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Objective: Osteoporosis is associated with an impaired balance between bone
resorption and formation, which in turn leads to bone loss and fractures. Many recent
studies have underlined the regulatory role of microRNAs (miRNAs) in bone remodeling
processes and their potential as biomarkers of osteoporosis. The purpose of this study
was to prospectively examine the association of circulating miRNAs and bone biomarkers
with estrogen status in women before and after oophorectomy, as well as in
oophorectomized women on estrogen therapy.

Methods: In this prospective study, we included 11 women before oophorectomy and
hysterectomy and at 201 ± 24 days after the surgery. Another 11 women were evaluated
508 ± 127 days after oophorectomy and hysterectomy and after an additional 203 ± 71
days of estradiol treatment. Serum miRNAs were profiled by sequencing. Estrogen status
and biomarkers of bone metabolism were quantified. Bone mineral density was assessed
in the lumbar spine.

Results: Our analysis revealed 17 miRNAs associated with estrogen levels. Of those
miRNAs that were upregulated with estrogen deficiency and downregulated after
estrogen therapy, miR-422a correlated with serum beta-carboxy-terminal type I
collagen crosslinks (b-CTX) and procollagen 1 N-terminal propeptide (P1NP); and miR-
1278 correlated with serum b-CTX, P1NP, osteocalcin, sclerostin, and Dickkopf-1(Dkk1).
In contrast, we found an inverse association of miR-24-1-5p with estrogen status and a
negative correlation with serum b-CTX, P1NP, osteoprotegerin, and sclerostin levels.

Conclusion: The reported miRNAs associated with estrogen status and bone
metabolism could be potential biomarkers of bone pathophysiology and would facilitate
studies on the prevention of postmenopausal osteoporosis. Our findings require validation
in an extended cohort.
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INTRODUCTION

Osteoporosis is a skeletal disease characterized by low bone mass
and microarchitectural deterioration, which are related to
unbalanced bone resorption and bone formation (1), leading to
bone fragility and susceptibility to fracture (2). The consequences
of osteoporosis substantially increase the consumption of
medical and economic resources worldwide (3). Until now,
many expression profiling studies have revealed that bone
remodeling processes are well-tuned at the transcriptional level
and controlled by noncoding RNAs, especially long non-coding
RNAs and microRNAs (miRNAs) (4–6).

MiRNAs are short RNAs of typically 18-22 nucleotides that
operate as post-transcriptional regulators of protein-coding
genes and the non-coding genome (7). They regulate many
developmental and functional pathways, and their aberrant
expression has been associated with various disorders (8),
including osteoporosis (7, 9). In particular, several miRNAs
with distinguishable expression profiles have been identified in
bone samples from patients with osteoporosis and those with low
impact fractures in most studies (10–15). Generally, during the
bone remodeling process, miRNAs regulate differentiation of
osteoblast and osteoclast and bone formation by targeting the
regulators of osteogenesis or osteoclastogenesis, namely,
transcription factors and signaling pathways (7, 16, 17).
MiRNAs can escape from tissues into the bloodstream and
become circulating miRNAs, providing additional information
related to bone metabolism (7). The existing literature has
mainly assessed the profiles of circulating miRNAs in patients
with established osteoporosis and low-impact fractures. Recent
research has drawn attention to the association of circulating
miRNAs with bone remodeling in menstrual cessation (18). In
the early postmenopausal period, the bone mineral density is not
decreased but the bone resorption rate excessively exceeds new
bone formation, posing a possible osteoporosis risk (19). The
purpose of this study was to prospectively examine the
association of circulating miRNAs and bone biomarkers with
estrogen status in women before and after oophorectomy, as well
as in oophorectomized women on estrogen therapy.
PATIENTS AND METHODS

Patients
Between July 2018 and May 2019, 22 women who had been
consecutively referred for bone status assessment through the
Department of Obstetrics and Gynecology, General University
Hospital in Prague, and had hysterectomy and bilateral
oophorectomy before menopause were included in the present
study. Surgery was indicated for benign gynecological diseases,
including leiomyoma (14), metrorrhagia (3), breast cancer gene
mutation (3), dysplasia of the cervix (1), and benign ovarian cyst
(1). Of these subjects, 11 women were evaluated 18 ± 10 days
before oophorectomy and hysterectomy and 201 ± 24 days after
the surgery. None of these women received hormone therapy
after surgery. The other 11 women who had previously
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undergone oophorectomy and hysterectomy were evaluated at
baseline 508 ± 127 days after the surgery. Hormone treatment
was initiated by their gynecologist. A check-up was performed
after 203 ± 71 days of oral hormonal treatment, corresponding to
1 mg of estradiol per day.

Complete medical histories and dietary questionnaires were
obtained from all subjects. No subject had bone- or calcium-
related metabolic disease or received medications that are known
to affect bone or calciummetabolism. No woman had a history of
alcohol abuse, diabetes mellitus, active neoplastic disease, liver
disease, known endocrine and rheumatologic disease,
immunosuppressive treatment, treatment with corticosteroids,
aromatase inhibitors, anti-osteoporotic drugs, anticonvulsants,
or a history of fragility fractures or had previously received
hormone replacement therapy. Subjects were advised to
maintain their usual physical activity and dietary pattern
throughout the study.

The study was approved by the Institutional Review Board at
the Institute of Rheumatology, Prague, Czech Republic. All
participants signed written informed consent forms to
participate and agreed to DXA and blood tests. All study
procedures were carried out in compliance with the laws and
regulations governing the use of human subjects (Declaration of
Helsinki) (20).

Blood Collection
Venous blood samples were obtained after an overnight fast from
each subject at baseline and follow-up visits for laboratory
analyses. To separate the serum, whole blood was collected
into commercially available collection tubes. After one hour of
clotting, the blood was centrifuged at 2000xg for 20 minutes.
Serum (supernatant) was transferred into a new tube and frozen
at -70°C until further processing.

MiRNA Isolation
MiRNAs were extracted from 200 μL of blood serum using
NucleoSpin miRNA Plasma (Macherey-Nagel) according to the
manufacturer’s protocol. Isolated miRNAs were not quantified
since concentrations were below the detection limits of the
NanoDrop 2000. Follow-up procedures were conducted with
undiluted samples.

Massively Parallel Sequencing
Library Preparation
Libraries for massively parallel sequencing (MPS) were prepared
from 10.5 μL of isolated miRNAs using Kit v3 (Bioo Scientific)
according to the manufacturer’s protocol. Fragments after the
amplification step were analyzed using a Fragment Analyzer
(Advanced Analytical), and fragments of the miRNA library (145
bp) were quantified. Samples were pooled in equal concentrations of
miRNA library fragments, which were isolated using the Pippin
Prep system with 3% agarose (Sage Science) before sequencing. The
isolated fragments were quantified using a Qubit 2.0 fluorometer
(Thermo Fisher Scientific) and were used for sequencing on a
NextSeq 500 (Illumina) according to the manufacturer’s protocol.
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Bioinformatics Analyses
Adaptor sequences in MPS data were identified and removed
with Cutadapt (v2.5) software (21). Only high-quality reads with
a length between 16 and 28 bp after adapter trimming were
retained as potential miRNA reads. The quality of both raw and
processed reads was evaluated using FastQC software (22).

Count-based miRNA expression data were generated by the
Chimira tool (23) from FASTQ files. All sequences were adapter
trimmed and mapped against miRBase v22 (24), allowing up to
two mismatches per sequence. All samples were evaluated for
differential expression using DESeq2 (25). Further analyses were
performed using R/Bioconductor packages. Raw data and
annotated sequences of the small RNA libraries were uploaded
to the GEO database.

DESeq2 computed the normalized miRNA-read count,
dispersion, and base mean (the average of the normalized
count values, divided by the size factors, taken over all
samples). The dispersion can be understood as a squared
coefficient of variation and the mean dispersion value of 26.04
represents the coefficient of variation of 4.49. miRNAs with a
base mean < 10 were indistinguishable from the sampling noise
and were filtered out of the dataset.

Bone Densitometry
The areal bone mineral density (aBMD) of the lumbar spine (LS-
BMD) was evaluated using dual-energy X-ray absorptiometry
(DXA) (GE Healthcare Lunar software version 14.1) and
expressed in grams/cm2 and T-score. The T-score was
calculated using the National Health and Nutrition
Examination Survey (NHANES) of young women as a
reference. Quality control assurance measurements were
performed following the manufacturer’s recommendations.
The short-term in vivo precision error for the lumbar spine
(L1–L4) was 0.7%; the long-term in vivo precision error was
0.31%. Trained examiners with extensive experience conducted
the measurements.

Biochemical Analysis
The concentrations of total serum calcium, phosphate, glucose,
total alkaline phosphatase, g-glutamyltransferase (GGT),
thyroid-stimulating hormone (TSH), 1-84 amino acid
fragment of parathyroid hormone (intact PTH), 25(OH)D,
beta-carboxy-terminal type I collagen crosslinks (b-CTX),
procollagen 1 N-terminal propeptide (P1NP), osteocalcin,
estradiol, and FSH were determined using the Beckman
Coulter AU 680 (Beckman Coulter, USA), Roche cobas e601
(Roche, Switzerland), and Liaison XL (Diasorin, Italy)
analytical systems. The plasma estradiol measuring range was
18.4-11,000 pmol/l with intra- and interassay CV < 12%. The
plasma FSH measuring range was 0.1-200 IU/l with intra- and
interassay CV < 6%. The serum b-CTX measuring range was
0.01-6 μg/l with intra- and interassay CV < 6%. The serum
PINP measuring range was 5-1200 μg/l with intra- and
interassay CV < 6%. The estimated glomerular filtration rate
(eGFR) was calculated (26). Serum sclerostin was assessed
using the Bioactive Sclerostin ELISA (Biomedica, Austria),
Frontiers in Endocrinology | www.frontiersin.org 3
and the measuring range was 10-320 pmol/l with intra- and
interassay CV < 5%. Serum Dickkopf-1 (DKK1) was analyzed
using the DKK-1 ELISA (Biomedica, Austria), and the
measuring range was 10-160 pmol/l with intra- and
interassay CV < 3%. Serum osteoprotegerin was measured
using the Human Osteoprotegerin ELISA (Biovendor, Czech
Republic), and the measuring range was 1.5-60 pmol/l with
intra- and interassay CV < 7%.
Biostatistical Analyses
Characteristics of the population were computed using
SigmaPlot version 14.0, Systat Software, San Jose, CA, USA.
The Kolmogorov–Smirnov test was applied to assess the
normality of the data. Data with a normal distribution are
presented as the mean ± SD, while nonparametric data are
presented as the median and quartiles. The paired t-test was
used to compare biochemical variables, depending on the
normality of the variables. Univariate analysis with Pearson
correlation was used. Statistical significance was defined as a p-
value < 0.05.

DESeq2 algorithm provided a matrix of normalized read
counts, which were analyzed with RStudio software and
relevant packages (27, 28). Since miRNAs had normalized
read count equal to zero in several samples, we employed
glmmTMB R package (28), in which we can specify fixed and
random effects models for the conditional and zero-inflated
components of the model with negative binomial assumption.
Using this R extension, we fitted a GLMM-NB, using the
normalized read count of miRNAs as the outcome variable,
with fixed effects of the level of estrogen (or the biomarker of
bone metabolism) and follicle-stimulating hormone (FSH) as a
confounding variable. We also fitted a random-effects structure,
which includes a random intercept for patient ID. To test
differential miRNA expression between patients with optimal
and low estrogen levels (estrogen status) or the association with
the biomarkers of bone remodelling (adjusted with FSH level
and a random intercept for patient ID), the following model
was used:

log( μij ) = (b0 +   g0j) +   b1(estrogen   status   or   biomarker)

+   b2(FSH) +   ϵij

normalized   read   counts  e  NB(uij, q)

where i - the miRNA; j – patients ID; b – regression coefficient; g
– random parameter; and ϵ – error. The effect of estrogen level
was represented as the incidence rate ratio (IRR), which means
that the number of expected observations on the miRNAs’ count
changes by the value of IRR if the estrogen level changes from
optimal to low. The association of the bone modelling
biomarkers is represented as the slope, which is the change of
normalized read counts if the value of the biomarkers changes
by one unit. The adjusted p-value was calculated using
Benjamini-Hochberg (BH) method (29) and indicated in
Supplementary Tables.
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RESULTS

Demographic and Clinical Characteristics
At baseline, no differences were observed in age, body mass
index (BMI), serum 1-84 amino acid fragment of parathyroid
hormone (intact PTH), creatinine, glucose, thyroid stimulating
hormone (TSH), or creatinine clearance between women
before and after oophorectomy (Groups A and C, Table 1).
At follow-up 201 days after oophorectomy (Group B), lumbar
spine bone mineral density (LS BMD) and serum estradiol
decreased significantly, while serum follicle-stimulating
hormone (FSH), type 1 collagen crosslinked C-telopeptide
(b-CTX), intact amino-terminal propeptide of type I
procollagen (P1NP), alkaline phosphatase, osteocalcin,
sclerostin, calcium, and phosphate significantly increased
compared to values before oophorectomy (Group A). Similar
differences were observed between the variables before
oophorectomy (Group A) and 508 days after oophorectomy
(Group C), except for sclerostin. In women on oral hormonal
therapy for 203 days (from 508 days, Group C, to 711 days
after oophorectomy, Group D), LS-BMD and serum estradiol
increased significantly, while serum FSH, b-CTX, P1NP,
alkaline phosphatase, osteocalcin, sclerostin, osteoprotegerin,
calcium, phosphate, and PTH decreased. Dkk1and OPG serum
levels did not correlate with bone remodeling markers (b-CTX
and P1NP), while levels of b-CTX and P1NP were highly
correlated (Table 2; Figure 1).

Of the 48 sequenced samples, 22 samples were paired up as
having sufficient and low levels of estrogen. The four remaining
samples were additional measurements to four paired samples
and were thus discarded.
Frontiers in Endocrinology | www.frontiersin.org 4
MiRNome Profiling in Patient
Serum – Sequencing Study
Sequencing revealed a median coverage of over 10 million
unprocessed reads per sample, but after trimming and aligning
to miRBase v22, we found that the median was 4.9 million reads
per sample with a balanced distribution (SD = 0.043).

After alignment, we found 1305 unique miRNA sequences.
Since low-read count miRNAs with high dispersion might be
indistinguishable from sampling noise and increase the false-
positive rate, we filtered out all miRNAs with a base mean of > 10
and found 439 miRNAs.

Since patients were paired up, we employed generalized linear
mixed-effects modeling with the negative binomial assumption
(GLMM-NB) and patients as the random effect. The first analysis
focusedonchanges inmiRNAconcentrations in serumwith sufficient
and low levels of estrogen, andwe found17miRNAswithp<0.05and
a difference in fold change of > 50%. To affirm their connection to
osteoporosis, we examined their relationship to lumbar spine BMD,
biomarkers and hormones associated with bone metabolism, and
biomarkers of low-grade inflammation. Significant associations are
given in Table 2 and Tables S1, S2 in detail.

The concentrations of 14 miRNAs showed an inverse
association with changes in estrogen status (Table 2). Serum
concentrations of miR-422a were positively associated with serum
b-CTX and P1NP levels (Figure 2). The amount of miR-1278 was
positively associated with serum b-CTX, P1NP, sclerostin,
osteocalcin, and Dkk1 levels. Increased miR-422a levels were
associated with increased serum b-CTX and P1NP levels (Table 2).

In contrast, the levels of miR-132-5p, miR-24-1-5p, and miR-
619-5p showed a positive association with estrogen status
(Figure 2). Of these, miR-24-1-5p was negatively associated
TABLE 1 | Characteristics of 11 untreated women prior to oophorectomy (A) and 201 days after oophorectomy (B) and 11 untreated women 508 days after
oophorectomy (C) and then after 203 days of estradiol treatment (D).

Characteristics A B p C D p
Prior to

oophorectomy
After

oophorectomy
Untreated after
oophorectomy

Treated after
oophorectomy

Age (years) 47.9 (2.5) 48.5 (2.4) <0.001 48.6 (5.1) 49.3 (5.2) <0.001
BMI (kg/m2) 29.7 (26.3 - 34.5) 29.2 (25.5 - 35.3) 0.766 24.3 (20.8 - 31.1) 23.6 (21.0 - 31.2) 0.388
Spine BMD (g/cm2) 1.327 (0.140) 1.266 (0.139) <0.001 1.012 (0.181) 1.048 (0.183) <0.001
bCTX (µg/l) 0.24 (0.18 - 0.36) 0.57 (0.55 - 0.92) <0.001 0.86 (0.54 - 0.99) 0.33 (0.26 - 0.41) <0.001
PINP (µg/l) 39.8 (33.4 - 51.0) 73.2 (59.7 - 109.8) <0.001 104.5 (74.3 - 111.9) 50.7 (42.7 - 60.9) <0.001
Osteokalcin (µg/l) Osteoprotegerin (pmol/l) 17.0 (13.3 - 19.2) 22.4 (20.1 - 27.7) <0.001 32.4 (25.3 - 38.2) 22.2 (19.6 - 27.6) 0.002
Osteoprotegerin (pmol/l) Sclerostin (pmol/l) 5.19 (3.61) 6.34 (1.62) 0.067 5.57 (1.40) 4.79 (1.36) 0.002
Sclerostin (pmol/l) DKK1 111.9 (66.0 - 157.2) 133.1 (112.7-177.5) 0.001 120.3 (111.6 - 134.9) 95.1 (78.5 - 106.9) 0.001
DKK1 (pmol/l) 46.2 (17.8) 56.0 (19.2) 0.012 54.6 (13.5) 46.0 (14.4) 0.014
Phosphate (mmol/l) Calcium 1.06 (0.12) 1.22 (0.14) 0.004 1.31 (0.09) 1.07 (0.11) <0.001
Calcium (mmol/l) 2.42 (0.10) 2.52 (0.16) 0.042 2.47 (0.05) 2.36 (0.09) 0.001
Intact PTH (pmol/l) 25(OH)D 3.12 (1.20) 2.92 (1.54) 0.470 2.38 (0.85) 2.89 (0.86) 0.037
25(OH)D (nmol/l) 46.8 (22.8) 63.2 (17.3) 0.045 71.3 (20.1) 78.5 (14.6) 0.346
Estradiol (pmol/l) 338.5 (188.3) 36.3 (18.2) <0.001 22.3 (5.8) 161.4 (66.3) <0.001
FSH (IU/l) 6.6 (4.2) 86.1 (31.6) <0.001 111.0 (51.8) 65.5 (38.5) <0.001
Glucose (mmol/l) 5.2 (0.5) 5.3 (0.5) 0.739 5.3 (0.4) 5.2 (0.5) 0.098
ALP (µkat/l) 1.22 (0.99 - 1.57) 1.69 (1.54 - 2.8) <0.001 1.45 (1.20 - 1.78) 1.05 (1.01 - 1.34) <0.001
TSH (mIU/l) 2.32 (2.00 - 3.73) 3.13 (1.41 - 4.36) 0.803 2.36 (1.78 - 4.93) 2.18 (1.83 - 3.27) 0.767
eGFR (ml/sec/1.73 m2) 1.60 (0.12) 1.66 (0.22) 0.139 1.57 (0.17) 1.60 (0.20) 0.535
May 2022
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with b-CTX, PINP, osteoprotegerin, and sclerostin levels. The
remaining miRNAs were not associated with any biomarker of
bone metabolism or inflammation. Furthermore, the
associations between miRNA concentrations and lumbar spine
BMD were not significant.

MiRNome Profiling in Patient
Serum – osteomiR®

An association between osteoporosis and circulating miRNA
profiles can be assessed using commercially available kits, such as
osteomiR® (TAmiRNA, Austria). This complete kit includes
materials for miRNA isolation, reverse transcription, and qRT–
PCR with LNA probes. In addition to quality control (QC)
probes, this kit screened ten miRNAs connected to osteoporosis.
However, in most of our samples, these miRNAs were below the
detection limit of qRT–PCR (CT > 30), and the QC probes
indicated low concentrations after isolation. We verified these
results by additional miRNA isolation from serum and
quantification by TaqMan Advanced miRNA assays (Thermo).

All ten miRNAs included in the osteomiR® kit were detected
in our miRNA-Seq analysis, and their relation to estrogen levels
and biomarkers was assessed using GLMM-NB with patients as a
Frontiers in Endocrinology | www.frontiersin.org 5
random effect and FSH as a confounding variable. Nonetheless,
no miRNA was significantly different between samples with
sufficient and low estrogen levels (Table S3), but we found an
association of miR-375 with b-CTX and P1NP (Table S4).

DISCUSSION
In this study, we screened the profile of circulating miRNAs in
women before and after oophorectomy, as well as in
oophorectomized women on estrogen therapy. We identified
17 miRNAs, which were different in sera with either sufficient or
low estrogen levels. Of the 14 miRNAs upregulated after
oophorectomy and downregulated with estrogen therapy, miR-
1278, miR-24-1-5p, and miR-422awere associated with
biomarkers of bone metabolism, suggesting their role in the
pathogenesis of osteoporosis (11, 30–33).

The expression of miR-422a was previously detected in
monocytes and was considered a potential biomarker for
postmenopausal osteoporosis (34). We observed a decrease in
miR-422a levels after estradiol treatment, and a positive
correlation of miR-422a levels with b-CTX and PINP but not
with sclerostin levels. These findings support the role of miR-
TABLE 2 | Association of changes in 17 miRNAs with disparate concentrations between sufficient and low estrogen levels in serum with biomarkers in 11 untreated
women before oophorectomy and 201 days after, and in 11 women initially untreated for 508 days and then treated with estradiol for 203 days.

miRNA Estradiol bCTX PINP Sclerostin Dkk1 Osteoprotegrin

miR-195-5p 2.12 0.22 0.00 0.00 0.00 -0.06
0.048 0.759 0.370 0.502 0.832 0.381

miR-196a-5p 162.96 2.54 0.01 0.02 0.07 0.25
0.008 0.390 0.549 0.482 0.001 0.605

miR-200a-3p 4.92 1.78 0.01 0.00 0.03 -0.01
0.028 0.350 0.665 0.852 0.114 0.929

miR-424-3p 3.41 1.68 0.01 0.00 -0.01 0.00
0.050 0.138 0.133 0.596 0.746 0.972

miR-505-5p 1262.52 7.67 0.02 -0.06 -0.01 0.11
0.033 0.095 0.402 0.167 0.889 0.756

miR-550a-3-5p 225659839.00 -6.19 -0.03 0.02 -0.19 -2.75
0.002 0.674 0.725 0.782 0.352 0.226

miR-3120-3p 12.03 1.88 0.02 0.00 0.02 0.24
0.032 0.427 0.191 0.874 0.679 0.441

miR-100-5p 3.19 1.30 0.01 0.00 0.02 -0.04
0.018 0.183 0.094 0.724 0.112 0.733

miR-122-5p 5.23 1.57 0.02 0.00 0.04 -0.12
0.045 0.383 0.136 0.998 0.162 0.616

miR-1278 413.22 11.70 0.04 0.06 0.18 -0.45
<0.001 0.002 <0.001 0.035 0.002 0.176

miR-1304-5p 25.08 5.05 0.04 -0.01 -0.02 -0.34
0.004 0.089 0.168 0.688 0.831 0.147

miR-422a 2.21 1.29 0.01 0.00 -0.01 0.05
0.013 0.015 0.001 0.669 0.501 0.475

miR-566 42.85 3.20 0.01 0.02 0.00 -0.07
0.018 0.246 0.483 0.573 0.940 0.873

let-7d-3p 1.89 1.03 0.01 0.00 0.01 -0.07
0.038 0.053 0.259 0.904 0.307 0.271

miR-132-5p 0.16 -1.91 -0.01 0.00 0.00 -0.15
0.034 0.079 0.322 0.713 0.951 0.177

miR-24-1-5p 0.00 -6.71 -0.05 -0.04 -0.02 -1.11
<0.001 0.006 0.020 0.029 0.766 <0.001

miR-619-5p 0.07 -2.60 -0.01 -0.01 -0.09 -0.10
0.011 0.088 0.141 0.621 0.007 0.511
Ma
y 2022 | Volume 13
Data are presented as the incident rate ratios and p values for estradiol (bold). Data for biomarkers are presented as the slope (b) and p-values.
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422a expression in bone remodeling associated with estrogen
status (35–39).

The linkage of miR-1278 to bone metabolism was not
explored previously, but we found associations of miR-1278
with serum levels of bone remodeling biomarkers (b-CTX,
P1NP, and osteocalcin). In addition, miR-1278 was positively
associated with sclerostin and Dkk1, which are inhibitors of the
Frontiers in Endocrinology | www.frontiersin.org 6
WNT signaling pathway. These associations are in concordance
with previous studies on the association between inhibitors of the
WNT signaling pathway and estrogen status (40–44). The Wnt/
b-catenin pathway activation enhances bone mass not only by
stimulating osteoblastogenesis but, at least to some extent, also
by inhibiting osteoclastogenesis as well (44).

In contrast, estrogen deficiency in our patients was associated
with decreased serum levels of miR-24-1-5p and increased serum
levels of b-CTX, P1NP, and sclerostin compared to those of women
with sufficient estrogen status. Similarly, postmenopausal women
treated with teriparatide had a significant and inverse correlation of
miR-24-3p at 3 months with P1NP at 3 and 12 months and with b-
CTX at 12 months (45). However, Seeliger et al. observed an
upregulated miR-24-3p concentration in sera and bone tissue of
osteoporotic patients (11), while another study did not find any
differences in the relative expression of miR-24-3p between healthy,
osteoporotic, and sarcopenic postmenopausal women (14). The
discrepancy observed among these studies might arise from the
quantification of different isoforms of this miRNA.

In this study, levels of b-CTX and P1NP were highly correlated,
reflecting the coupling of bone resorption and bone formation (46).
The early phase after oophorectomy is characterized by the
prevalence of bone resorption over bone formation; following
initiation of estrogen treatment, a decrease in markers of bone
resorption is later followed by a decrease in markers of bone
formation (47). Compared with women before oophorectomy and
women treated with estrogen, untreated oophorectomized women
showed higher serum b-CTX, PINP, and osteocalcin, but also
higher sclerostin, Dkk1, and OPG, and levels. Our sclerostin data
correspond with a negative correlation of sclerostin levels with the
free estradiol index in postmenopausal women (48), with
significantly higher serum sclerostin levels in postmenopausal
women than premenopausal women (49), and with a decrease in
serum (42, 50) and bone mRNA sclerostin levels (43) after the
administration of estrogen. DKK1 expression in bone was enhanced
after ovariectomy in mice, and DKK1 antisense oligonucleotide
treatment reduced the promoting effect of estrogen deficiency on
DKK1 (51). Postmenopausal women with significantly increased
serum DKK1 had more significant osteoporosis (51).
Osteoprotegerin levels are higher in postmenopausal osteoporotic
women, compared with controls (52), and the inverse relationship
between serum OPG and serum oestradiol levels was demonstrated
in females (53). Serum OPG levels measured after 3 months and 1
year of HT decreased significantly compared to baseline (54).

In this study, while miR-1278, miR-24-1-5p, and miR-422a
correlated with markers of bone remodeling (b-CTX and P1NP),
only miR-1278 and miR-24-1-5p correlated with serum
sclerostin levels. Both in our untreated and treated women,
serum levels of inhibitors of bone formation (sclerostin and
Dkk1), and bone resorption (OPG), were not correlated with
markers of bone remodeling. Interestingly, circulating sclerostin
levels do not decrease in postmenopausal women on
antiresorptive therapy with bisphosphonates (55). Taken
together, in agreement with previous data (49, 54), our results
indicate that changes in serum sclerostin, Dkk1 and OPG levels
may represent a compensatory response of the osteocyte
A

B

C

FIGURE 1 | Correlations of bone remodeling biomarkers – (A) Correlations
between serum bCTX and P1NP in 11 women before oophorectomy, Group
A (•) and untreated after surgery, Group B (o) (solid line), and in 11
oophorectomized women untreated, Group C (D) and treated with estradiol,
Group D (▲). (B) Correlation matrix of selected the bone remodelling
biomarkers in the Group A and B. The matrix included Pearson’s correlation
coefficients and p-value in the bracket below. The color indicates the strength
and direction of the coefficient. (C) Correlation matrix of selected the bone
remodelling biomarkers in the Group C and D. The matrix included Pearson’s
correlation coefficients and p-value in the bracket below. The color indicates
the strength and direction of the coefficient.
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A

B

FIGURE 2 | Selected miRNAs associated with estrogen status and biomarkers of bone metabolism or inflammation. (A) MiRNA concentrations between groups,
with error bars representing 95% confidence intervals and estimated means (filled circles). Samples from the same patient are connected with grey lines. The plots at
the top are visualizations of the 95% confidence intervals with IRR (filled circles), where values > 1 indicate increased concentrations in samples with low estrogen
levels and vice versa. The vertical dashed line indicates IRR equal to 1 (= no difference). p values denoting the statistical significance between the groups are
specified above the slope and were computed using GLMM-NB. (B) The association of selected miRNAs with levels of biomarkers. The violet line is the regression
line computed using GLMM-NB. The plots at the top are visualizations of 95% confidence intervals with the slope (b) (filled circles), where a positive value indicates a
positive association of the miRNA with the biomarker and vice versa. The vertical dashed line indicates a slope equal to 0 (= no difference). p values denoting the
statistical significance of the association are specified above the slope and were computed using GLMM-NB.
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functional activity reflecting acute estrogen deficiency and/or
estrogen replete state, rather than changes in remodeling of bone.

Above all, the amount of miR-200a-3p was elevated in our
patients with low estrogen levels and downregulated in women
with high estrogen. Physiologically, miR-200s are overexpressed
in several clinical conditions related to estrogen status, such as in
the mammary glands during mammary gland development,
pregnancy, and lactation (56), as well as in estrogen-dependent
cancers (57). In humans, miR-200a-3p was associated with
osteoporosis (4), albeit not significantly expressed in patients
with osteoporotic bone fractures (11, 13), whereas our GLMM-
NB analysis did not reveal any pertinence of miR-200a-3p to
lumbar spine BMD or biomarkers. This particular miRNA is
notable due to its substantial increase in our patients with low
estrogen levels and its apparent relevance to osteoporosis.

Our study did not aim to establish an association of miRNAs
with the probability of osteoporosis and low impact fractures. To
assess osteoporosis in our cohort, we used the commercially
available kit osteomiR® (TamiRNA) (58). However, the screening
failed due to an insufficient amount of miRNAs after isolation, and
we speculate that our serum samples contained insufficient levels of
miRNA for qRT–PCR. Fortunately, our well-designed MPS could
detect miRNAs at low concentrations, so we were able to quantify
all miRNAs included in osteomiR®. This underlines the importance
of sample processing and highlights the advantage of MPS.

Although our study is informative, there are several limitations.
First, several lifestyle factors that can influence estrogen levels, such
as nutritional status and exercise, were not addressed. Second, the
miRNAs of interest had zero counts in several samples; however, we
employed a statistical approach, which should resolve this problem.
Third, the cohort of 22 pairs of samples might be insufficient for a
proper statistical analysis, but recruitment of such a uniform cohort
is complicated and time-consuming. Fourth, the duration of our
study was relatively short, as it was an exploratory study. Given the
short duration of the study and the low number of cases, changes in
BMD should be interpreted with caution. Fifth, the ovariectomized
women in this study were treated with 1 mg of estradiol. Bone
remodeling is dose-dependently regulated by estrogen (59, 60).
Estradiol at follicular to periovulatory levels is needed to suppress
a mildly activated immune system responsible for increased
postmenopausal bone resorption (59). However, women in this
study were referred for bone status assessment, and the estrogen
therapy was prescribed by their gynecologists. Sixth, theMPS results
were not validated by qRT–PCR due to the low miRNA
concentration in sera. Seventh, as smoking was reported by only
one woman treated with estrogen after oophorectomy, the effects of
smoking on the liver metabolism of sex hormones were not taken
into consideration in the analyses. Further significant limitations
include seasonal variability, vitamin D status, and the effects of PTH
on osteocytic sclerostin production (61, 62). In our patients treated
with estrogen, no significant correlation was observed between
serum sclerostin, serum vitamin D and PTH. Six out of 11
women before oophorectomy were vitamin D insufficient. They
were supplemented with 800 IU vitamin D. Previously, such a
supplementation did not significantly change sclerostin levels in
women (63). In patients with vitamin D severe deficiency (25-
Frontiers in Endocrinology | www.frontiersin.org 8
hydroxyvitamin D level ≤ 20 ng/mL) receiving a monthly
intramuscular injection of 300,000 IU of cholecalciferol, serum
sclerostin levels decreased (64). In our untreated patients, after
oophorectomy, an increase in serum 25- hydroxyvitamin D was
correlated with the increase in sclerostin levels. Finally, this study is
descriptive, and our results warrant further validation by
additional research.

To our knowledge, this is the first prospective study to
compare the associations between changes in estrogen status
and relative serum levels of circulating miRNAs with BMD and
biomarkers of both bone metabolism in women before and after
ovariectomy as well as in ovariectomized women after estrogen
treatment. The design of this study eliminates the confounding
effects of age on the association between the levels of circulating
miRNAs, estradiol, follicle-stimulating hormone, and bone
variables (65, 66). The present findings corroborate a few
previous studies on the expression of miRNAs during
treatment with anti-osteoporotic agents (45), as well as studies
comparing profiles in postmenopausal osteoporotic and healthy
premenopausal women (66, 67). Although this study reported
substantial changes in several miRNAs (let-7d-3p, miR-1278,
miR-24-1-5p, miR-422a, and miR-619-5p) that regulate
osteoblast and osteoclast differentiation in association with
estrogen status, these results require further research and
validation in an extended cohort.

In summary, of the 14 miRNAs that showed upregulation with
estrogen deficiency and downregulation after estrogen therapy,
miR-422a correlated with serum b-CTX and P1NP and miR-1278
correlated with serum b-CTX, P1NP, osteocalcin, sclerostin, and
Dkk1. Of the 3 miRNAs showing downregulation with estrogen
deficiency and upregulation after estrogen therapy, miR-24-1-5p
showed a negative correlation with serum b-CTX, P1NP,
osteoprotegerin, and sclerostin levels. These miRNAs represent
promising biomarkers in bone pathophysiology in studies on the
prevention of postmenopausal osteoporosis and the mechanism of
antiresorptive therapies. Future prospective studies are required to
validate the potential clinical application of our findings.
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