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Spiking Neural Networks (SNNs) are a pathway that could potentially empower

low-power event-driven neuromorphic hardware due to their spatio-temporal information

processing capability and high biological plausibility. Although SNNs are currently more

efficient than artificial neural networks (ANNs), they are not as accurate as ANNs. Error

backpropagation is the most common method for directly training neural networks,

promoting the prosperity of ANNs in various deep learning fields. However, since the

signals transmitted in the SNN are non-differentiable discrete binary spike events, the

activation function in the form of spikes presents difficulties for the gradient-based

optimization algorithms to be directly applied in SNNs, leading to a performance gap

(i.e., accuracy and latency) between SNNs and ANNs. This paper introduces a new

learning algorithm, called SSTDP, which bridges the gap between backpropagation

(BP)-based learning and spike-time-dependent plasticity (STDP)-based learning to train

SNNs efficiently. The scheme incorporates the global optimization process from BP and

the efficient weight update derived from STDP. It not only avoids the non-differentiable

derivation in the BP process but also utilizes the local feature extraction property of STDP.

Consequently, our method can lower the possibility of vanishing spikes in BP training

and reduce the number of time steps to reduce network latency. In SSTDP, we employ

temporal-based coding and use Integrate-and-Fire (IF) neuron as the neuron model to

provide considerable computational benefits. Our experiments show the effectiveness of

the proposed SSTDP learning algorithm on the SNN by achieving the best classification

accuracy 99.3% on the Caltech 101 dataset, 98.1% on the MNIST dataset, and 91.3%

on the CIFAR-10 dataset compared to other SNNs trained with other learning methods.

It also surpasses the best inference accuracy of the directly trained SNN with 25 ∼ 32×

less inference latency. Moreover, we analyze event-based computations to demonstrate

the efficacy of the SNN for inference operation in the spiking domain, and SSTDP

methods can achieve 1.3 ∼ 37.7× fewer addition operations per inference. The code is

available at: https://github.com/MXHX7199/SNN-SSTDP.

Keywords: spiking neural network, gradient descent backpropagation, neuromorphic computing, spike-time-

dependent plasticity, deep learning, efficient training
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1. INTRODUCTION

Deep neural networks have made tremendous progress and
become a prevalent tool for performing various cognitive
tasks such as object recognition (Simonyan and Zisserman,
2015; Sandler et al., 2018), natural language processing (Devlin
et al., 2018; Radford et al., 2019), and self-driving (Nedevschi
et al., 2012; Liu et al., 2017), etc. To leverage the capability
of deep neural networks in ubiquitous environments requires
deployment not only on large-scale computers but also on
portable edge devices (Han and Roy, 2020; Deng et al., 2021).
However, the increasing complexity of deep neural networks,
coupled with data flooding with distributed sensors continuously
generates real-time content and places tremendous energy
demands on current computing platforms. Spiking Neural
Networks (SNNs) are often regarded as third-generation brain-

inspired neural networks, and represent one of the leading
candidates for overcoming computational constraints and

efficiently exploiting deep learning algorithms in real (or mobile)
applications whilst also being highly power-efficient (Deng et al.,
2020; Rathi et al., 2020; Taherkhani et al., 2020).

SNNs consist of spiking neurons that transmit information in

the form of electric event spikes via plastic synapses (Taherkhani
et al., 2020). Event-driven computing capability is the
fundamental characteristic of SNNs, supporting sparse and
irregular input spike train, thereby reducing latency and power
consumption of computation and communication (Lee et al.,
2018). With the development of neuromorphic hardware
supporting the SNN, such as Intel Loihi (Davies et al., 2018)
and IBM TrueNorth (Akopyan et al., 2015), SNNs have gained
increasing attention in both academia and industry. To date,
shallow SNN structures (i.e., two fully connected layers) have
been widely used for classification. However, training high-
performance SNNs with competitive classification accuracy and
less latency is a nontrivial problem, limiting their scalability in
complex applications (Benjamin et al., 2014; Roy et al., 2019;
Sengupta et al., 2019; Comsa et al., 2020; Han et al., 2020; Deng
et al., 2021).

The existing training strategy for SNNs can be broadly divided
into two categories, unsupervised learning and supervised
learning (Roy et al., 2019). Unsupervised learning discovers
the underlying features and structure of input data without
using the corresponding labels. Spike-time-dependent plasticity
(STDP) is a bio-plausible unsupervised learning mechanism
that exploits the temporal difference between pre-and post-
synaptic neuronal spikes to modulate the weights of neural
synapses instantaneously (Pfister and Gerstner, 2006; Diehl
and Cook, 2015; Bellec et al., 2018). It is a simple and fast
training method that reflects the temporal correlations of pre-
and post-synaptic spikes between neighboring (local) layers.
However, the classification accuracy of SNNs trained based on the
unsupervised learning represented by STDP is still lower than the
results presented by state-of-the-art Artificial Neural Networks
(ANNs). When it comes to supervised learning, it extracts
internal features and structure given the training examples and
target labels. The standard backpropagation (BP) is normally
used for achieving state-of-art classification performance in

ANNs by updating the network parameters to minimize the final
output error of the network (He et al., 2016). The corresponding
loss function is defined as the difference between the predicted
output of the network and the expected target output (label).
Meanwhile, the SNNs trained by supervised learning can achieve
much better performance than the unsupervised ones, triggering
recent works to use the BP-based learning algorithm to train
SNNs by input binary spike events. However, training such SNNs
is quite difficult. Since the spiking neurons communicate through
discrete, non-differentiable spike events, which is fundamentally
different from the continuous activations of non-spiking neurons
such as the ReLU function in ANNs, it is impossible to transfer
the BP-based learning mechanism to SNNs directly (Wu et al.,
2021).

There have been some successful attempts to introduce the
BP-based learning mechanisms into SNNs (Lee et al., 2016;
Tavanaei et al., 2019; Zhou et al., 2019; Kheradpisheh et al., 2020;
Fang et al., 2021; Mirsadeghi et al., 2021). The first approach
is the spike-based BP, which treats the membrane potentials
as differentiable activations of spiking neurons and trains the
synaptics of SNNs in a layer-wise fashion (Tavanaei et al.,
2019). The second approach is to use spike rates (frequency)
to substitute the non-differentiable spike events (Liu et al.,
2015). Although these two types of methods are suitable for
gradient descent learning, it requires complicated procedures
for computing the derivative of the loss function in spatial
and temporal domains. The third approach is approximate
methods, which estimate the surrogate gradient of the spike
generation function (Mirsadeghi et al., 2021). However, this kind
of approach incurs the strong assumption in backpropagating the
error through the network using the chain rule. For instance,
recent work proposes S4NN (Kheradpisheh et al., 2020), where
they use a temporal version of the traditional BP-based learning
to train a multi-layer SNN consisting of IF neurons. This method
approximates the derivative of time with respect to the potential
as −1 in the backpropagation process. Meanwhile, none of these
methods take into account the temporal dynamics between pre-
and post-synaptic spike timings and are efficient for hardware
implementation with rate coding.

It is unclear which learning algorithm (i.e., unsupervised
learning algorithm or supervised learning algorithm) is suitable
for training the SNN (Roy et al., 2019; Deng et al., 2020,
2021; Lobo et al., 2020). Both STDP and spike-based BP
learning have been demonstrated they can effectively capture
the hierarchical features in SNN. On the one hand, the spiking
neural networks trained solely on STDP-based methods lack
competitive classification performance. On the other, BP-based
SNN training methods usually lead to unstable convergence,
and a slight variance on the hyper-parameters will have a great
impact on the result. For these reasons, this study proposes
utilizing STDP-based unsupervised learning to encourage the
hidden layer to discover the local features and structures of
the input patterns. In combination with the gradient-based
supervised algorithm, it will guide the optimization in a global
manner. The multi-layer spiking neural network consists of
convolutional layers and pooling layers, followed by successive
fully connected layers. Bio-plausible integrate-and-fire spiking
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FIGURE 1 | An example of BP-based learning and STDP-based learning. (A) Forward and backward propagation of the SNN. (B) If the post-synaptic neuron fires

after the pre-synaptic spike arrives, the synaptic weight between pre- and post-synaptic neuron increases. The magnitude of change increases in proportion to 1tpot.

The reverse order leads to a decrease in synaptic weight in proportion to 1tdep.

neurons populate the layers in the SNN to process sparse spike
trains that encode pixel intensities as the precise timing of spikes
(temporal coding).

The first main contribution of this work is that it uses a
time-based supervised learning method that employs the weight
update mechanism derived from STDP to bypass the non-
differentiable nature of the spike generation function in the BP
process. In addition, we efficiently construct SNN architectures
for different tasks, such as convolutional SNN for the large
dataset (i.e., CIFAR-10), fully-connected SNN for the small
dataset (i.e., Caltech 101 and MNIST). Next, we demonstrate
the effectiveness of this methodology for visual recognition
tasks on standard datasets (Caltech 101, MNIST, CIFAR-10).
Finally, this study quantifies and analyzes the advantages of
the proposed learning method compared to prior techniques
in terms of latency and energy consumption. To the best of
our knowledge, this work achieves the best performance SNN
with the shortest latency (i.e., the number of time steps) in
Caltech 101, MNIST, and CIFAR-10 datasets, among other
learning methods.

Section 2 reviews related works and introduces the motivation
of our work. Section 3 elaborates the proposed SSTDP learning
algorithm. Section 4 then presents the experimental results,
including experimental setups and evaluation metrics. It also
discusses the comparison results with the recent works in terms
of network performance, latency, and energy efficiency. Section 5
concludes the paper.

2. RELATED WORK

2.1. STDP Methods
The STDP-based learning algorithm is a bio-plausible learning
mechanism for SNNs. It is a promising approach that could
improve the information processing capability of neurons by
specifying different synapses for various types of input data and
providing dynamic control over plasticity (Ferré et al., 2018;
Kheradpisheh et al., 2018; Taherkhani et al., 2020).

As shown in Figure 1B, the STDP-based learning algorithm
is based on the temporal correlation (1t = tpost − tpre)
between spike-time tpre of the pre-synaptic neuron and spike-
time tpost of the post-synaptic neuron to adjust the synapse
weight as described in previous research tasks. Specifically, if
the spike arrives at the pre-synaptic neuron tpre earlier than the
post-synaptic neuron fires the spike tpost within a given time
window, the synapse weight is increased, which is called synaptic
potentiation. The synaptic depression behavior is similar to
potentiation. If the post-synaptic neuron fires the spike tpost later
than the spike arrives at the pre-synaptic neuron tpre, the synapse
weight is reduced and is referred to as a synaptic depression.

The STDP-based unsupervised feature learning using
convolution-over-time in SNNs is proposed to encode
representative input features (Srinivasan et al., 2018). The
triplet STDP uses local variables called traces, as proposed
in Pfister and Gerstner (2006). The traces associated with
pre-synaptic neurons and post-synaptic neurons corresponding
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to two traces with fast and slow dynamics, respectively, to better
extract the spiking dynamic features. A notable semi-supervised
learning method based on STDP is outlined in the work of Lee
et al. (2018), which uses STDP-based unsupervised learning to
better initialize the parameters in pre-trained SNN and follows
gradient-based supervised optimization. Tavanaei et al. (2019)
proposed a learning rule that updates the synaptic weights
using a teacher signal to switch between STDP and anti-STDP.
However, it updates weights that only use local update rules and
do not involve the gradient update mechanism of STDP. For all
the methods mentioned above, all of which are based on STDP,
the classification accuracy obtained from training is still lower
than state-of-the-art results. Meanwhile, they all use rate-based
coding to encode the information (i.e., multi-spikes in the spike
train) and do not deal with time-based information directly (i.e.,
a single spike).

2.2. BP Methods
As illustrated in Figure 1A, the backpropagation algorithm is
one successful method for training deep SNNs (Deng et al.,
2020; Taherkhani et al., 2020). Although the spike-based BP
algorithm can achieve better accuracy than the STDP-based
learning algorithm (Kheradpisheh et al., 2020; Rathi et al., 2020;
Mirsadeghi et al., 2021), it suffers from the same fundamental
disadvantage: the computation of neurons theoretically occurs at
the spike neuron and requires massive data and effort. Therefore,
exploring the BP algorithm for temporal encoding is more
efficient for hardware implementation. Meanwhile, considering
that existing neuromorphic systems are time-driven execution
mechanisms, for such systems, the computation of neurons
occurs at each time step, and reducing the number of time steps
while improving accuracy, should also be considered.

3. APPROACH

This paper proposes a novel learningmethod for the SNNwith an
accurate gradient descent mechanism and an efficient temporal
local update mechanism by incorporating BP and STDP training
methods. Thus, our method can effectively balance global and
local information during training and can address some open
questions regarding accurate and efficient computations.

3.1. Spiking Neural Network Components
3.1.1. Network Architecture
In Figure 2 describes the typical network architecture of ANN
and SNN, which was used for the classification task. In the first
layer, inputs that feed to the neuron are pixels of the input image
in the ANN, while in the SNN, these pixels are converted into
spike trains. In the hidden layer, non-spiking neurons in the ANN
perform Multiply Accumulate (MAC) operations and then pass
the result through the activation function (e.g., ReLU function)
to generate the input for the next layer. In contrast, in SNN,
each spiking neuron integrates weighted spikes and fires the
output spike when the membrane potential exceeds the threshold
potential. In the final output layer, each category corresponds to
one neuron. The loss function of the output layer is defined as the
difference between the predicted value and the expected value.

3.1.2. Information Encoding
During the inference, the real-valued pixel intensities of the
input image are converted to the sparse spiking events over
a certain time window. The time step is used to record the
spike timing, and the number of time steps (also known
as network latency) required is determined by the expected
inference accuracy. Thus, inference in SNNs is performed on
multiple feed-forward processes equal to the number of time
steps, where each process requires computations based on
sparse spikes. As shown in Figure 3, the two dominant coding
methods are rate-based coding (Figure 3A) and time-based
coding (Figure 3B) for SNNs. The rate-based coding scheme
encodes the intensity of a pixel into the number of spikes,
while the time-based coding scheme encodes the information
as the latency to the first spike of the corresponding spike
train. In the SNN with the rate-based coding scheme, massive
spikes are fired to achieve accuracy comparable to the ANN,
which leads to high computational costs. Therefore, the memory
access and computational costs remain lower than the rate-based
coding since time-based coding has only a single spike in the
spike train.

3.1.3. Neuron Dynamics
We use the biologically plausible Integrate-and-Fire (IF) neuron
to simulate the dynamics of a spiking neuron that is driven by the
input spike train via plastic synapses. The IF neuron i integrates
the input spikes Xi into the current I(t) by the transmitted inter-
connecting synaptic weights wi of the corresponding spike and
then accumulates it into the membrane potentialVm, leading to a
change in its membrane potential (Vm). The temporal dynamics
are formulated below.















I(t) =
∑

i∈{i|Xi(t)=1}

wi

dVm

dt
= I(t)

(1)

Since the input values in SNN are binary spikes (i.e., “1” or
“0”), the mathematical dot product operation in ANNs can
be replaced by the addition in SNNs. When the accumulated
membrane potential reaches a certain firing threshold, the
neuron fires an output spike and then resets membrane potential.
The reset mechanisms help regulate the spiking activities of
the post-neurons.

3.2. Proposed SNN Training Methodology
3.2.1. Forward Propagation
Figure 4 provides an overview of the SSTDP algorithm. SSTDP
consists of multiple layers since the number and type of neurons
(i.e., IF and LIF neurons) and layers (i.e., fully connected and
convolutional layers) are not limited. Hence, one can implement
SSTDP with any arbitrary number and type of hidden layers.
According to Equation 1, themembrane potentialVj(t) of the j-th
neuron at time step ts is computed as follows:

Vj(ts) = Vj(ts − 1)+
∑

i

wijXi(ts) (2)
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FIGURE 2 | A multi-layer neural network is composed of an input layer, one or more hidden layers, and an output layer. The workload of natural ANN training with

real-valued activation (A); and SNN training with spatio-temporal spike trains (B).

FIGURE 3 | An example about the input image is converted into the input spike train by the (A) rate-based coding scheme (Han et al., 2020) and (B)

Time-To-First-Spike time-based coding scheme (Rathi et al., 2020). The time window represents the length of the spike train, which is equal to the number of time

steps.

where Xi(ts) is the input spike train from the i-th pre-synaptic
neuron, wij is the synaptic weight between the i-th pre-synaptic
neuron and j-th post-synaptic neuron. The IF neuron fires a
output spike with the time-based coding when its membrane
potential exceeds the firing threshold θj (> 0):

Xj(ts) =

{

1, if Vj(ts) ≤ θj and Xj(< ts) 6= 1

0, otherwise
(3)

where Xj(< t) 6= 1 denotes to check whether the j-th neuron
was not fired at any previous time step (< ts). In time-based
coding, information is encoded using the spike time ts of a single
spike. Generally, the larger integration current is due to input
spikes with larger corresponding weights. In such a scenario, a
larger integration current corresponds to the possibility of the
earlier fire spike, which in event-driven neuromorphic hardware
can terminate the computation of the neuron earlier. Note that in

the last layer (fully connected layer) in the network, the number
of neurons corresponds to the number of task categories, where
each neuron may fire a single spike at a different time step.
After completing the forward process over the entire forward
propagation time (i.e., several time-steps in the spiking domain),
the category of an input image is predicted by the SNN as the
category corresponding to the winner output neuron that fires
the earliest spike. Since the network decision is based on the
first fired spike in the last layer, earlier fired spikes carry more
information in the spike train.

3.2.2. Backward Propagation
To utilize backward propagation to update the weights in the
neural network, we need to obtain the derivative of the loss
function with respect to each weight, i.e., ∂E

∂wl , where E is the loss

function, and wl is a weight at the lth layer.
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FIGURE 4 | The illustration of the forward process and error backpropagation in the SSTDP method. The blue frame arrows represent forward propagation, and the

red frame arrows represent backward propagation. In the forward phase, the neurons in the SNN integrate the received spikes with corresponding weights into the

membrane potential and calculate the error based on the prediction results of the network. In the backward phase, the final error is backward past through the hidden

layers based on the chain rule to obtain the partial derivative of the final error with respect to the time. The synaptic weights are modified with spatial (local weight

updates from STDP) and temporal information (globally rectified from BP) to reduce the network error.

In our method, the output neuron that spikes first carries the
most significant signal and thus corresponds to the output label.
To separate the firing time of the target neuron and others, we set
a minimum gap g between their expected firing times. Taking the
average firing time of each sample into consideration, we set the
expected firing time as the following equations:

Tmean =
1

n

n
∑

i=1

tLi (4)

TL
j =











min{tLj , Tmean −
n− 1

n
g}, j = y

max{tLj , Tmean +
1

n
g}, j 6= y

(5)

where n is the number of output spikes, y is the correct label,
tLj is the actual firing time, and TL

j is the expected firing time.

Such settings maintain the average expected firing time near the
actual one to fit the firing time of each input sample and achieve
better adaptation. The expected firing time of the target label is
the smallest one among all output neurons with a minimum gap
g with others to distinguish it well.

Then, the loss function can be defined as the squared error of
the bias between actual firing time and expected firing time:

E =
1

2

∑

j

ej
2 (6)

where ej = tLj − Tj.

Then, the gradient to the loss function can be estimated at
the output layer, ∂E/∂tLj = ej, and the gradient is backward

propagated to the hidden layers using the chain rule, as shown
in the following equation:

∂El

∂wl
=

∂El

∂tl
∂tl

∂V l

∂V l

∂wl
(7)

where V l and tl is the membrane potential and the fired spike-
time of a neuron in the l-th layer.

As mentioned above, the term ∂tl

∂V l in Equation 7, i.e.,

the derivative of the post-synaptic fired spike-time with
respect to its membrane potential, is not differentiable. In
previous works, the derivative was estimated with various
assumptions and approximations. However, estimating
both ∂tl/∂V l and ∂V l/∂wl makes the result biased and
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unreliable. Therefore, our method circumvents these two
non-derivable terms and merges the latter two terms into a
single one:

∂E

∂wl
=

∂E

∂tl
∂tl

∂wl
(8)

According to the definition of spike-time-dependent plasticity,
if the pre-synaptic spike happens before the post-synaptic one,
the connection will be strengthened, making the post-synaptic
spike easier to fire, and if the pre-synaptic spike occurs after the
post-synaptic one, the connection is useless, and thus the weight
will be reduced. Such a proposal will always make the post-
synaptic spike fire earlier, neglecting the actual update direction
of the post-synaptic neuron. Therefore, we only calculate the
derivative between post-synaptic firing time and the weight
∂tlj/∂wij using STDP:

∂tlj

∂wij
=







ǫ1(e
−

tpost−tpre
τ − δ)× (wmax − w)µ, tpost > tpre

ǫ2(e
−

tpre−tpost
τ − δ)× (wmax − w)µ, tpost < tpre

(9)

where ǫ1,2 is the scaling factor of strengthening and restraining
STDP, τ is the time constant, tpre and tpost are the fired spike-time
of a pair of pre- and post-neuron, respectively. δ represents the
time interval for updating the weights in STDP, which means the
spikes that occurred within this period, making a strong causal
relationship between the corresponding pair of pre- and post-
neuron. wmax and w are the maximum constraint on synaptic
weight and the current synaptic weight, respectively. In addition,
the weight update has dependence and is subject to µ. The
update direction of the weight depends on both STDP and the
derivative of the post-synaptic neuron, enabling STDP to learn
global knowledge and lead to better performance.

To propagate the gradient to deeper layers, we further need to

calculate ∂E/∂tl−1j , which can be presented as

∂E

∂tl−1j

=
∑

i

∂E

∂tli

∂tli

∂tl−1j

(10)

The gradient of the firing time of a neuron in hidden layers is
the weighted sum of all the gradients of firing time of those
who receive spikes from it, and the coefficient is the derivative
between them. Since the pre-synaptic spike only has an effect on
the post-synaptic one when the former is earlier, we define the
firing time derivative as

∂tlj

∂tl−1i

=

{

0, tl−1 > tl

wl
ij, tl−1 6 tl.

(11)

In conclusion, the full propagation process, including both the
forward and the backward pass, can be described in the following
pseudo-code (Algorithm 1).

Algorithm 1: Time-based backpropagation with STDP.
Input : Input image xi and label y

Output: Output spike time tLj and the updated weights

Params: L - the total number of layers.

ni - the number of neurons in the ith layer. Especially, n0 is

the size of the input image and nL is the number of output

classes.

Tmax - the total simulation time step.

Initialization
for l = 1 to L do

for i = 1 to nl do

V l
i = 0, f li = false

// Initialize membrane voltage to 0 and �red state to

False.
end

end

Phase I: Input Encoding
for i = 1 to n0 do

xmax = max{xi}

t0i =
(

1−
xi

xmax

)

Tmax

// Larger input x �res earlier.

end

Phase II: Forward Process
for l = 1 to L do

for time step t = 1 to Tmax do

Il(t)← Integrate(wl , tl−1) ⊲ (Equation 1)

// Integrate input spikes into current.

Vm(t)← Accumulate(V(t − 1), I(t)) ⊲ (Equation 2)

// Accumulate input current into potential.

for i = 1 to nl do

if f li is false & Hl
i > Threshold then

tli = t

f li = true ⊲ (Equation 3)

// Fire output spike and prevent it from �ring

again.

end

end

end

end

Phase III: Backward Process
Calculate the expected firing time TL

j of the output layer.

⊲ (Equations 4, 5)

Calculate the loss function E. ⊲ (Equation 6)

for l = L downto 1 do

if l = L then
∂E

∂tLj
= TL

j − tLj

else

∂E

∂tlj

=
∑

i

∂E

∂tl+1i

∂tl+1i

∂tlj

⊲ (Equations 10, 11)

end

∂E

∂wl
ij

=
∂E

∂tlj

∂tlj

∂wl
ij

⊲ (Equations 8, 9)

wl
ij = wl

ij − η
∂E

∂wl
ij

end
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4. EXPERIMENT

4.1. Experimental Setup
4.1.1. Datasets
We take three visual datasets: Caltech 101 (Fei-Fei et al., 2004),
MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al.,
2009) for object classification tasks. Caltech 101 dataset contains
101 categories of object images. Each category has approximately
40–800 images, each of which consists of 300× 200 pixels. Here,
all the images we use are grayscaled and rescaled to 160 pixels
of height. MNIST is a benchmark dataset of handwritten digits
containing 60,000 training images and 10,000 testing images that
have been widely used in SNN literature. Each sample of MNIST
is a 28 × 28 image and contains one of the digits 0 ∼ 9. CIFAR-
10 is a challenging dataset for the SNN, which contains 60K RGB
images in the size of 32×32. Following the standard practice, 50K
examples are used for training and the remaining 10K for testing.
The images are drawn evenly from 10 classes. There are no data
augmentation tricks utilized for the MNIST dataset.

4.1.2. Network Structure
To evaluate the classification performance of the proposed
learning algorithm on the Caltech 101 and MNIST datasets, we
consider SNN fully connected, having 784 inputs, from 300 to
700 neurons in the hidden layer, and 10 output neurons for the
classification. Meanwhile, we randomly initialize the weights of
hidden layers in the range [1, 10] and weights of the classification
layer in the range [20, 50]. Note that the hidden layers in the
network structure with spike-based classification can also be
replaced by convolutional layers, which will be reported in the
following experiments. To further demonstrate the effectiveness
of the scheme on a large-scale dataset, we evaluated our method
on CIFAR-10 using the VGG-7 network structure.

4.1.3. Evaluation Metrics
To measure the estimation performance of SNNs, we employ the
following metrics in terms of accuracy, speed, and energy, which
are widely used in the SNN.

1) Test Accuracy. Percentage of test samples correctly
classified by the SNN model.

2) Training Epoch. Passing the full training examples once
through the SNN denotes an epoch. Start training models from
scratch with random initialization weights, and a lower training
epoch indicates the model convergence faster.

3) Time Steps. Since the real-valued inputs are encoded as
the spike events over a certain time, inference in ANNS must be
divided into multiple forward passes in SNNs, which are equal to
the number of time steps. Thus, the number of time steps affects
both the latency and the energy consumption (the number of
performed operations per inference is equal to that of the sum
of multiple forward processes).

4) Fired Spike Rate (FSR). The average percentage of neuron
fire spikes per time step, which are used to quantify the spiking
activity.

FSR =
#fired spikes

#total neurons× #time steps
(12)

A higher SR score means a larger number of spikes fired by the
neuron, theoretically resulting in higher energy consumption in
the neuromorphic hardware.

4.1.4. Implementation Details
To valid our SSTDP algorithm, we implemented it on the
PyTorch framework (Paszke et al., 2019). The weights of SNNs
are initialized according to He et al. (2015). The batch size is set to
32 for the Caltech 101, MNIST, and CIFAR10 datasets to reduce
memory consumption.We use the Adam optimizer (Kingma and
Ba, 2014) to adjust the learning rate with the initial learning rate
5× 10−3. The threshold of neurons is adjusted for different types
of networks and datasets, which are typically set between 0.7 and
10. The time constant τ and constant µ in Equation 9 are set to
5 and 0.0005, respectively. For our trained SNN, we employ the
IF model as the neuron model. The GPU used in training was
NVIDIA RTX 2080.

4.2. Experimental Results
4.2.1. Effect of Accuracy
First, we evaluated the test accuracy of our SSTDP method on
the Caltech 101 dataset, as described in Table 1. The network
performance (99.3% top-1 accuracy) of our SSTDP method
outperforms other existing learning methods. Then, to further
evaluate the effectiveness of our proposed SSTDP learning
algorithm, as shown in Table 2, we compared the top-1 accuracy
of SSTDP with recent works that directly train the SNNs from
scratch based on BP on the MNIST datasets. We found that
our proposed SSTDP achieves better network performance than
others in terms of accuracy and latency. Specifically, SSTDP
achieved the same accuracy 98.1% as the SNN trained from
scratch, whereas the ANN with 400 hidden neurons and ReLU
activation function achieved 98.1%. The accuracy of the SNNs
trained with our SSTDP method is larger than the LeNet with
11 network depths.

As the number of time steps increases, more information
can be represented in the spike train and can achieve higher
classification accuracy. Since inference in SNNs is performed
through multiple feedforward processes equal to the number
of time steps (also called inference latencies), each requires
computation based on sparse spikes (Deng et al., 2020; Han and
Roy, 2020; Han et al., 2020; Kheradpisheh et al., 2020; Taherkhani
et al., 2020). Therefore, it was noted that in other SNNs directly
trained by BP, it is likely that spike signals vanish, similar to the
vanishing of the gradient in ANNs. SNN thereby requires enough
time steps (e.g., 512 time steps) to avoid information loss. In
contrast, our method allows accuracy to be maintained even if
the time steps are small (i.e., 16 time steps) and can also achieve
an accuracy that equals that of the ANN because we use STDP
to realize the weight gradient update and extract information.
Our SSTDP has a 25.0× ∼ 32.0× acceleration on the MNIST
over others. T2FSNN (Park et al., 2021) adopt the VGG-16 as the
network structure, SNN+DT (Zhou et al., 2019) and PLIF (Fang
et al., 2021) use multiple convolutional layers to construct the
network structure of the SNN for better accuracy.

Table 3 lists the classification performance of all recent
works on the SNN as well as our work. As can be seen on
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TABLE 1 | Test accuracy of SNNs trained with different learning methods on Caltech face/motorcycle dataset.

Method Type Coding Neuron model
Acc.

(Top-1 %)

R-STDP Mozafari et al., 2018 Unsupervised Time-based Rectified linear 98.2

SDNN Kheradpisheh et al., 2018 Unsupervised Time-based LIF 99.1

S4NN Kheradpisheh et al., 2020 Supervised Time-based IF 99.2

STiDi-BP Mirsadeghi et al., 2021 Supervised Time-based Linear SRM 99.2

This work Supervised Time-based IF 99.3

TABLE 2 | Comparsion of our work and other SNN models with direct training on the MNIST dataset.

Method Structure Coding Neuron model
Time

steps

Acc.

(Top-1 %)

baseline (ANN) 784FC-400FC-10FC – ReLU – 98.1

S4NN Kheradpisheh et al., 2020 784FC-400FC-10FC Time-based IF 512 97.4

STiDi-BP Mirsadeghi et al., 2021 784FC-400FC-10FC Time-based Linear SRM 512 97.4

Tempcoding Comsa et al., 2020 784FC-340FC-10FC Time-based SRM – 97.9

STDBP Zhang et al., 2020 784FC-384FC-10FC Time-based Rectified linear – 97.9

BP-STDP Tavanaei et al., 2019 784FC-1000FC-10FC Rate-based IF – 96.6

TDSNN Zhang et al., 2019 LeNet Time-based IF - 92.0

SNN+DT Zhou et al., 2019 784FC-Conv-Conv-10FC Time-based IF – 99.33

PLIF Fang et al., 2021 784FC-Conv-Pool-10FC Rate-based PLIF 8 99.72

T2FSNN Park et al., 2021 VGG-16 Time-based LIF 40 99.33

This work 784FC-300FC-10FC Time-based IF 16 98.1

TABLE 3 | Test accuracy of different SNNs models on CIFAR-10.

Method Type Coding Neuron model
Time

steps

Acc.

(Top-1 %)

DeepSNN Sengupta et al., 2019 ANN-converted Rate-based IF 2500 91.46

SpikeCNN Panda and Roy, 2016 Unsupervised Rate-based LIF - 70.16

spike-based training Rathi et al., 2020 Supervised Rate-based LIF 250 90.95

direct training Wu et al., 2019b Supervised Rate-based LIF – 90.53

ASF-BP Wu et al., 2021 Supervised Rate-based LIF 150 90.11

Tandem learning Wu et al., 2019a Supervised Rate-based IF – 90.98

PLIF Fang et al., 2021 Supervised Rate-based PLIF 8 93.50

SNN+DT Zhou et al., 2019 Supervised Time-based IF – 92.68

SM+SR Park and Yoon, 2021 Supervised Time-based IF 544 91.05

T2FSNN Park et al., 2021 Supervised Time-based LIF 1,280 91.36

This work Supervised Time-based IF 16 91.31

the large-scale dataset CIFAR-10 for SNNs, we also achieved
an accuracy (91.31%) comparable to that of the ANN-SNN
conversion network (91.46%), which out-performed other
learning algorithms. Notably, previous efforts usually required
100 or even 1,000 steps to reach good accuracy (Roy et al.,
2019; Wu et al., 2019b, 2021). For instance, the ANN-SNN
conversion method (Sengupta et al., 2019) requires up to 2,500
time steps to maintain accuracy, the BP-based method (e.g.,
AFPWu et al., 2021) requires hundreds of time steps to maintain
accuracy, while we only need 16 time steps here on the CIFAR-
10 dataset. Note that the inference accuracy of PLIF (Fang
et al., 2021), SNN+DT (Zhou et al., 2019), SM+SR (Park and

Yoon, 2021), and T2FSNN (Park et al., 2021) adopt the VGG-
16 as the network structure on the CIFAR-10, while other
training SNNs in Table 3 adopt the VGG-7. We found that the
classification accuracy of our proposed SSTDP performs best
in the time-based encoded SNN and is slightly inferior to the
rate-based encoded SNN proposed in another study [1]. It is
worth noting that this paper focuses on training time-based
SNNs, enabling such SNNs to match or even exceed rate-based
SNNs. In this way, we can ensure the prediction accuracy of
SNNs and take full advantage of sparse spikes in terms of energy
consumption. Figure 5 shows an example of the image from
the CIFAR-10 dataset that is encoded by the time-based coding
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FIGURE 5 | (A) The original image input to the SNN. (B) The orignial spike train input to the neurons and the processed version generated by neurons. (C) The

reconstructed image at the first 33 time steps after time-based coding.

and processed by the first neuron. After processing the received
spikes, every neuron, in combination with its passing synaptic
weights, accumulates membrane potential. Initially, spikes in the
spike trains of background pixels are fired at later time steps.
After being processed by the neuron for feature extraction, the
time of firing spikes is advanced. We can display the spike train
as shown in Figure 5B.

4.2.2. Effect of Training Epoch
In this experiment, we trained the SNN for weight updating
by our proposed method while using an ANN optimized by
SGD (LeCun et al., 2012) for the weights as a baseline for
comparison. The results in Figure 6 indicate that the SNN trained
by our learning method achieves higher accuracy than the ANN
with the same network structure on the MNIST dataset. It is
worth mentioning that we reached the best accuracy in less than
90 epochs.

4.2.3. Effect of Learning Rate Schedule
The experiments analyzed the impact of the choice of learning
rate schedule on training time and accuracy that are available in
most training frameworks (Paszke et al., 2019), including fixed,
exponential, step-based, multi-step-based, cosine annealing, and
cosine annealing warm restart learning rate decay, as shown
in Figure 7. For example, we trained an SNNmodel (three layers)
with SSTDP for 100 epochs, using 0.003 as an initial learning rate
and a step-based learning rate decay schedule (i.e., multiplied by
0.1 every 20 epochs). This model reached a top-1 accuracy of
98.1%, which is 0.14% lower than the equivalent model trained
with cosine warm restarts learning rate decay.

4.2.4. Effect of Time Steps
Figure 8 describes the test accuracy curve of the SNN trained
with the SSTDP method, which varies as the time steps. We
observed that the number of time steps affects themodel accuracy
and is also crucial for training convergence. Although the larger
time steps lead to higher model accuracy, the SNN with smaller
time steps converges much faster than the SNN with larger
time steps. Specifically, the figure shows six curves that vary
as the number of time steps increases from 16 to 160, where
the model accuracy increases as the number of time steps
increases. However, SNNs with smaller time steps can achieve
faster convergence. This is because the SNN with smaller time
steps contains more intensive information and it is easier to
extract features using the local update mechanism of STDP.

4.2.5. Effect of Computation Cost
The inference computation cost of the SSTDP method, STiDi-
BP and BP-STDP, are shown in Figure 9, respectively. In each
figure, the x-axis is the time steps used to encode information,
also considered as the SNN inference latency; the y-axis is the
fired spike rate (FSR), which represents the number of operations
performed theoretically for computing in SNN inference. As
described in Figure 9, the proposed SSTDP method reduces the
computation by orders of magnitude over the SNN with rate-
based coding in Tavanaei et al. (2019) and will have an advantage
over time-based SNN. Unlike our SSTDP method, other time-
based approaches (Kheradpisheh et al., 2020; Mirsadeghi et al.,
2021) force all neurons to fire spikes, even those that have not
fired, to improve the network performance, and such an approach
increases the computation effort. In addition, the network scale
used in the two compared baselines is also larger than ours
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FIGURE 6 | The accuracy evolution curve for training with our method on the MNIST dataset.

FIGURE 7 | The accuracy evolution curve for training with our method on the MNIST dataset varies as the learning rate schedule.
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FIGURE 8 | The Inference test accuracy curve of the SNN trained with SSTDP method varies as the time steps.

FIGURE 9 | The Inference computational cost (FSR) evolution curve comparisons between SSTDP and the two baseline SNNs (STiDi-BP and BP-STDP).

but with less accuracy than our method, as illustrated in the
table. Specifically, our network size is only 784 × 300 × 10,
while STiDi-BP and BP-STDP are 784 × 400 × 10 and 784 ×
1, 000 × 10, respectively. The increase in neurons may also lead
to the potential for an increase in FSR, especially for SNNs with
rate-based coding. To reflect the computation more intuitively
in SNNs, we also provide the number of additional operations
performed in SNNs inference in Figure 10. In each figure, the x-
axis indicates the SNN inference latency (i.e., time steps), and the
y-axis measures the number of addition operations to compute
the accumulated membrane potential in the SNN inference.
We found that the proposed SSTDP reduces the number of
additional operations by orders of magnitude compared to
STiDi-BP and BP-STDP.

5. CONCLUSION

This paper proposes a novel supervised learning algorithm

for SNNs, enabling SNNs to be implemented more

efficiently by low-power neuromorphic hardware. This

work establishes the bridge between the backpropagation

algorithm and the STDP update mechanism, bypassing

the non-differentiability part in the backward process of

SNNs, using the local update mechanism of the STDP to
implement it. This takes advantage of the local update
property of STDP and the global signals from the BP. It
enables the SNN to avoid spike signal disappearance during
the execution, thus reducing the network latency. It makes
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FIGURE 10 | The Inference computational cost (addition operation) evolution curve comparisons between SSTDP and the two baseline SNNs (STiDi-BP and

BP-STDP).

the synaptic weight update receive guidance from the global
signal, which guarantees the network performance. The
experimental results demonstrate the advantages of our
method in terms of network performance, latency, and
energy consumption.
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