ:

ξ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1�x2ð Þ2þ y1�y2ð Þ2

q
(12)

In this study, the confidence probability P was set as 99%, the

sample data n for pre-testing was chosen as 15 and the probability

Pt was set to 80%. According to empirical results, ɛnoise was selected

as 15%. For each experimental data, the detection algorithm was

repeated 15 times for each dataset, the mean and standard deviation

of related data were recorded. All algorithms were implemented in

MATLAB (The MathWorks, Natick, MA) and running on an Intel(R)

Core (TM) i3-2120 3.30GHz computer.

F I G . 4 . An example of needle tip localization. IaxðtÞ represents the
pixel intensity along the tool. A significant drop point is observed in
the spectrum area corresponding to the endpoint. The threshold T is
obtained from training data.
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2.E.1 | Evaluation on simulation data

Datasets with a size of 1500 points were generated by the computer

to test our method. All the inliers came from a given straight line in

each dataset. Moreover, uniformly distributed different proportions of

Gaussian noise varying between 0.1 and 0.8 was added with MATLAB

function “randn” in a certain area. Note that the synthetic data gener-

ated were applied only to verify the feasibility and improvement of

proposed method in the data with multiplicative Gaussian noise.

2.E.2 | Evaluation on physical phantom images

To mimic the needle insertion more closely during clinical surgery, a

3D printing technology based in-laboratory validation phantom was

devised with 20 18-gauge brachyneedles (made in Hakko Co., Ltd,

Nagano, Japan) in known orientations and endpoints. The 115 mm ×

60 mm × 110 mm plate and a matrix of holes was directly formed

through a digital 3D printer (made in Aurora Technology Co., Ltd,

Shenzhen, China with machine error 0.05 mm). In the matrix of

holes, various of insertion angle θ varying from 0° to 60° in 15° step

with different insertion depth h = 40, 60, 80, and 100 mm were

planned to test the robustness of our algorithm (as shown in Fig. 6).

The validation experiment was carried out at The Second Hospital of

Tianjin Medical University, 15 CT image slices of the phantom were

obtained from a spiral CT system (GE LightSpeed RT) with the

parameters were set to 100 kV and 150 mA. The size of the physical

phantom image was 512 × 512 × Z, where Z ranged from 4 to 12

slices with a voxel resolution of 0.70 × 0.70 × 5 mm3.

2.E.3 | Evaluation on in vivo experiment

Fourteen patient CT images of lung cancer brachytherapy were also

used in our experiments. All the patients were recruited from the

Second Hospital of Tianjin Medical University. Moreover, details of

the needle provided by medical physicist are presented in Table 1.

3 | RESULTS

3.A | Results on simulation data

The results of simulation data between the proposed RANSAC (P-

RANSAC) and the general RANSAC (G-RANSAC) are shown in Fig. 7.

F I G . 5 . Flowchart summary of the complete needle shape estimation procedure.
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It can be seen from Fig. 7b that the calculation time with G-RAN-

SAC is exponentially proportional to ϵ while slightly efficient decline

occurs in P-RANSAC with increasing error rate. When ϵ reaches

80%, the calculation consumption of P-RANSAC is 0.287 s compared

to the 0.553 s for the G-RANSAC, which saved 48% of the segmen-

tation time. From Fig. 7c we can find that the errors of G-RANSAC

appear to be larger at high outlier ratio and in general, decrease with

decreasing outlier ratio. It is apparent that the maximum angular

deviation β is 0.518° with ϵ = 0.6 and the minimum β is 0.267° with

ϵ = 0.1 for G-RANSAC. As the proposed segmentation method, the

angular deviation is controlled within 0.310° and no big fluctuation

happened with different error rate.

3.B | Results on physical phantom

For each needle insertion distance h investigated, the observed vari-

ation of β and ξ with different insertion angulation θ is plotted in

Fig. 8. The segmentation error of needle axis and needle tip is smal-

ler at deeper insertion distances, and it increases with decreasing

insertion distances. Since more available candidate points of the nee-

dle can be obtained with deeper needle depth, leading to more accu-

rate needle shaft determination. Quantitative results also reveal that

β and ξ are both insensitive to θ, and vary slightly with increasing

insertion angulations. Under the different insertion angulations of

the same insertion distances, the maximum variation of β and ξ is

F I G . 6 . The physical phantom containing
20 needles in a CT environment. θ and h
represent the insertion angle and insertion
depth, respectively.

TAB L E 1 Report of evaluation of accuracy at CT-guided lung brachytherapy images of 14 patients.

case
Nb of needles
implanted

Nb of needles
picked

�h
(mm)

Position deviation
(mm)

Angular deviation
(°)

DR
(%)

Segment time
per needle
(s)�ξ Δξ �β Δβ

1 15 14 40.679 0.670 0.202 0.940 0.657 93.33 0.215

2 10 10 76.023 0.615 0.133 1.189 0.196 100 0.293

3 14 13 68.694 0.599 0.180 1.104 0.419 92.86 0.248

4 11 10 35.621 0.757 0.218 1.324 0.390 90.91 0.225

5 14 13 85.249 0.586 0.194 0.887 0.529 92.86 0.238

6 12 12 55.723 0.708 0.119 1.156 0.488 100 0.231

7 15 14 74.861 0.594 0.216 0.911 0.518 93.33 0.206

8 12 12 64.173 0.662 0.175 1.058 0.279 100 0.241

9 13 12 48.640 0.752 0.163 1.243 0.562 92.31 0.229

10 14 13 55.872 0.809 0.107 1.257 0.518 92.86 0.234

11 11 11 63.459 0.713 0.118 1.339 0.382 100 0.217

12 12 11 59.814 0.657 0.142 0.983 0.670 91.67 0.253

13 14 13 50.351 0.699 0.174 1.167 0.348 92.86 0.244

14 16 14 75.128 0.571 0.127 0.952 0.269 87.50 0.261

�h refers to the mean insertion distance of each case. �ξ and Δξ represent the mean value and standard deviation in needle tip position error, respectively.
�β and Δβ represent the mean value and standard deviation in needle shaft error, respectively. DR corresponding to the detection rate.
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0.273° and 0.179 mm, respectively. At the deepest insertion distance

investigated (100 mm), the minimum error of automatically seg-

mented needle shafts and endpoint positions from their counterparts

of manually segmented is 0.674° (mean) and 0.390 mm (mean),

respectively. At the smallest insertion distance investigated (40 mm),

the errors increase to about β = 1.309°and ξ = 0.775 mm. All the

needles used in physical phantom experiments are accurately identi-

fied and the mean time is 0.192 s per needle.

3.C | Results on in vivo experiments

Fig. 9 illustrates an instance of the detection results for a set of CT

lung brachytherapy image with our method. From Table 1, it can be

found that the maximum angular deviation is 1.243 � 0.562° and

maximum tip location error is 0.757 � 0.218 mm in all identified

needles. Comparing with the previous experimental data, the error

of needle configuration in patient data becomes larger. This is mainly

because the mistake is not only derived from the segmentation algo-

rithm but also from the medical physicist.

Additionally, the segmentation efficiency of the algorithm is also

calculated, with an average of time consumption 0.238 s per nee-

dle. In addition, a total of 163 needles were implanted while 152

needles are successfully picked, resulting in a 93.25% picking rate.

The primary factors of the failure in detecting needle are also dis-

creetly analyzed. There are two aspects: (1) Strong interference

from the background objects (ribs etc.) and needle artifact. (2) Only

a small portion of needle was inserted into the tumor, which lead-

ing to limited candidate needle points can be used to needle detec-

tion algorithm. This situation often occurs in the edge of the target

organ.

F I G . 7 . (a) The segmentation results based on P-RANSAC and G-RANSAC. (b) Segmentation efficiency and (c) the angular deviation β

between the algorithm and given needle vectors from P-RANSAC and G-RANSAC: effect of outlier ratio ϵ.
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4 | DISCUSSION

An automatic and efficient approach to accomplish implanted needle

configuration segmentation has been described in this paper. The

pretesting, local optimization, and successive deletion technique are

the main idea applied in modified RANSAC routine. The experimen-

tal results demonstrate that proposed algorithm is feasible in simula-

tion data with a series of points, in physical phantom with a uniform

background and in patient’s slices with complex as well as nonuni-

form background noise.

In simulation results, preview model parameters evaluation tech-

nology speeds up the segmentation process by prescreening the

model with fewer points and the acceleration process is especially

noticeable when the percentage of outlier is high. This shortening of

time is noticeable for picking up multiple needles in one time.

Because the other needle inliers are also belong to noise for current

F I G . 8 . Segmentation accuracy with (a) the angular deviation β between the algorithm and manually segmented needle vectors and (b) the
position deviation of needle tip ξ derived from the proposed algorithm, respectively: effect of needle insertion angulations θ and insertion
distance h.

F I G . 9 . Example of needle segmentation
result in a set of transverse CT images
obtained during lung interstitial
brachytherapy. The red line are the
detected needle axes, and the green dots
are the detected needle tips.

ZHENG ET AL. | 129



model in the first few needles extraction. In other words, the outlier

ratio is higher in algorithm early period.

In our physical phantom experiment, the influence of different

insertion angles and insertion distances on the performance of

detection method are analyzed. It can be seen that the difference in

accuracy of needle axis and endpoint segmentation is mainly caused

by target amount of information, which depends on the insertion

depth. Despite aforementioned factor, the algorithm we proposed

still has higher accuracy and better robustness, since the error in

determining the needle tip is less than 0.78 mm and the needle ori-

entation is less than 1.35°. Comparing with previous related study in

needle orientation, the experimental result illustrates more competi-

tive than 2.3° (Cool’s method).26 Moreover, for the error of needle

tip, the evaluation value is smaller than 0.8 mm (Ding’s algorithm)16

and 1.43 mm (Qiu’s algorithm).27

For the actual brachytherapy images, the needle tip location and

orientation error are controlled within 1 mm and 2° for most cases.

The submillimeter accuracy is sufficient for intended brachytherapy

clinical practice. Meanwhile, the whole failure rate is 6.75%, which is

completely reasonable for a random iterative algorithm (RANSAC),

and this value is more competitive than 33% (Uhercı́k’s result)19 and

16% (Qiu’s result).27 As for the segmentation efficient, the average

processing cost by our approach is 0.238 s per needle. It is much

shorter than other algorithms, the mean time in reference 11 is

7.3 s, 26 is 3-5 s, and 19 is 0.64 s. This time consumption is per-

fectly acceptable compared to a surgery with few hours. In addition,

based on our knowledge, the application of needle detection based

on CT images for brachytherapy has not yet been reported.

It is important for the best therapeutic effect in lung brachyther-

apy to realize intraoperative dose replanning before seeds implanted

into pathological tissue. In this paper, a CT image-based quick and

accurate needle reconstruction technology has been described,

which provides a new idea for dose correction. Once identified all

needles, the original plan (all the seeds) can be imported based on

the correspondence between preoperative and intraoperative needle,

and then ameliorate dose distribution by adjusting primary seeds

position as well as adding extra needles and seeds. On the other

hand, an image measurement tool in auto-determining the needle tip

position and needle orientation is available for medical physicist. If

obvious positioning mistakes are detected, the remedy like withdraw

or reinsert the needle will be considered. In addition, the proposed

method provides the flexibility to segment other parametric objects

through redefining the model function and corresponding error term.

Although our algorithm can detect multiple needles precisely at

once, there are still some failures. Thus, to guarantee a robust seg-

mentation, an advanced initialization (preimage processing) is desired

in our application. It is important to note that the needle deforma-

tion in Z direction was not considered in this article. There are a few

reasons for current lung brachytherapy: from one perspective, the

needle insertion depth will be decreased as much as possible by

adjusting the patient position in surgery to increase the control of

needle. From another perspective, changing the bevel orientation of

the needle tip during needle insertion contributes to diminishing the

deformation problem. Through these intraoperative methods, the

deviation of needle position in Z direction is much less than the

deviation in X and Y direction. In our future work, the possibility of

combining with the coronal or sagittal slice will be considered to fur-

ther tackle this problem and achieve a 3D parametric representation

of the needle shape.

5 | CONCLUSION

An improved RANSAC algorithm has been presented in this paper

for CT image-based needle segmentation. Preview model parameters

evaluation, local optimization combining local RANSAC and PCA, and

successive inlier deletion are the key technologies applied in this

method, which were tested in simulation data, physical phantom,

and brachytherapy case. Meanwhile, the promising experimental

results with short calculation consumption and higher accuracy meet

the requirement of clinical treatment. We expect that, with the

image-based automatic needle placement, a more reliable dose opti-

mization module will be integrated into the brachytherapy treatment

planning system.
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