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Rapid advances in high-throughput sequencing techniques have created interesting computational challenges in bioinformatics.
One of them refers to management of massive amounts of data generated by automatic sequencers. We need to deal with the
persistency of genomic data, particularly storing and analyzing these large-scale processed data. To find an alternative to the
frequently considered relational databasemodel becomes a compelling task. Other datamodelsmay bemore effective when dealing
with a very large amount of nonconventional data, especially for writing and retrieving operations. In this paper, we discuss the
Cassandra NoSQL database approach for storing genomic data. We perform an analysis of persistency and I/O operations with real
data, using the Cassandra database system. We also compare the results obtained with a classical relational database system and
another NoSQL database approach, MongoDB.

1. Introduction

Advanced hardware and software technologies increase the
speed and efficiency with which scientific workflows may be
performed. Scientists may execute a given workflow many
times, comparing results from these executions andproviding
greater accuracy in data analysis. However, handling large
volumes of data produced by distinct program executions
under varied conditions becomes increasingly difficult.These
massive amounts of data must be stored and treated in order
to support current genomic research [1–4]. Therefore, one
of the main problems when working with genomic data
refers to the storage and search of these data, requiring many
computational resources.

In computational environments with large amounts of
possibly unconventional data, NoSQL [5] database systems
have emerged as an alternative to traditional Relational
Database Management Systems (RDBMS). NoSQL systems
are distributed databases built to meet the demands of high
scalability and fault tolerance in themanagement and analysis

of massive amounts of data. NoSQL databases are coded
in many distinct programming languages and are generally
available as open-source software.

The objective of this paper is to study the persistency
of genomic data on a particular and widely used NoSQL
database system, namely, Cassandra [6]. The tests performed
for this study use real genomic data to evaluate insertion
and extraction operations into and from the Cassandra
database. Considering the large amounts of data in current
genome projects, we are particularly concerned with high
performances. We discuss and compare our results with a
relational system (PostgreSQL) and another NoSQL database
system, MongoDB [7].

This paper is organized as follows. Section 2 presents a
brief introduction forNoSQLdatabases and themain features
of Cassandra database system. We discuss some related work
in Section 3 and we present, at Section 4, the architecture
of the database system. Section 5 discusses the practical
results obtained and Section 6 concludes and suggests future
works.
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2. NoSQL Databases: An Overview

Many relevant innovations in data management came from
Web 2.0 applications. However, the techniques and tools
available in relational systems may, sometimes, limit their
deployment. Therefore, some researchers have decided to
develop their own web-scale database solutions [8].

NoSQL (not-only SQL) databases have emerged as a
solution to storage scalability issues, parallelism, and man-
agement of large volumes of unstructured data. In general,
NoSQL systems have the following characteristics [8–10]: (i)
they are based on a nonrelational data model; (ii) they rely
on distributed processing; (iii) high availability and scalability
aremain concerns; and (iv) some are schemaless and have the
ability to handle both structured and unstructured data.

There are fourmain categories of NoSQL databases [8, 11–
13]:

(i) Key-value stores: data is stored as key-pairs values.
These systems are similar to dictionaries, where data
is addressed by a single key. Values are isolated
and independent from another, and relationships are
handled by the application logic.

(ii) Column family database: it defines the data structure
as a predefined set of columns. The super columns
and column family structures can be considered the
database schema.

(iii) Document-based storage: a document store uses the
concept of key-value store. The documents are col-
lections of attributes and values, where an attribute
can be multivalued. Each document contains an ID
key, which is unique within a collection and identifies
document.

(iv) Graph databases: graphs are used to represent
schemas. A graph database works with three abstrac-
tions: node, relationships between nodes, and key-
value pairs that can attach to nodes and relationships.

2.1. Cassandra Database System. Cassandra is a cloud-
oriented database system, massively scalable, designed to
store a large amount of data from multiple servers, while
providing high availability and consistent data [6]. It is based
on the architecture of Amazon’s Dynamo [14] and also on
Google’s BigTable data model [15]. Cassandra enables queries
as in a key-value model, where each row has a unique row
key, a feature adopted fromDynamo [6, 14, 16, 17]. Cassandra
is considered a hybrid NoSQL database, using characteristics
of both key-value and column oriented databases.

Cassandra’s architecture is made of nodes, clusters, data
centers and a partitioner. A node is a physical instance of
Cassandra. Cassandra does not use a master-slave architec-
ture; rather, Cassandra uses peer-to-peer architecture, which
all nodes are equal. A cluster is a group of nodes or even a
single node. A group of clusters is a data center. A partitioner
is a hash function for computing the token of each row key.

When one row is inserted, a token is calculated, based
on its unique row key. This token determines in what node
that particular row will be stored. Each node of a cluster is

responsible for a range of data based on a token. When the
row is inserted and its token is calculated, this row is stored on
a node responsible for this token. The advantage here is that
multiple rows can be written in parallel into the database, as
each node is responsible for its own write requests. However
this may be seen as a drawback regarding data extraction,
becoming a bottleneck. The MurMur3Partitioner [17] is a
partitioner that uses tokens to assign equal portions of data
to each node.This technique was selected because it provides
fast hashing, and its hash function helps to evenly distribute
data to all the nodes of a cluster.

The main elements of Cassandra are keyspaces, column
families, columns, and rows [18]. A keyspace contains the
processing steps of the data replication and is similar to a
schema in a relational database. Typically, a cluster has one
keyspace per application. A column family is a set of key-
value pairs containing a column with its unique row keys. A
column is the smallest increment of data, which contains a
name, a value, and a timestamp. Rows are columns with the
same primary key.

When a write operation occurs, Cassandra immediately
stores the instruction on the Commit log, which goes into the
hard disk (HD). Data from this write operation is stored at
the memtable, which stays in RAM. Only when a predefined
memory limit is reached, this data is written on SSTables that
stay in the HD. Then, the Commit log and the memtable are
cleaned up [18, 19]. In case of failure regarding thememtables,
Cassandra reexecutes the written instructions available at the
Commit log [19, 20].

When an extract instruction is executed, Cassandra first
searches information inmemtables. A large RAM allows large
amounts of data in memtables and less data in HD, resulting
in quick access to information [16].

3. Storing Genomic Data

Persistency of genomic data is not a recent problem. In 2004,
Bloom and Sharpe [21] described the difficulties of managing
these data. One of the main difficulties was the growing
number of data generated by the queries. The work in Röhm
and Blakeley [22] and Huacarpuma [23] consider relational
databases (SQL Server 2008 and PostgreSQL, resp.) to store
genomic data in FASTQ format.

Bateman and Wood [24] have suggested using NoSQL
databases as a good alternative to persisting genetic data.
However, no practical results are given. Ye and Li [25]
proposed the use of Cassandra as a storage system. They
consider multiple nodes so that there were no gaps in the
consistency of the data. Wang and Tang [26] indicated some
instructions for creating an application to perform data
operations in Cassandra.

Tudorica and Bucur [27] compared some NoSQL
databases to a MySQL relational database using the YCSB
(Yahoo! Cloud Serving Benchmark). They conclude that in
an environment where write operations prevail MySQL has
a significantly higher latency when compared to Cassandra.
Similar results about performance improvements for writing
operations in Cassandra, when compared to MS SQL
Express, were also reported by Li and Manoharan [28].
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Many research works [25–28] present results involving
the performance of a Cassandra database system for massive
data volumes. In this paper, we have decided to evaluate the
performance of Cassandra NoSQL database system specifi-
cally for genomic data.

4. Case Study

To validate our case study we have used real data. The
sequences (also called reads) were obtained from liver and
kidney tissue samples of one humanmale from the SRA-NCBI
(http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?), sequenced
by the Illumina Genome Analyzer. It produced 72,987,691
sequences for the kidney samples and 72,126,823 sequences
for the liver samples, each sequence containing 36 bases.
Marioni et al. [29] generated these sequences.

FASTQ file stores sequences of nucleotides and their
corresponding quality values. Three files were obtained from
filtered sequences sampled from kidney cells, and another
three files consisted of filtered genomic sequences sampled
from liver cells. It should be noted that these data were
selected because they were in FASTQ [1] format, which is
commonly used in bioinformatics workflows.

In this case study, we carried out three analyses. In the first
one, we investigated how Cassandra behaves when the com-
putational environment is composed of a cluster with two and
four computers. In the second one, we analyze the behavior of
Cassandra compared to PostgreSQL, a relational database. In
the last case study, we used theMongoDBdocument-oriented
NoSQL database to compare to Cassandra’s results.

4.1. Cloud Environment Architecture. In order to investigate
the expected advantages of Cassandra’s scalability, we have
created two cloud environments: one with two nodes and
the other with four nodes. Cassandra was installed on every
node of the cluster. We have also used OpsCenter 4.0 [30],
a DSE tool that implements a browser-based interface to
remotely manage the cluster configuration and architecture.
The architecture contains a single data center, named DC1. A
single cluster, named BIOCluster, containing the nodes, was
created, working with DC1.

4.2. Java Client. At the software level, we have defined the
following functional requirements: (i) create a keyspace; (ii)
create a table to store a FASTQ file; (iii) create a table with
the names of inserted FASTQ files and their corresponding
metadata; (iv) receive an input file containing data from
a FASTQ file and insert it into a previously created table,
followed by the file name and metadata; (v) extract all data
from a table containing the contents of a FASTQ file; and (vi)
remove the table and the keyspace.

Nonfunctional requirements were also defined: (i) the
use of Java API, provided by DataStax, in order to have a
better integration between theCassandra distribution and the
developed client application; (ii) the use of Cassandra Query
Language (CQL3) [17], for database interactions, which is the
current query language of Cassandra and resembles SQL; (iii)
conversion to JSON files to be used by the client application,

since it is simpler to work with JSON files in Java; and (iv) a
good performance in operations.

With respect to this last requirement, three applications
were developed, two for data conversion and one client
application for Cassandra.

(1) FastqTojson Application converts the FASTQ input
file into smaller JSON files, each JSON file with five
hundred thousand reads.Theobjective is to load these
small JSONfiles because, usually, FASTQfile occupies
a few gigabytes. Furthermore, as it presents a proper
format for the Java client, it does not consume many
computational resources. Each JSON file occupies ten
thousand rows in the database: each row is an array of
ten columns; each field value of the column contains
five reads.

(2) Cassandra client was also developed in Java, using the
JavaAPI provided byDataStax and is the one inwhich
the data persists.This client creates a keyspace, inserts
all JSON files from the first application in a single
table, and extracts the data from a table.
For the database schema, it consists of a single
keyspace, called biodata, a single cluster, called bio-
cluster, one table of metadata and one table for each
file persisting, as shown in Figure 1.
The allocation strategy for replicas and the repli-
cation factor are properties from the keyspace. The
allocation strategy determines whether or not data is
distributed through a network of different clusters.
The Simple Strategy [31] was selected since this case
study was performed in a single cluster. Likewise,
since we did not consider failures and our goal was
to study performance rather than fault recovery, we
have chosen one replication factor. It should be noted
that the replication factor determines the number
of replicas distributed along the cluster. Focusing on
performance, a higher number of replicas would also
interfere on the insertion time.
As previously mentioned, the client application cre-
ates a table for each inserted FASTQ file, which has
the same name of the file. Each of these tables has
eleven columns, and each cell stores a small part
of a JSON file, ten reads per cell, which is about
1MB in size. This small set for columns and cells
is due to the efficiency of Cassandra when a small
number of columns are used and a big number of
rows. This is also a consequence of the ability of
MurMur3Partitioner to distribute each row in one
node. Therefore, the cluster has a better load balance
during insertions and extractions.
Once a table is created, the client inserts all data from
JSON in the first stage on the database, as shown in
Figure 2. In what follows, a single row is inserted into
the metadata table containing as a row key the name
of FASTQ file and a column with the number of rows.
This latter is inserted into the metadata table to solve
the memory limit of the Java Virtual Machine, which
may happen when querying large tables.
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When extracting data, the client queries the metadata
table to get the number of rows on the table with the
FASTQdata and then proceeds to the table extraction,
which is done row by row and written into an “.out”
file.

(3) OutToJso Application. After data extraction, there is
a single file with the extension “.out.” This application
converts this file into a FASTQ format, making it
identical to the original input file, resulting only in the
FASTQ file without temporary file “.out.”This process
is shown in Figure 3.

OutToFastq

Data.out Data.fastq

Cassandra 
client 

Figure 3: Stages of extraction.

5. Results
In this work, we have considered three experimental case
studies to evaluate data consistency and performance for
storing and extracting genomic data. For the first one, we
verified Cassandra’s scalability and variation in performance.
For the second case study, we compared the Cassandra results
to a PostgreSQL relational system and, finally, we used the
MongoDB NoSQL database and compared other results to
Cassandra NoSQL system. The case studies used the same
data to insert and read sequences.

During the Cassandra evaluation, we have created two
clusters. The first one, a Cassandra cluster with two com-
puters, was created, while for the second one, a new cluster
with four computers was created. The first cluster consisted
of two computers with Intel Xeon E3-1220/3.1 GHz processor,
one with 8GB RAM and the other with 6GB RAM. For the
second cluster, besides the same two computers, two other
computers with Intel Core i7 processor and 4GB RAM was
included. Each one of them used Ubuntu 12.04.

5.1. Insertions and Extractions Cassandra NoSQL. The input
files are six FASTQ files with filtered data from kidney and
liver cells. Table 1 shows the sizes of the file and the number
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Table 1: Cells files.

File File number Size Number of lines

Liver cells files
1 9,0GB 850.933
2 4,0GB 358.841
3 3,2 GB 286.563

Kidney cells files
4 6,9GB 648.612
5 3,8GB 335.973
6 5,3 GB 475.210

of rows that their respective JSON file had when inserted into
Cassandra.

We have based the performance analyses on the elapsed
time to store (insert) data into and to retrieve (extract) data
from the database.These elapsed times are important because
if one wants to use the Cassandra system in bioinformatics
workflows, it is necessary to know how long the data becomes
available to execute each program.

Table 2 shows the elapsed times to insert and extract
sequences in the database, with both implementations.
Columns 3 and 5 show the insertions using two nodes.
Similarly, columns 4 and 6 show the extractions using four
nodes. As expected, we could confirm the hypothesis that the
database performance increases when we add more nodes.

Figures 4 and 5 show comparative charts of insertion and
extraction elapsed times according to the number of comput-
ers that Cassandra considers. Insertion into two computers
is longer than using four computers. Here the performance
also improves when the number of computers increases in the
cluster.

5.2. Comparison of Relational and Cassandra NoSQL Systems.
We compared the Cassandra results with Huacarpuma [23]
that used the same data to insert and read sequences in the
PostgreSQL, a relational database. In the latter experiment,
the author used only one server with an Intel Xeon processor,
eight cores of 2.13 GHz and 32GB RAM, executing Linux
Server Ubuntu/Linaro 4.4.4-14.

The server’s RAM for the relational database is larger than
the sum of the memories of the four computers used in this
experiment. Nonetheless, we use the results of the relational
database to demonstrate that it is possible to achieve high
performances even with a modest hardware due to scalability
and parallelism.

Table 3 shows the sum of the insertion and extraction
times in the relational database and the two computational
environments using Cassandra, Cassandra (2), a cluster
with two computers, and Cassandra (4), a cluster with four
computers.

Thewriting time in Cassandra is lower due to parallelism,
as seen in Table 3. Write actions in Cassandra are more effec-
tive than in a relational database. However, its performance
was lower for query answering, as shown in Figure 6. This
is due to two factors: first, Cassandra had to ensure that the
returned content was in its latest version, verifying the data
divided betweenmachines; second, the data size is larger than
the available RAM; therefore, part of the data had to be stored
in SSTable, reducing the speed of the search.
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Figure 4: Comparison between inserts (time × file number).
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Figure 5: Comparison between extractions (time × file number).

The reader should note that the results obtained with
Cassandra just indicate a trend. They are not conclusive
because the hardware characteristics of all experiments are
different.

Nevertheless, the improved performance with the
increase of nodes is an indication that Cassandra may some-
times surpass relational database systems in a larger number
of computers, making its use viable in data searches in
bioinformatics.

5.3. Comparison of MongoDB and Cassandra NoSQL Data-
bases. We compared the Cassandra results to the same data
to insert and read sequences in aMongoDBNoSQL.This is an
open-source document-oriented NoSQL database designed
to store large amounts of data.

The server where we have installed MongoDB is an i7
processor with 16GB RAM.This server has 2GB RAMmore.
The server where we have installedMongoDB had 2GBRAM
more than cluster with two computers, Cassandra (2), and
6GB RAM less than the sum of the RAM memories of four
computers, Cassandra (4).
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Table 2: Times to insert and extract sequences from the database.

File Size Insertion Extraction
Cassandra (2) Cassandra (4) Cassandra (2) Cassandra (4)

1 9,0GB 14m 30 s 645ms 11m 44 s 105ms 23m 37 s 964ms 15m 04 s 158ms
2 4,0GB 6m 10 s 471ms 05m 05 s 710ms 9m 41 s 018ms 7m 34 s 523ms
3 3,2GB 5m 05 s 914ms 4m 51 s 823ms 7m 39 s 188ms 6m 02 s 648ms
4 6,9GB 11m 25 s 899ms 8m 27 s 630ms 14m 25 s 120ms 10m 00 s 031ms
5 3,8GB 6m 09 s 417ms 4m 42 s 386ms 8m 37 s 890ms 6m 05 s 487ms
6 5,3GB 8m 43 s 330ms 8m 05 s 215ms 12m 23 s 855ms 9m 03 s 041ms

Table 3: PostgreSQL and Cassandra results.

Database Insertion Extraction
PostgreSQL 1 h 51m 54 s 28m 27 s
Cassandra (2) 52m 5 s 1 h 16m 25 s
Cassandra (4) 42m 56 s 53m 49 s
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Figure 6: Comparison between Cassandra and PostgreSQL.

Table 4 shows the sum of the insertion and extraction
times in the MongoDB database and the Cassandra with
two and four computers in a cluster. The performances of
insertion operations were similar using either MongoDB or
Cassandra databases. However, the MongoDB showed better
behavior thanCassandraNoSQL in the extraction of genomic
data in FASTQ format.

In Figure 7 our results suggest that there is a similar
behavior of the insertions in both MongoDB and Cassandra.
There was a performance gain of more than 50% in the
extraction, when comparing the results of a Cassandra in
a cluster with two computers and another cluster with four
computers.

6. Conclusions

In this work we studied genomic data persistence, with
the implementation of a NoSQL database using Cassandra.

Table 4: MongoDB and Cassandra final results.

Database Insertion Extraction
MongoDB 45m 17 s 19m 13 s
Cassandra (2) 52m 5 s 1 h 16m 25 s
Cassandra (4) 42m 56 s 53m 49 s
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Figure 7: Comparison between Cassandra andMongoDB database.

We have observed that it presented a high performance
for writing operations due to the larger number of massive
insertions compared to data extractions. We used the DSE
tool together with Cassandra, which allowed us to create a
cluster and a client application suitable for the expected data
manipulation.

Our results suggest that there is a reduction of the
insertion and query times when more nodes are added in
Cassandra.There was a performance gain of about 17% in the
insertions and a gain of 25% in reading, when comparing the
results of a cluster with two computers and another cluster
with four computers.

Comparing the performance of Cassandra to the Mon-
goDB database, the results of MongoDB indicate that the
extraction of theMongoDB is better thanCassandra. For data
insertions the behaviors of Cassandra and MongoDB were
similar.

From the results presented here, it is possible to outline
new approaches in studies of persistency regarding genomic
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data. Positive results could boost new research, for example,
the creation of a similar application using other NoSQL
databases or new tests using Cassandra with different hard-
ware configurations seeking improvements in performance.
It is also possible to create a relational database with hardware
settings identical to Cassandra, in order to make more
detailed comparisons.
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