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Abstract

Short-term synaptic plasticity and modulations of the presynaptic vesicle release rate are

key components of many working memory models. At the same time, an increasing number

of studies suggests a potential role of astrocytes in modulating higher cognitive function

such as WM through their influence on synaptic transmission. Which influence astrocytic

signaling could have on the stability and duration of WM representations, however, is still

unclear. Here, we introduce a slow, activity-dependent astrocytic regulation of the presynap-

tic release probability in a synaptic attractor model of WM. We compare and analyze simula-

tions of a simple WM protocol in firing rate and spiking networks with and without astrocytic

regulation, and underpin our observations with analyses of the phase space dynamics in the

rate network. We find that the duration and stability of working memory representations are

altered by astrocytic signaling and by noise. We show that astrocytic signaling modulates

the mean duration of WM representations. Moreover, if the astrocytic regulation is strong, a

slow presynaptic timescale introduces a ‘window of vulnerability’, during which WM repre-

sentations are easily disruptable by noise before being stabilized. We identify two mecha-

nisms through which noise from different sources in the network can either stabilize or

destabilize WM representations. Our findings suggest that (i) astrocytic regulation can act

as a crucial determinant for the duration of WM representations in synaptic attractor models

of WM, and (ii) that astrocytic signaling could facilitate different mechanisms for volitional

top-down control of WM representations and their duration.

Author summary

The ability to form memories and recall them is one of the fascinating features of our

brain. Working memory operates like a memory scratch pad storing ongoing information

for further processing. Here, we present a computational model dissecting the influence

of astrocytes on the stability and duration of working memories. We find that a long astro-

cytic time constant can influence the mean duration of working memory representations
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and generate a “window of vulnerability”, during which some memories are tagged for

long-term survival while some are terminated. The fraction of memories in the survival

and termination groups could be regulated by adjusting the strength of astrocytic feedback

or its time constant. This indicates that astrocytic signaling can be viewed as a candidate

mechanism for top-down control of working memory representations and their duration.

Introduction

Experimental data and computational models have provided evidence and understanding of a

variety of WM correlates in the brain. These range from persistent delay activity [1–6], sequen-

tial activations of neurons in the WM population [7–9] and oscillatory WM activity [10–13] to

activity-silent synaptic representations [5, 6, 14, 15]. Specifically, synaptic attractor models

have reconciled experimental evidence for persistent and silent WM representations [5, 14, 16]

and are thought to play a crucial role for information storage in between active states of burst-

ing activity in the gamma and beta band [11]. Synaptic attractor models assume that informa-

tion (e.g. about a WM item) is stored in the synaptic states of a neural ensemble—often

through some form of short-term plasticity (STP) [17]. When a (WM) stimulus is presented to

the network, the activity of the neurons causes either synaptic depression [18] or synaptic facil-

itation or augmentation [19], i.e. a temporary reduction or increase in synaptic efficacy,

respectively. This interplay between presynaptic depression and facilitation [5, 6, 20] arises

from the interaction of presynaptic vesicles and calcium dynamics [18, 21]. In contrast to Heb-

bian, associative forms of synaptic STP [22, 23] we consider non-associative models, i.e. in

order to store information about a WM stimulus, synaptic structures to represent the stimulus

in the network already need to exist. The phase space and bifurcation diagram for synaptic

attractor models have been characterized in detail [24–27]. One important property that allows

them to reconcile evidence of persistent and silent WM representations is that they can exhibit

bistability: in certain parameter regimes, a ‘silent’ state (fixed point) of low, asynchronous net-

work activity coexists with an ‘active’ state (limit cycle) of repetitive, synchronized spiking of

the network [5, 26–28].

For sufficiently strong external inputs (or connection strengths within the network), the

transition between the ‘active’ state (limit cycle) and the ‘silent’ state (saddle point) exhibits a

homoclinic bifurcation [26, 27]. Then, within the bistable region, one can observe spontane-

ous, noise-driven transitions between the silent and the active network state if the noise is suf-

ficiently strong to destabilize both the silent and the active state [26, 27]. Alternatively, if the

silent and active states are stable with respect to a given level of noise, an increase (or decrease)

in external inputs can move the network state from a silent to an active (or from an active to a

silent) representation [5]. This scenario is used to model WM by interpreting the short

increase of external input as a WM stimulus that induces persistent delay activity (active net-

work state). The delay activity can be terminated by an external off-signal that switches the net-

work back into the silent state, such as a population-specific inhibitory input [6] or a global

reduction of excitatory input [5]. We also find parameter regimes where the silent state is sta-

ble with respect to noise while the active state is meta-stable, i.e. can be terminated through a

noise-induced, spontaneous transition. In this case, we can switch the system to the active state

by presenting a WM cue, but do not require an off-stimulus to terminate the WM representa-

tion—instead, it will terminate naturally and spontaneously by switching back to the silent

state due to noise. So far, however, it is unclear whether and how this spontaneous termination

of WM can be controlled.
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Over the past decade, an increasing body of evidence has shown that astrocytes influence

and interact with synaptic transmission at the presynaptic and postsynaptic side [29–31]. In

these cases, we also speak of tripartite synapses [32]. Recent studies indicate that up to 80% of

cortical synapses could be modulated in this way [33]. Astrocytic modulation of synaptic trans-

mission can take place on timescales of several seconds [34, 35] to minutes [36, 37]. Since one

astrocyte typically covers between 105 synapses in mice and 2 × 106 in humans [38], astrocytic

modulation is potentially relevant for the coordination of network activity [39] and could

influence high-level neural computations [40]. Here, we investigate how the long timescale of

a specific signaling pathway at the tripartite synapse affects the stability and duration of meta-

stable active WM representations, i.e. active WM representations that are induced by a cue

stimulus but terminate naturally through noise, and explain the network mechanisms underly-

ing the observed phenomena. We (i) develop a minimal tripartite synapse model of slow astro-

cytic modulation of the STP signaling pathway, and (ii) combine it with the synaptic WM

model by Tsodyks [41] and Mongillo et al. [5] that is based on Tsodyks and Markram’s STP

model [18].

At the core of our tripartite synapse model is a recently described signaling pathway (‘LPA-

mechanism’) that relies on the lipid messenger molecule lysophosphatidic acid (LPA), the

astrocytic enzyme autotaxin (ATX), and the postsynaptic plasticity-related gene 1 (PRG1) pro-

tein [42–44]. The PRG1 protein is expressed at the postsynaptic density of glutamatergic syn-

apses [45] in several brain regions, including the hippocampus and the somatosensory cortex

[42–44], implying that PRG1-related signaling could affect tripartite synapses across large

areas of the brain. The LPA-mechanism has been implicated in a shift of the excitation-inhibi-

tion balance towards hyperexcitability [42], altered sensorimotor processing [43] and schizo-

phrenia [44, 46, 47], making it an interesting candidate signaling mechanism for our study of

astrocytic modulation of WM.

We integrate our tripartite synapse model with the WM model by Tsodyks [41] and Mon-

gillo et al. [5] and focus on the dynamical regime in which the silent state is stable and the

active delay activity is metastable, i.e. can be disrupted by noise. Using firing rate and spiking

network simulations of the WM model with and without astrocytic modulation of STP, we

show how astrocytic signaling regulates WM representations and develop a mechanistic expla-

nation of our findings. In particular, we answer the following three questions: (i) What role do

different sources of noise have for the WM encoding, i.e. for the stability of the active WM

representation? Here, we identify two mechanisms by which different sources of noise can

either stabilize or destabilize active WM representations. (ii) How does astrocytic modulation

of presynaptic STP impact the stability and duration of active WM representations? We char-

acterize the distribution of durations of active WM representations, and show that its mean is

continuously modulated via astrocytic regulation of synaptic efficacy. (iii) Finally, what is the

specific role of the slow astrocytic timescale? We show that it allows networks with astrocyte-

modulated STP to produce two qualitatively different distributions of WM durations, depend-

ing on the timecourse of astrocyte-induced stabilization and destabilization of active WM

representations.

Models and methods

STP synapse model

Short-term plasticity (STP) is a key component of activity-silent WM models [5, 6, 14, 16, 48,

49]. Over the past ten years, mounting evidence has shown that STP is affected by astrocytic

signaling via the lipid messenger lysophosphatidic acid (LPA) in the synaptic cleft [42, 43, 47]:

Both the postsynaptic protein PRG1 and the astrocytic enzyme ATX modulate the LPA
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concentration in the synaptic cleft, which affects binding to presynaptic LPA-receptors that in

turn modulate presynaptic vesicle release probability in glutamatergic excitatory synapses [42,

43] (Fig 1A). For instance, PRG1 knockout in mice (PRG1-KO) leads to a decrease of the

paired-pulse-ratio (PPR) compared to wild-type (WT) mice [47] (see Fig B in S1 Text). Build-

ing on the STP framework by Tsodyks et al. [18] and inspired by De Pitta et al.’s model of glio-

modulation [31, 50], we construct a synapse model (Fig 1B) that captures the influence of this

astrocytic signaling mechanism on synaptic STP.

Synaptic STP comprises temporal changes in synaptic efficacy that arise from the compet-

ing effects of neurotransmitter availability and calcium-binding at the presynaptic release sites

[21]. Upon the arrival of a presynaptic spike, calcium binds at the active zones and leads to the

release of neurotransmitters. In between spikes, calcium slowly unbinds and the neurotrans-

mitter vesicles are refilled. When the depletion of neurotransmitters due to incoming spikes

exceeds the rate of replenishment, then this leads to a decrease of neurotransmitter release

upon presynaptic spike arrival (short-term depression). This effect is counteracted by calcium-

binding that increases neurotransmitter release (short-term facilitation). These synaptic

dynamics are captured by two equations (see [18] for the original formulation by Tsodyks and

Markram) that describe the interaction of the presynaptic variables x (amount of available neu-

rotransmitter) and y (presynaptically bound calcium):

dy
dt
¼

U � y
tF
þ U

X

k
ð1 � y�k Þd t � tkð Þ ð1Þ

dx
dt
¼

1 � x
tD
�
X

k
yþk x

�

k d t � tkð Þ: ð2Þ

Here, tk are the arrival times of presynaptic spikes; y�k ¼ yðt�k Þ; x
�
k ¼ xðt�k Þ are evaluated imme-

diately before the k-th spike arrival, and yþk ¼ yðtþk Þ is evaluated immediately after the k-th

spike arrival. We also refer to rðtkÞ ¼ yþk x
�
k as the instantaneous release of synaptic resources

for the k-th presynaptic spike. The relative amount of ready-to-release neurotransmitter vesi-

cles x at the presynaptic active zones varies between 0 (complete depletion of vesicles) and 1

(full vesicle storage). Similarly, the relative amount y of calcium that is bound in the presynap-

tic active zones ranges between 0 (no calcium bound) and 1 (maximum amount of calcium

bound). Neurotransmitter is replenished and calcium unbinds with time constants τD =

200ms and τF = 1500ms, respectively (see Ref. [5], and Table E in S1 Text). The amount of pre-

synaptically bound calcium y increases with each arriving spike, proportionally to the presyn-

aptic calcium binding rate U 2 [0, 1] and saturates at y = 1. The available neurotransmitter

decreases with each transmitted spike tk by the instantaneous release rðtkÞ ¼ yþk x
�
k for that

spike. Upon spike arrival, the synapse transmits a current of

I ¼ J
X

k

yþk x
�

k dðt � tkÞ; ð3Þ

where J is the synaptic efficacy. STP synapses in rate networks are defined analogously (see sec-

tion ‘Firing rate network: model and parameters’ in S1 Text). The major difference is that in

the rate network, we consider the population-average over x and y instead of individual synap-

tic variables. In the rate model equations for y (Eq. 6 in S1 Text) and x (Eq. 7 in S1 Text), we

therefore use the population-averaged firing rate E of the neuronal population instead of the

spike train of δ-spikes as in the spiking model. Another consequence of this population averag-

ing is that the intrinsic noise of spiking networks is averaged out. To simulate the presence of
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Fig 1. Synaptic working memory (WM) with astrocytic signaling: Synapse and network model. A Sketch of the transmission dynamics at tripartite

glutamatergic synapses, as determined by the components of presynaptic STP, and its modulation by the astrocytic enzyme ATX [43] and the

postsynaptic protein PRG1 [42] via lysophosphatidic acid (LPA). Presynaptic STP influences synaptic transmission via glutamate availability (blue) and

calcium-binding (green) at the presynaptic terminal. The astrocytic and postsynaptic components modulate presynaptic calcium-binding rates by

increasing the concentration of LPA in the synaptic cleft, which allows more LPA in the synaptic cleft (orange) to bind to the presynaptic LPA2

receptors. Postsynaptic calcium increases LPA concentrations in the cleft by inhibiting the postsynaptic protein PRG1 (via CaM) that usually takes up

newly synthesized LPA from the cleft. Astrocytic, ATX-mediated synthesis of LPA is amplified in a activity-dependent way, since some of the

synaptically transmitted glutamate binds to astrocytic receptors that increase ATX activity. Implications of elevated calcium-binding due to LPA

signaling for paired-pulse-ratio are shown in Fig B in S1 Text. B Sketch of the synapse model that captures the transmission dynamics shown in (A).

The dynamics of the synaptic variables x (neurotransmitter availability), y (presynaptic calcium binding), and ℓ (presynaptic LPA binding) are

determined by the STP parameters U, τD and τF and the additional astrocytic signaling parameters ΔU (maximal LPA-mediated increase of U), M
(activity-dependent increase of ℓ) and τL (decay timescale of ℓ). The equations of the synapse model (Eqs 1, 2, 4 and 5) and the dynamics of each

variable are described in Models and methods. C Sketch of the spiking network model of synaptic WM (architecture as in Mongillo et al. [5]). The

network consists of two excitatory populations and one global inhibitory population. Each population consists of sparsely and randomly connected LIF

neurons. During the WM protocol, all neurons receive an excitatory baseline input with Gaussian white noise. When the WM cue is presented, the

neurons of the excitatory selective population receive an additional external input Icue. All except excitatory-to-excitatory (E-E) connections have fixed

synaptic weights. All E-E connections underlie either only STP (STP networks) or STP with astrocytic modulation by the LPA-mechanism as sketched

in A and B (STP+LPA spiking network). D Sketch of the rate network model of synaptic WM. The rate network consists of one excitatory population

that is described by a single population firing rate. The recurrent excitatory connections underlie either only STP or STP with astrocytic modulation

(LPA-mechanism) as sketched in A and B. We refer to these networks as STP rate networks and STP+LPA rate networks, respectively. During the

entire WM protocol, the excitatory population receives a constant baseline input current with Gaussian white noise. This input is inhibitory since it

represents the combined effect of global inhibitory and inputs from surrounding (non-selective) excitatory populations. During the cue presentation, it

receives an additional excitatory input current Icue.

https://doi.org/10.1371/journal.pcbi.1010543.g001
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intrinsic noise in the rate network, we therefore introduce Gaussian white noise perturbations

of the synaptic variables x, y and/or the population activity E.

Astrocyte-modulated STP synapse model

As illustrated in Fig 1A, the LPA signaling mechanism influences STP dynamics by modulat-

ing the rate at which presynaptic calcium binds upon spike arrival [42–44]. This effect is medi-

ated by a temporary increase in the concentration of LPA in the synaptic cleft that allows LPA

to bind to its presynaptic LPA2 receptors. Upon LPA binding, the G-protein coupled LPA2

receptors induce slow but persistent calcium transients [51] which increase calcium binding to

presynaptic active zones and, thereby, lead to more glutamate being released in response to a

presynaptic spike. The LPA concentration in the synaptic cleft is modulated by postsynaptic

and astrocytic signaling in an activity-dependent way. When a spike is transmitted, the gluta-

mate released into the synaptic cleft binds to receptors in the astrocyte and postsynaptic termi-

nal [44]. The former boosts the synthesis of new LPA molecules by increasing the activity of

the astrocytic enzyme ATX which synthesizes LPA from its precursor lysophosphatidylcholine

(LPC) [52]. The glutamate that binds to postsynaptic receptors inhibits the activity of the post-

synaptic trans-membrane protein PRG1 via calmodulin (CaM) signaling [53]. PRG1 usually

takes up LPA from the cleft into the postsynaptic cell [42]. Due to the inhibition of PRG1 activ-

ity upon CaM binding, more LPA molecules remain in the cleft and bind to LPA2 receptors in

the presynaptic terminal, where they affect presynaptic calcium dynamics as described above.

The interplay of the LPA synthesis in astrocytes, the inhibition of PRG1-mediated postsynaptic

LPA uptake, and the effects of LPA binding on presynaptic calcium dynamics constitute the

activity-dependent LPA signaling mechanism. In contrast to classic synaptic STP, which

affects synaptic dynamics in the millisecond- to second-range [21], the LPA-mediated effects

of astrocytic signaling in the presynapse occur on longer timescales of several seconds to a

minute [51] (see section ‘Biological evidence for slow LPA timescales’ in S1 Text for details).

Inspired by the approach by De Pitta et al. [31, 50], we integrate the LPA mechanism into

the STP synapse model [18] by adding a variable ℓ that represents the amount of LPA bound

by the presynaptic LPA2 receptors and takes values between 0 (no LPA bound) and 1 (maxi-

mal amount of LPA bound). Its dynamics follow

d‘
dt
¼ �

‘

tL
þMð1 � ‘ÞI: ð4Þ

The increase of ℓ depends linearly on the transmitted synaptic current I defined in Eq 3. M
determines how much ℓ increases with each unit of transmitted current. The gradual unbind-

ing of LPA from the LPA2 receptors is expressed as decay of ℓ with time constant τL� τF, τD.

Bound LPA ℓ increases the presynaptic calcium-binding rate U:

UðtÞ ¼ Ub þ ‘ðtÞDU; ð5Þ

where Ub and ΔU are fixed parameters corresponding to the baseline calcium-binding rate and

the maximal LPA-mediated increase above that baseline, respectively. To stay consistent with

the STP model, where U 2 [0, 1], the choice of the parameter ΔU is limited to the interval

[0, 1 − Ub] for a given baseline calcium-binding rate Ub 2 [0, 1]. Combined with the STP equa-

tions above, Eqs 4 and 5 capture the modulation of presynaptic STP dynamics and the synaptic

release rate by the LPA mechanism. Note that we consider each synapse to be interacting with

an independent astrocytic compartment that does not communicate with astrocytes or astro-

cytic compartments surrounding other synapses, i.e. each synapse in our model operates using

its own astrocytic variable ℓ. Future generalisations of the model could consider spatial
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astrocyte-to-astrocyte interactions [54] as diffusive coupling of astrocytic intracellular IP3 and

calcium concentrations in a lattice of partly overlapping astrocytes, effectively correlating ℓ
variables of different synapses. Astrocyte-modulated STP synapses in rate networks can be

analogously defined by extending the rate formulation of the STP synapse model with an equa-

tion for the population-averaged variable ℓ (see Eqs 9, 10 in section ‘Firing rate network:

model and parameters’ in S1 Text). Fig 1B visualizes the relationship between STP and astro-

cytic variables and parameters as described above.

Network models

We compare two models of synaptic WM: one with and one without astrocytic modulation of

STP. To allow for different methods of analysis, we implement each as a rate and a spiking net-

work model, respectively (Fig 1C and 1D). For the synaptic WM model without astrocytic

modulation, we re-implemented the synaptic attractor spiking and rate model introduced in

the seminal work of Mongillo et. al [5]. In the following, we will refer to them as STP spiking

and STP rate network, respectively. To model the influence of the astrocytic LPA mechanism

on WM, we integrate our STP synapse model with LPA signaling as described in the previous

section (Eqs 1, 2, 4 and 5) in the synaptic STP spiking and rate models by Mongillo et. al [5].

We will refer to them as STP+LPA spiking and rate networks, respectively. See Fig 1C and 1D

for illustrations and detailed description of spiking and rate network architectures. A full

model description is also provided in sections ‘Spiking network: model and parameters’ and

‘Firing rate network: model and parameters’ in S1 Text and in Tables A and C in S1 Text.

Results

LPA signaling modulates synaptic WM durations and introduces bimodal

distribution with short transient and persistent representations

Our hypothesis is that activity-dependent astrocytic modulation of synaptic STP dynamics can

influence WM representations. To test it, we compare the network dynamics arising during

the delay period of the WM protocol in rate and spiking networks without and with astrocytic

signaling (STP and STP+LPA rate and spiking networks, see Models and methods). As we

vary the synaptic or external input parameters, we observe that all four network types exhibit

the same three WM representations (see Fig 2A for a representative example from an STP

+LPA spiking network, equivalent dynamics for other networks are shown in subsequent fig-

ures). After the presentation of the WM cue, the excitatory selective population either (i)

returns to asynchronous firing at the same rate as before the cue (silent regime, [5]), (ii) shows

a finite number of population spikes before returning to pre-cue asynchronous firing (tran-

sient regime), or (iii) enters sustained synchronized population spiking (persistent regime,

[5]), depending on the network parameters. The silent regime (i) corresponds to a stable silent

state (fixed point), whereas the persistent regime (iii) corresponds to a stable active state (limit

cycle). The transient regime corresponds to a meta-stable active state, i.e. an oscillatory state

that is sufficiently unstable to be stochastically terminated by noise, which coexists with a sta-

ble silent state, i.e. a fixed point that is sufficiently stable to prohibit noise-induced reappear-

ance of the meta-stable active state. Additionally, the networks can also exhibit chaotic [28] or

asynchronous activity [55]. Throughout our work, we will focus on the transient WM regime

(center black box in Fig 2A) and its transitions to the silent and persistent WM regime. The

parameter ranges for the different regimes depend on whether astrocytic signaling is present

or not, suggesting that astrocytic modulation could shift a network that is usually in a silent

WM regime to a transient or persistent WM regime or vice versa. Even more importantly,
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however, we can observe a qualitative difference in the termination of transient WM represen-

tations with and without astrocytic modulation (Fig 2B): While the stochastic durations of

transient WM representations in STP networks are typically homogeneously distributed, they

can follow a bimodal distribution in STP+LPA networks. This observation holds for both spik-

ing (Fig 2B) and rate networks (shown in subsequent figures) and confirms our hypothesis

that astrocytic modulation of STP via the LPA-mechanism can affect WM representations. It

also raises the question how this effect arises mechanistically from the network dynamics. As a

first step towards an answer, we need to understand the mechanisms by which the active WM

representation terminates in the transient regime. To this end, we take two steps back and look

at the phase space dynamics of STP rate networks with noise.

Noise can turn activity-silent and persistent firing regimes into transient

WM activity

To identify the network mechanisms by which noise can lead to the stochastic termination of

WM representations, we consider STP rate networks (see Fig 1D) with three different sources

of noise: (i) noise in the amount of presynaptically bound calcium y (Eq. 6 in S1 Text), (ii)

noise in the amount of available neurotransmitter vesicles x (Eq. 7 in S1 Text), and (iii) noise

in the network activity E (Eq. 8 in S1 Text). The assumption of noise in the synaptic variables x
and y is biophysically motivated by the intrinsic stochasticity of the molecular processes by

which calcium binds to the presynaptic active sites and neurotransmitter vesicles are released,

recycled and refilled in biological synapses. The noise in the network activity E reflects the ‘net-

work noise’ that arises in biological (and spiking networks) from the stochastic spike genera-

tion process, distributed synaptic delays and other sources of randomness in the network

interactions.

For simplicity, consider a STP rate network with fixed synaptic parameters τD, τF, and U. Its

bifurcation diagram (Fig 3A, see Refs. [5, 24–28] for an in-depth analysis) shows that the net-

work dynamics traverse the following regimes as the baseline input increases: It first exhibits

(i) a stable fixed point (Ibase< -3.25) with low population activity, then (ii) a bistable regime

(-3.25 < Ibase< -2.5) with a low-activity fixed point (down-state) and a limit cycle (up-state),

where the cue stimulus can switch the system from the down- to the up-state, (iii) a stable limit

Fig 2. Astrocytic signaling leads to differences in synaptic WM termination. A Panels show the firing rate of the excitatory selective population of a representative STP

+LPA spiking network during the WM protocol for three different levels of external baseline input current (remaining network parameters as in Table B in S1 Text). The

network responds to the presentation of the WM cue (grey bar at 10s) with a silent (left, μEτE = 22.95 mV), transient (center, μEτE = 23.165 mV) or persistent (right, μEτE
= 23.4 mV) WM representation. Equivalent WM regimes are observed in STP+LPA rate networks and STP spiking and rate networks (see subsequent figures). B

Distribution of durations of the WM representations in STP and STP+LPA spiking networks in the transient regime for a fixed set of parameters (see subsequent figures).

Even though both networks produce transient WM representations, the duration of the WM representation follows a homogeneous distribution in the STP network, but

a bimodal distribution in the STP+LPA network. The same observations can be made for STP and STP+LPA rate networks (shown in subsequent figures).

https://doi.org/10.1371/journal.pcbi.1010543.g002
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cycle (-2.5< Ibase< -2) and, finally, (iv) a stable, high-activity fixed point (Ibase> -2). When

we add noise to the system, we observe that transient oscillations emerges in two regions of the

phase space: (i) in the region of the stable down-state, and (ii) in the bistability region. Simula-

tions in the phase space of the STP rate network show that these transient oscillations can be

induced by noise in two ways. In the region of the stable down-state, noise transiently ‘stabi-

lizes’ an unstable cycle in the phase space (Fig 3B), while in the bistability region, noise

Fig 3. Noise can turn activity-silent and persistent firing regimes into transient WM activity. A Bifurcation diagram for a STP rate network without LPA signaling.

The grey-shaded area denotes the regime in which a stable limit cycle exists. Presenting a sufficiently strong WM cue to silent networks in the bistable regime evokes

persistent WM activity. B-C Population activity for two rate network simulations in the silent and the persistent regime, with and without noise (of amplitude σy) added

to the synaptic variable y. The grey shaded area denotes the cue stimulus. In the silent regime (E< −3.25), noise can stabilize a ‘ghost’ of a limit cycle [56] (‘stabilizing

noise’). In the regime of persistent limit cycles, noise can disrupt oscillations (‘destabilizing noise’). D-E Typical trajectories of transient limit cycles emerging from

stabilizing (orange line, D) and destabilizing noise effects (magenta line,E) at baseline input levels Ibase = -3.3 (left) and Ibase = -2.9 (right). Black lines show a

representative example of a noise-free trajectory (left) and the limit cycle (right). Remaining rate network parameters: see Table D in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010543.g003
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‘destabilizes’ the existing stable limit cycle (Fig 3C). In the following, we discuss the two mech-

anisms in detail.

To understand how ‘stabilizing’ noise effects can produce transient WM activity (Fig 3B),

we consider a noise-free STP rate network in the stable fixed point regime. Before stimulation

with the WM cue, the network is in a steady state at its low-y, high-x, low-E fixed point. When

the WM cue is presented, a stable limit cycle forms in the phase space. The increased external

input due to the WM cue moves the dynamics of x, y and E into this limit cycle region, where

the trajectory describes one (or several) population spikes until the cue stimulus ends. After

cue offset, the limit cycle looses its stability and the trajectory returns towards its stable low-

rate fixed point. However, in the location of the previously stable limit cycle, an unstable rota-

tional component remains in the phase space (‘ghost’ of the limit cycle, black line in Fig 3D).

While returning to the stable fixed point, the trajectory of x, y and E passes close to this ‘ghost’

of the limit cycle, at the high-y, high-x, low-E state from which the population spikes origi-

nated during cue presentation. Whereas the noise-free system returns to the fixed point from

there, the trajectory is so close to the ‘ghost’ of the limit cycle that, in a system with noise, the

noise can push the network into another cycle, inducing another population spike (orange line

in Fig 3D). Each noise-induced population spike makes the system pass close to the high-y,

high-x, low-E from which a population spike can still originate. This facilitates re-occurring

noise-driven population spikes, even in the absence of a stable limit cycle—the noise ‘stabilizes’

the transient oscillation and thereby leads to a stochastic number of population spikes after the

WM cue stimulus in STP rate networks with noise. For a system without facilitation (i.e. only

E and x variable), small deterministic fluctuations can cause a fast rotation around the ‘ghost’

of the limit cycle [56] and produce a similar meta-stable limit cycle. In contrast to the case we

consider here, however, they are driven by the deterministic dynamics of the network [24–26,

57].

The second way in which the transient WM regime appears in STP rate networks with

noise is through noise-induced destabilization of a limit cycle. This case of transient WM arises

in a parameter regime where the noise-free STP network would exhibit persistent activity, i.e.

a stable limit cycle (Fig 3C). In this case, the network dynamics are governed by two stable

attractors: a low-activity fixed point and a limit cycle (black line in Fig 3E). Sufficiently strong

noise can destabilize the limit cycle (purple line in Fig 3E). The destabilization takes place dur-

ing the low-activity phase of the cycle when the system is close to the separatrix of the two

attractors, i.e. the boundary separating the regions of phase space with fixed point and limit

cycle dynamics.

The impact of stabilizing and destabilizing noise effects depends on the nonlinear dynamics

of the system close to the separatrix (see Figs F—H in S1 Text). For example, the STP rate net-

work dynamics are nonlinear around the separatrix in the sense that positive fluctuations

along the dimension of the fast variable E have very large effects, while negative fluctuations

along E have very small effects. This nonlinear behaviour (also along the y and x dimensions)

is reflected by the length of the flow arrows in the phase plots (Fig J in S1 Text). The nonlinear

dynamics of the network activity E close to the separatrix explain why adding noise to the pop-

ulation activity E tends to stabilize transient WM activity (Fig F in S1 Text). Negative fluctua-

tions along E, which would prevent new population spikes by destabilizing the limit cycle in

the bistability regime, have very small effect on the dynamics trajectory. In contrast, already

small positive fluctuations of E in the fixed point regime can induce a cycle in the phase space

(i.e. a population spike in the network activity), following the ‘ghost’ of the limit cycle (see Fig

J in S1 Text and Refs. [25, 56]). In contrast, adding noise to the synaptic variable y tends to dis-

rupt transient WM activity (Fig H in S1 Text). This is because a noise-induced decrease of y
can push the fast E-x-system to cross the separatrix towards the fixed point and cause a
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subsequent collapse of oscillatory activity (see Fig J in S1 Text). This explains why noise can

have predominantly stabilizing or destabilizing effects pending on the source of the noise, i.e.

whether we assume noise in x, y or E.

Note that here, we only consider regimes in which the noise on any of the three variables is

not strong enough to induce transient population spikes without the prior presentation of the

WM cue. Higher noise levels, which can lead to spontaneous re-appearance of transient WM

representations, could be a promising model of free (i.e. spontaneous, not cued) recall of WM

items. Since we focus on the spontaneous termination of active WM representations, we

exclude the corresponding high-noise regimes for the remainder of this study.

Effects of STP parameters on the mean transient WM duration

In the last section, we have shown how noise can lead to transient WM representations. How-

ever, noise alone does not explain why STP networks with and without LPA signaling show

qualitatively different distributions of transient durations (Fig 2B). In the following sections, we

will shed light on the mechanisms underlying this phenomenon. The influence of LPA signaling

on STP dynamics is mediated by its influence on the calcium binding rate U (Eqs 4 and 5).

Therefore, we begin by investigating how the calcium binding rate U (and other STP parame-

ters) influence the distribution of transient WM durations in STP rate and spiking networks.

Fig 4A and 4G show the distributions of durations of active WM representations for chang-

ing calcium binding rate U in the STP rate network with noise and the STP spiking network,

respectively. As U increases, both rate and spiking networks shift from silent WM representa-

tions (‘zero duration’) to transient WM representations of continuously increasing duration

(Fig 4A and 4G). When the duration of transient representations exceeds the observation win-

dow, we refer to them as persistent WM representations. For each value of U, the distribution

of transient durations is unimodal around its mean, with a longer tail towards higher durations

(insets in Fig 4A and 4G). The mean of the distribution increases continuously with the cal-

cium binding rate U, whereas the shape of the distribution does not change significantly.

Fig 4B, 4C, 4H and 4I show the population activity and synaptic variables during two tran-

sient WM representations with different duration that emerge for the same value of U in the

STP rate and spiking network, respectively. In both cases, the presentation of the WM cue

pushes the system from a low-E, high-x, low-y steady state into a regime where the network

cycles between high and low E values (population spikes). The values of x and y oscillate

around overall lower (for x) and higher (for y) levels than before the cue presentation. After an

initial adaptation period, the values of x and y settle around a stable level, from which noise

stochastically disrupts the cycle by pushing the network dynamics back into the pre-cue low-E,

high-x, low-y regime.

The bifurcation diagram of the the underlying noise-free STP rate network (Fig 4D) shows

that for a sufficiently strong cue stimulus, the transients appear around the bifurcation

between (i) fixed point regime and (ii) bistable region along U (highlighted in grey). In this

parameter region, the cue stimulus is strong enough to induce population spikes. After the cue

offset, noise leads to a long-tailed distribution of transient durations via stabilizing or destabi-

lizing noise effects, as described in the previous section. If the cue stimulus is weak enough,

then the transition is postponed to higher values of U (Fig I in S1 Text). Projecting the trajecto-

ries onto y-x-space (Fig 4E and 4F) shows why the mean of the transient representation

increases continuously. As U is increased, a stable limit cycle emerges, and, subsequently, the

distance of the dynamics trajectory to the separatrix increases. These two effects increase the

stability of the transient oscillation against disruption by noise and thereby lead to longer aver-

age transient representations.
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Fig 4. Transient WM activity is modulated by synaptic dynamics in STP rate and spiking networks without LPA signaling (ΔU = 0). A-F Analysis of the STP

rate model (see Models and methods, Table C in S1 Text; network parameters as in Table D in S1 Text except otherwise specified). A WM durations for 30

simulations at 10 values of Ub. As the phase transition is crossed, the range of durations of transient population activity upon cue stimulation increases

continuously (a hysteresis effect emerges if the cue is weak, see Fig I in S1 Text). Inset: Distribution of transient WM durations of 100 simulations at Ub = 0.17. B-C

Two simulations at Ub = 0.17. The external input current with the cue stimulus is shown in the top panel, population activity in the center and synaptic traces
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Weak LPA signaling implements slow modulation of the mean transient

WM duration via its influence on presynaptic calcium binding

Now we return to rate and spiking networks with LPA signaling. In these networks, the STP

dynamics are influenced by the dynamics of the LPA binding variable ℓ through its impact on

the calcium binding probability U (Eq 5). The ℓ-modulated dynamics of U in the networks

with LPA signaling depend on three parameters: the LPA binding rate M, the (slow) timescale

of the LPA unbinding τL, and the LPA-mediated increase of the presynaptic calcium binding

probability ΔU. First, we consider the impact of the slow astrocytic timescale τL on the distri-

bution of transient durations, for the scenario of weak astrocytic modulation (low ΔU).

Fig 5A and 5D show the distributions of transient WM durations for changing τL and weak

astrocytic signaling effects (low ΔU) in STP+LPA rate networks with noise and STP+LPA spik-

ing networks, respectively. Like in STP networks, the distribution of transient durations is

unimodal with a long tail (Fig 5A and 5D). However, the consistent increase of mean and

median duration with τL is mainly due to an elongation of the tail at high durations instead of

a homogeneous shift of the distribution as a whole, like in STP networks. In networks with

weak LPA signaling, longer transient WM representations therefore come with a higher vari-

ability of the durations. Since increasing τL effectively increases the calcium binding rate U via

the steady-state values of ℓ (Eqs 4 and 5), increasing the value of τL moves the system dynamics

right in the bifurcation diagram, i.e. in the direction where the limit cycle gains stability.

Hence, increasing τL shifts the limit cycle away from the separatrix, such that it becomes less

susceptible to noise disruption—as a result, the distribution of WM durations becomes wider.

The plots of the synaptic dynamics during the transient WM activity (Fig 5B, 5C, 5E and

5F) show that, in the beginning of the transient activity, x and y show similar behavior as in

STP networks—they increase (y) or decrease (x) during cue presentation and stabilize in an

oscillatory state after the cue offset before being disrupted by noise. After the offset of the cue,

ℓ ramps up while the active WM representation persists (Fig 5B, 5C, 5E and 5F). Due to its

dependence on the synaptically transmitted current (xy, see Eq 4) and the slow timescale of its

decay, ℓ ‘integrates’ the population spikes that occur during the WM. However, since the influ-

ence of astrocytic signaling on the synaptic efficacy is small in this case (low ΔU), the ramping

dynamics of ℓ do not significantly influence the dynamics of the presynaptic variables (Fig 5B,

5C, 5E and 5F).

Strong astrocytic signaling introduces bimodal distribution of transient

WM durations and ‘window of vulnerability’ for WM termination

Next, we consider how the baseline calcium binding rate Ub influences transient WM repre-

sentations in a scenario with strong astrocytic modulation (high value of LPA-mediated pre-

synaptic effect ΔU).

(vesicle availability x, Calcium concentration y, and LPA binding ℓ) are shown in the bottom panel. B and C are both in a metastable regime; after 5 and 15 seconds,

respectively, the synchronized population activity that emerges after cue presentation is disrupted and the population activity and the synaptic variables return to

their baseline values. D Bifurcation diagram, showing stable (blue) and unstable (black) fixed points, as well as the maximal and minimal amplitude of stable limit

cycles (red solid line). E-F Analysis of the system before and after the phase transition for Ub = 0.16 and 0.18, respectively. Projections of three trajectories of a

system without noise from initial conditions (x, y) = {(0.3, 0.3), (0.3, 0.4)}, which return to the fixed point, and (for E) the last cycle for a simulation with initial

condition (x, y) = (0.5, 0.5), onto the x-y-plane. At the initial state, E is set to be at the lower equilibrium state (dE/dt = 0) for the given x, y. In F, the limit cycle is

shown in red. G-I Analysis of a STP spiking network model (see Table A in S1 Text). Parameters as in Table B in S1 Text except otherwise specified. G Transient

WM durations for 15 simulations for 6 values of Ub. As Ub increases, the WM cue is first followed by a silent synaptic trace, then by transient and persistent

population spiking. Within a small window of values, U modulates the median duration of the transient, actively spiking WM representation. H-I Two simulations

for Ub = 0.26 with different transient durations. Panels as in B and C but the subplot in the center shows a rasterplot of 50 neurons of the selective population

instead.

https://doi.org/10.1371/journal.pcbi.1010543.g004
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Fig 6A and 6G show the distribution of transient WM durations for changing baseline cal-

cium binding rate Ub and strong astrocytic modulation in STP+LPA rate networks with noise

and STP+LPA spiking networks, respectively. For very low baseline calcium binding rates (Ub

� 0.165), the durations are homogeneously distributed around the mean and similar to the

distribution of transient durations in the STP network (Fig 4A and 4G). As Ub increases, how-

ever, the distribution becomes bimodal with a homogeneously distributed bump at low dura-

tions and a concentrated peak at the maximal observable duration. In this regime, the WM

Fig 5. Weak LPA signaling implements slow modulation of the mean transient WM duration via its influence on presynaptic calcium binding. A-C Analysis of

the STP+LPA rate model (see Models and methods and Table C in S1 Text). Parameters: ΔU = 0.1, M = 0.2, Ub = 0.16, σ = 0.1, remaining parameters: Table D in S1

Text. A WM durations for 15 simulations at each of eight values of τL. Durations of transient activity slowly increase with τL. Inset: Distribution of transient WM

durations of 100 simulations at τL = 10sec. B-C Two simulations at τL = 10sec. Panels as in Fig 4. D-F Analysis of a STP+LPA spiking network model (see Models and

methods, Table A in S1 Text). Parameters: ΔU = 0.1, M = 0.6, Ub = 0.2, remaining parameters: Table B in S1 Text. D Transient WM durations for 100 simulations for

each of 46 values of τL. The time constant of presynaptic LPA unbinding τL regulates the duration of transient active WM representations across a broad range of

biologically realistic values. E-F Two simulations for τL = 38sec with different transient durations. Panels as in B and C but the subplot in the center shows a rasterplot

of 50 neurons of the selective population instead.

https://doi.org/10.1371/journal.pcbi.1010543.g005
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Fig 6. Strong astrocytic signaling introduces bimodal distribution of transient WM durations and ‘window of vulnerability’ for WM termination. A

Analysis of the STP+LPA rate model (see Models and methods, Table C in S1 Text). Parameters: M = 0.4, ΔU = 0.4, τL = 5sec, remaining parameters: Table D in

S1 Text. A WM durations for 30 simulations at each of 10 values of Ub. As the phase transition is crossed, the range of durations of transient population activity

upon cue stimulation increases continuously (a hysteresis effect emerges if the cue is weak, see Fig I in S1 Text). Inset: Distribution of transient WM durations of

100 simulations at Ub = 0.133. B-C Two simulations at Ub = 0.133. Panels as in Fig 4. D Bifurcation diagram, showing stable (blue) and unstable (black) fixed
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representations are either transient but short (< 10 seconds, low-duration bump), or persis-

tent, i.e. not disrupted within the simulation time (high-duration peak). As Ub increases fur-

ther, the low-duration bump maintains its shape and slowly shifts upwards, similar to the STP

case (Fig 4A and 4G). The high-duration peak, on the other hand, grows larger with Ub, until

the two components of the distribution become indistinguishable for very high calcium bind-

ing rates (Ub� 0.18), due to the final observation time. The bifurcation diagram (Fig 6D)

shows that with strong astrocytic modulation, the transient regime appears within the region

where the limit cycle is already stable.

The synaptic dynamics of the underlying noise-free rate network (Fig 6E and 6F) show that

the low-duration bump can be explained by the synaptic dynamics of the slow variable ℓ. In

particular, the slow ramping in combination with the long timescale of ℓ introduces a ‘window

of vulnerability’ at short durations, where transients are more susceptible to disruption by

noise, before gaining stability at longer durations. For the phase space analysis of the synaptic

dynamics, we separate the fast dynamics of population activity E and depression variable x
from the slower variables y and ℓ (see Models and methods) as in the previous section. The tra-

jectories of the slow variables reveal that after the offset of the cue stimulus, y decreases and

starts approaching the separatrix between limit cycle (where y is higher) and fixed point

(where y is lower). In this brief regime of low y values, noise can push the trajectory over the

separatrix into the fixed point region, which results in the termination of the transient WM

activity. Meanwhile, ℓ slowly ramps up due to the repeated population spikes, and causes y to

increase again after the initial low-y regime. This pushes the trajectory of synaptic dynamics

away from the fixed point-region and stabilizes the transient representation. This stabilizing

effect of ℓ is so strong that the WM representations that survive the initial low-y time window

persist until the end of the observation window. We also refer to the low-y phase as ‘window of

vulnerability’ during which noise can disrupt a transient WM representation and after which

the representation stabilizes.

This mechanism is reflected in the traces of the synaptic variables over time (Fig 6B, 6C, 6H

and 6I). Calcium binding y decreases immediately after the offset of the cue, destabilizing the

oscillations. Here, noise can easily disrupt the transient activity (Fig 6B and 6C). Synaptic LPA

ℓ increases gradually after the offset of the cue stimulus (orange traces in Fig 6B, 6C, 6H and

6I) as long as the memory is active, and pushes the calcium binding y back up (after 5 seconds

after cue stimulus in Fig 6C and 6I). This stabilizes the transient WM activity and makes it

more robust against disruption by noise. Figs M—O in S1 Text show that, indeed, y is lower

and x is higher in the two last population spikes before termination of transient WM represen-

tations in the respective spiking networks with astrocytic signaling.

Discussion

We studied the duration of transient WM activity in a network model with and without astro-

cytic modulation of short-term plasticity (STP), and found that astrocytic modulation can

points, as well as the maximal and minimal amplitude of stable limit cycles (red solid line). E-F Direction field of the two slow variables y and ℓ within [0, 0.3] ×
[0.1, 0.8], if a separation of time scales to the faster variables E and x is assumed (see Models and methods for details). The blue and red dot denote the stable fixed

point and stable limit cycle, respectively. The black line is a trajectory for a system without noise with initial condition (y, l) = (0.6, 0). See Fig K in S1 Text for a

comparison of the scale-separated slow variables and the full system for Ub = 0.133. Distribution of transient durations for different noise levels and noise sources

are shown in Figs F-H in S1 Text. Here, σE = 0.05, σx,y = 0. G-I Analysis of a STP+LPA spiking network model (see Table A in S1 Text). Parameters: M = 0.4,

ΔU = 0.25, τL = 9sec, remaining parameters: Table B in S1 Text. G Transient WM durations for 15 simulations for each of 6 values of Ub. As Ub increases, the

WM cue is first followed by a silent synaptic trace, then by transient and persistent population spiking. Within a small window of values, U modulates the median

duration of the transient, actively spiking WM representation. H-I Two simulations for Ub = 0.16 with different transient durations. Panels as in B and C but the

subplot in the center shows a rasterplot of 50 neurons of the selective population instead.

https://doi.org/10.1371/journal.pcbi.1010543.g006
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influence WM duration. Transient WM activity is a finite period of population spiking which

spontaneously terminates and is followed by a silent synaptic trace. Its termination does not

require external stimuli, voluntary reorientation of attention to other WM items, or distractors

[58, 59] and could therefore represent the involuntary ‘forgetting’ of memory items. The astro-

cytic pathway we consider in our model involves the lipid messenger molecule lysophosphati-

dic acid (LPA) [44] and modulates short-term synaptic plasticity (STP) on timescales of

several seconds to a minute [51], introducing a longer timescale to the fast dynamics of STP

[21] (see Fig 1A). Functionally, the signaling pathway could be central for sensory gating [44,

60] and other higher cognitive functions. Our findings shed light on three main aspects: (i) the

role of noise and different noise sources in stabilizing or terminating WM activity; (ii) the

impact of synaptic parameters and astrocytic modulation on the kind of WM representation

that evolves and its stability; and (iii) the effect of the slow astrocytic timescale on the patterns

of WM termination.

We show that noise helps generate transient WM activity at the transition between the silent

and the persistent WM regime and can explain the stochasticity of transient WM durations

around a mean (Fig 2B blue histogram). Importantly, ‘noise’ in the context of our work refers

to the fluctuations of network activity around its mean but does not represent a signal in its

own right. We found two mechanisms through which noise can generate stochastic, transient

WM durations. In the silent regime, where network dynamics are dominated by a stable low-

activity fixed point, sufficiently strong noise can stabilize transient oscillations in the absence

of a stable limit cycle. Similar stabilizing effects of noise in neural network dynamics have been

studied theoretically [24, 25] and have been reported in the context of long-term memory

rehearsal [61] and aperiodic attractors in networks of the olfactory system [62]. In the persis-

tent regime, where the network dynamics exhibit bistability of a low-activity fixed point and a

limit cycle, sufficiently strong noise can terminate WM activity by destabilizing the limit cycle.

Intrinsic noise in biological as well as rate and spiking networks can have multiple sources,

such as noise in the synaptic variables, stochastic spike arrival, and different fixed but random

connectivity. Our analysis of the different noise components suggests that in STP firing rate

networks, adding noise to the population activity E tends to stabilize transient cycles (see Fig F

in S1 Text), whilst noise in the synaptic calcium binding variable y tends to have a disruptive

effect (see Fig H in S1 Text). In our STP spiking networks, we identified connectivity noise

(also: ‘frozen noise’ [63]) as an important source of variability that influences the termination

of population activity during WM delays (Figs P and Q in S1 Text). These differences in con-

nectivity could originate from differing eigenvalue and rank structures of the connectivity

matrix [64, 65] or the prevalence of certain circuit motifs [66]. A detailed analysis of different

circuit motives and the impact of resulting spiking correlations on the WM representations

lies out of the scope of this work but remains an important direction for follow-up research.

Whilst noise is a important element of transient WM termination, we show that the dura-

tion of transient WM representations is highly dependent on presynaptic STP as well as LPA-

mediated postsynaptic and astrocytic modulation of STP dynamics. In rate and spiking STP

networks without LPA signaling, changes in the presynaptic calcium binding rate lead to a

transition between silent (for low calcium binding rate) and persistent (for high calcium bind-

ing rate) via transient WM representations of different durations. The higher the calcium

binding rate, the longer the duration of the transients. Since the astrocytic mechanism acts on

the presynaptic STP dynamics by increasing the presynaptic calcium binding rate, it is a partic-

ularly relevant variable for our study. Similar transitions between WM regimes are also possi-

ble, e.g. due to changes in the timescales of presynaptic facilitation and depression. A phase

space analysis of rate networks with and without astrocytic signaling shows that the influence

of synaptic parameters on the duration of transient WM activity stems from the fact that they
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determine the regime of the underlying noise-free network dynamics, in particular the exis-

tence and stability of a low-activity fixed point (corresponding to baseline network activity)

and a limit cycle (corresponding to an active WM representation). In networks without astro-

cytic signaling, the duration of transient WM representations is directly coupled to the stability

of the limit cycle, which in turn is determined by synaptic parameters that are fixed throughout

the WM protocol. In contrast, in networks with astrocytic signalling, the slow dynamics of pre-

synaptic LPA binding (ℓ) allows for a modulation of the stability of WM activity during the

course of the WM protocol and even while the WM representation is active. Since the amount

of LPA bound to presynaptic receptors increases in response to synaptic transmission, and

since the unbinding from these presynaptic receptors is very slow, the amount of presynapti-

cally bound LPA ramps up slowly during the course of the WM activity until its equilibrium

value is reached or the activity terminates. We can think of LPA as a slow integrator of recent

synaptic activity which, in this case, saves information about the currently active WM

representation.

Via its influence on the presynaptic calcium binding rate, LPA then modulates the stability

of the faster STP dynamics over the course of the WM maintenance. Depending on the

strength of LPA-mediated effects on the presynaptic calcium binding rate (determined by M
or ΔU), this can lead to different effects on the distribution of transient WM durations. Weak

LPA signaling leads to a widening of the distribution of transient durations since LPA stabi-

lizes the WM activity through integration of the synaptic current—an effect that increases with

the timescale of LPA unbinding (τL). Strong LPA signaling, on the other hand, leads to a

bimodal distribution that consists of short transient and stable persistent WM representations.

This effect is due to a ‘window of vulnerability’, during which network dynamics are first

destabilized before they are stabilized by a slow but consistent ramping LPA, and different

from the pure hysteresis effect in networks without astrocytic signaling and for weak cue sti-

muli (see Fig I in S1 Text). Note that the LPA-mediated signaling pathway modelled in this

work is only one of a multitude of neuron-astrocyte and synapse-astrocyte communication

pathways [29, 50]. To which degree other signaling pathways between synapses and astrocytes

have similar or different effects on the network dynamics during WM remains an exciting

topic for future research.

Our findings suggest that the slow timescale of LPA is crucial for its effect as an integrator

(and thereby stabilizer) of recent WM activity. If LPA would unbind from the presynaptic

receptors more quickly, the amount of presynaptic LPA would oscillate with the population

spike and fail to ramp up over time, loosing the delayed, long-term effects on the calcium bind-

ing rate that form the basis of LPA-mediated modulation of transient WM termination in our

model. We can see this effect in the distribution of durations that we obtain for very low LPA

unbinding timescale τL: the distribution can be matched with an analogous distribution in the

STP network without LPA signaling, and neither shows broadening nor bimodality. Whilst

the LPA unbinding timescale has a long-term stabilizing effect on synaptic WM, there are

three reasons why it does not cause the WM dynamics to get stuck. First, even in the case of

strong LPA signaling, the LPA-stabilized persistent WM representations can be terminated by

a single, weak off-stimulus, just like in the case of regular persistent WM representations. Sec-

ond, since the activity-dependent ramping of LPA is similarly slow as the decay of LPA-medi-

ated effects, there is no limitation to follow faster WM protocols. For a fast WM protocol, the

slow effects of LPA signaling would probably be only marginally observable since they start

showing effect only several seconds after the cue offset. Third, even very long or repeated pre-

sentation of a WM stimulus does not affect the WM activity of subsequently presented, very

different WM stimuli (i.e. with no overlap between encoding populations). This is because the

amount of presynaptically bound LPA only ramps up within the stimulus-encoding
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population, and, due to the limitation of LPA binding slots, only increases up to its bounded

equilibrium value. As a result, it does not affect the activity in the remaining network after ter-

mination of WM activity. It is possible, however, that LPA ramping helps stabilize WM activity

of very similar, subsequently presented stimuli or tasks (i.e. with a significant overlap of repre-

sentations). The verification of this hypothesis and the detailed analysis of network behaviour

in a multi-item WM setting with LPA signaling remains to be tested in future work.

Several extensions to our model can be made that lie outside the scope of this study. Impor-

tantly, we currently do not include astrocyte-to-astrocyte interactions in our model. Instead,

we make a ‘mean-field’ assumption regarding the interactions between neurons and astrocytes,

i.e. we assume that the astrocytic modulation of presynaptic STP dynamics happens indepen-

dently in each synapse and in a statistically identical fashion throughout the network. Recent

work by Gordleeva et al. [54] addresses the effects of astrocytic coupling during astrocyte-mod-

ulated WM formation. They model astrocyte-to-astrocyte interactions as diffusive coupling of

astrocytic intracellular IP3 and calcium concentrations in a lattice of partly overlapping astro-

cytes. Similar to presynaptic LPA binding in our model, their astrocytic calcium and IP3

dynamics are dependent on synaptic activity. In contrast to our study, however, they do not

include short-term synaptic plasticity in their model. Another exciting direction for future

research is to apply our model in a multi-item WM setting similar to the settings explored for

synaptic WM with STP [5, 67]. Due to the relatively fast decay of the STP traces, multiple WM

items (each encoded by a separate neuronal subpopulation) are kept in memory by sequential

firing of a single population spike from each population. We can speculate that, for the case of

non-overlapping parallel WM items, the long timescale of astrocytic modulation could allow

each memory to be active for an extended time before the next WM item has to be refreshed in

memory. This intuition is supported by a preprint [68] that studied multi-item WM in a net-

work with astrocytic modulation of STP. In that network, each astrocyte controls one synaptic

ensemble that is involved in encoding a WM item [68]. In contrast to our study, they do not

consider transient WM activity but only persistent and silent WM representations. For the case

of partially overlapping, simultaneously active WM representations, the effect of the slow astro-

cytic modulation is less clear and is subject of future research. In particular, we can hypothesize

that astrocytic signaling could also lead to fusion of overlapping WM representations, depend-

ing on the synaptic and astrocytic parameters. Another interesting topic to be explored in the

future is the question how pathologies related to astrocytic signaling could impact WM (see

section ‘Potential impact of PRG1-associated pathologies on WM’ in S1 Text).

Astrocytic LPA-signaling allows for two possible mechanisms of top-down volitional WM

control (illustrated in Fig 7). First, astrocytes can affect the duration of WM activity after cue

presentation (see Figs 2, 4 and 5). Each astrocyte covers around 105 synapses in mice and

2 × 106 in humans [38], and could therefore affect LPA signaling in this subpopulation of syn-

apses via the modulation of ATX. The second pathway is heterosynaptic: Incoming synaptic

current of neighboring synapses from the thalamocortical loop could lead to a postsynaptic

surge in calcium, thereby temporarily inhibiting PRG1 activity [53]. In consequence, LPA con-

centrations in the synaptic cleft would rise and allow more LPA to bind to its presynaptic

receptors, reflected by an increase of the parameter M. This could lead to a change of the prop-

erties at the synapse, making WM memories more robust to noise. Both mechanisms consti-

tute candidate pathways for the volitional control of WM [12, 69, 70], e.g. from the beta-band

activity of deep layers to superficial layers [69]. A previously proposed type of volitional WM

control through astrocytic modulation of STP suggests that astrocytes could switch the WM

regime from silent into persistent mode [68]. The type of volitional control we propose here is

different: it affects WM more subtly by modulating the duration and stability of active repre-

sentations. Both types address equally important aspects of volitional WM control, and we can

PLOS COMPUTATIONAL BIOLOGY How synaptic and astrocytic mechanisms can modulate working memory durations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010543 October 3, 2022 19 / 25

https://doi.org/10.1371/journal.pcbi.1010543


speculate that neuronal networks in different brain regions would either (i) implement voli-

tional WM control of one or the other type, depending on their neuronal and synaptic archi-

tecture; or (ii) switch between them depending on the level of surrounding global brain

activity.

In practice, the modulation of WM introduced by LPA signaling could have several func-

tions. First, since the variability of WM durations is dependent on LPA parameters in the weak

astrocytic signaling case (Fig 5), our work predicts that the available ‘precision’ of WM dura-

tions could differ across tasks or brain structures—and hence allow for more or less spurious

behavioural regimes. In contrast, for the case of strong astrocytic signaling, we observe a

switch-like behaviour between very short and very long WM durations (filtering) without an

increase in variability. While we show which synaptic/astrocytic and network mechanisms

would be responsible for the spuriousness of WM, our work by itself does not allow to draw

conclusions on which behavioural regime would be used by animals or humans during specific

tasks or in specific brain regions. Second, the ‘window of vulnerability’ that is introduced by

strong LPA signaling effects on presynaptic STP could implement a filtering of WM represen-

tations. During this initial ‘window of vulnerability’, the WM representation is very susceptible

Fig 7. Possible synaptic top-down control of working memory representations via the tripartite synapse. A Deep

cortical layers could drive oscillation in superficial layers, which represent specific working memories [69]. LPA

signaling suggests two possible indirect pathways for such a control mechanism: Incoming activity from deep layers

may contribute to PRG1 inhibition through heterosynaptic effects (left), or astrocytic signaling may increase LPA

synthesis through astrocytic ATX, therefore modulating STP in recurrent connections (right). B Details of the

heterosynaptic and astrocytic signaling pathway shown with magenta arrow and green shaded astrocytic cell,

respectively.

https://doi.org/10.1371/journal.pcbi.1010543.g007
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to disruption by noise, such that WM representations with slightly higher internal noise would

have a high chance to terminate during this period. Such slightly elevated levels of noise could

e.g. arise from the presence of distractors or more salient/attended and therefore stronger

competing WM representations in the same network. We are currently not aware of experi-

mental studies explicitly testing the impact of distractors that are presented at different time

points during the delay period, such that the experimental verification or falsification of this

prediction remains the topic of future research. The WM representations that survive the ini-

tial ‘window of vulnerability’ are then stabilized for a longer time to allow for further cognitive

processing. The filtering implemented by this mechanisms could be relevant for prioritizing

and managing the limited mental capacity to hold WM items. In particular, it opens up the

possibility of competitive processes between ambiguous stimuli, where multiple factors such as

the order of presentation or the salience of a WM item could be important for which WM

representation will be the ‘winning’ one that stays active. In that sense, the ‘window of vulnera-

bility’ could also be interpreted as a ‘window of opportunity’ to resolve ambiguous activity. At

the same time, the filtering due to strong astrocytic signaling could help to save energy by lim-

iting the duration of WM representations that do not require further processing and therefore

do not need to be active for a long time—especially since the slow unbinding of LPA allows

them to be reactivated from their synaptic traces for a much longer time than in the absence of

astrocytic modulation.

To conclude, our model explains how signaling in the tripartite synapse could influence the

network response to a working memory cue. In particular, we show how slow astrocytic signal-

ing can mechanistically implement a ‘window of vulnerability’ that limits the duration of meta-

stable active working memory representations.

Supporting information

S1 Text. Supplementary text, figures and model descriptions. We provide additional com-

putations, numerical simulations and descriptions of the network models and their parametri-

zations.

(PDF)
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