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Thyroid nodules occur in about 60% of the population. A major challenge

in thyroid nodule diagnosis is to distinguish between follicular adenoma

(FA) and carcinoma (FTC). Here, we present a comprehensive thyroid

spectral library covering five types of thyroid tissues. This library includes

121 960 peptides and 9941 protein groups. This spectral library can be used

to quantify up to 7863 proteins from thyroid tissues, and can also be used

to develop parallel reaction monitoring (PRM) assays for targeted protein

quantification. Next, to stratify follicular thyroid tumours, we compared

the proteomes of 24 FA and 22 FTC samples, and identified 204 differen-

tially expressed proteins (DEPs). Our data suggest altered ferroptosis path-

ways in malignant follicular carcinoma. In all, 31 selected proteins

effectively distinguished follicular tumours. Of those DEPs, nine proteins

were further verified by PRM in an independent cohort of 18 FA and 19

FTC. Together, we present a comprehensive spectral library for DIA and

targeted proteomics analysis of thyroid tissue specimens, and identified

nine proteins that could potentially distinguish FA and FTC.
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1. Introduction

Thyroid nodules are common and, given the sensitivity

of current diagnostic techniques, can be detected in

approximately 60% of the general population, espe-

cially in women [1,2]. The incidence of thyroid malig-

nancy or thyroid carcinoma has rapidly increased over

the last decades, although it is uncertain if this is a real

increase or simply a result of widespread use of screen-

ing ultrasonography [3,4]. Most of these nodules are

asymptomatic. Only 4–7% of patients present with

complaints attributed to thyroid nodules. Although

ultrasonography and ultrasound-guided fine-needle

aspiration can help distinguish between benign and

malignant nodules, approximately 30% of thyroid

nodules remain indeterminate by cytopathology and

require diagnostic surgery [5], after which histopathol-

ogy of surgical specimens provides a definitive and

complete diagnosis. Only about 15% of indeterminate

nodules are proved to be malignant. Because many

benign nodules are clinically ambiguous and a source

of uncertainty, such patients often undergo unneces-

sary surgery. Most ambiguous diagnosis occurs in fol-

licular tumours, which constitute about 30% of the

indeterminant nodules [6]. The benign follicular

tumours (i.e. follicular adenoma, FA) could not be

separated from the malignant nodules (i.e. follicular

thyroid carcinoma, FTC) by cytologic, sonographic or

clinical features [7]. The only way to separate them is

to perform a diagnostic surgery, and examine tumour

cell invasion under microscopy. Therefore, there is an

urgent need to identify molecular markers to distin-

guish them. Several nucleic-acid-based molecular tests

based on next-generation sequencing technology [8]

have been developed for the diagnosis of indetermi-

nant thyroid nodules; however, no genomic and tran-

scriptomic signature has been identified to distinguish

FA and FTC.

Unlike nucleic acids, proteins are directly involved

in all life processes and determine cellular and organis-

mal phenotypes. Proteins can be effective diagnostic

biomarkers and therapeutic targets. Mass spectrometry

(MS)-based proteomics has reached a high level of

technical and methodological development during the

last decade. Data-independent acquisition (DIA), in

particular, enables comprehensive quantitation of

peptides from complex compositions with high repro-

ducibility and throughput [9]. In the conventional

data-dependent acquisition (DDA) mode, only peptide

precursors with high abundance in MS1 are frag-

mented. In DIA, however, all flyable peptide precur-

sors within a predefined range (also called window) of

mass-to-charge ratio (m/z) are fragmented by sequen-

tial repetitive cycling in windows, thus providing

detailed data without loss of any eluted peptides [9,10].

The pressure cycling technology (PCT)-based sample

preparation methodology, coupled with DIA-MS,

allows proteomic analysis of biopsy-level tissues within

6 h [11,12].

To optimize the accuracy of spectral identifications,

DIA data analysis requires tissue- or organism-specific

spectral libraries [13,10]. Although pan-human libraries

derived from multiple human species and cell lines

have been reported [14,15], these comprehensive

libraries could cause inaccuracies during ion matching,

which can be partly alleviated by subLib strategy [16].

In recent years, several NOVEL software for DIA data

analysis, such as DIA-Umpire [17], PECAN [18] or

DIA-NN [19], no longer require spectral libraries.

However, this library-free mode should be applied

with caution because of its relatively lower protein

identification power compared to a library-based strat-

egy, particularly for small DIA data sets [20]. A tissue-

specific library for thyroid nodules, both benign and

malignant, as well as for healthy thyroid, would pro-

vide a useful resource for proteomic analysis of thy-

roid tissues in a high-throughput manner.

2. Materials and methods

2.1. Sample collection

For the spectral library construction, validation and

application, normal thyroid tissue and thyroid nodular

samples from patients aged 18 years or older were col-

lected, between 2011 and 2019, from three clinical cen-

tres in Singapore (Singapore General Hospital) and

China (The Second Hospital of Dalian Medical

University and the First Affiliated Hospital of Zhe-

jiang University). Tissue cores of 1 mm diameter (0.6–
1.2 mg) were extracted from the pathological regions
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of interest in formalin-fixed paraffin-embedded (FFPE)

tissue blocks demarcated by experienced histopatholo-

gists [21].

To establish a comprehensive thyroid-specific spec-

tral library, we included four common histopathologi-

cal types of thyroid nodules (42 multinodular goitre

(MNG), 49 FA, 33 FTC and 54 papillary thyroid car-

cinoma (PTC)), as well as 10 normal thyroid tissues

(N). To further validate our library, three PTC sam-

ples, together with paired pericancer tissues were col-

lected from the Second Hospital of Dalian Medical

University. We also separately assembled two

histopathological types of follicular thyroid tumours,

FA and FTC, from two clinical centres as proof of

principle for clinical diagnostic application. Twenty-

four FA and 22 FTC were collected from the Second

Hospital of Dalian Medical University, and the other

18 FA and 19 FTC were from the First Affiliated

Hospital of Zhejiang University. Detailed patient char-

acteristics are listed in Table S1. Ethics approval was

obtained from all the three hospitals and Westlake

University. The experiments were undertaken with the

understanding and written consent of each subject,

and according to Helsiki declaration.

2.2. Sample preparation assisted by PCT

The tissue samples were prepared for proteomic analy-

sis as described previously [11,22]. Samples were

dewaxed, hydrated and acidified using heptane, a

decreasing ethanol series (100%, 90% and 75%), and

0.1% formic acid in sequence. The samples were next

kept under basic hydrolysis conditions in Tris-HCl

(100 mM, pH = 10) at 95 °C for 30 min and then trans-

ferred to a solution containing 30 µL lysis buffer (6 M

urea, 2 M thiourea), 5 µL Tris (2-carboxyethyl) phos-

phine (TECP, 10 mM) and 2.5 µL iodoacetamide (IAA)

(40 mM). In PCT-Micro Tubes, samples were lysed,

reduced and hydroxylated at 30 °C using PCT (90

cycles, 45 000 psi, 30 s on-time and 10 s off-time).

Trypsin (enzyme-to-substrate ratio, 1:50; Hualishi Sci-

entific, China) and LysC (enzyme-to-substrate ratio,

1:40; Hualishi Scientific, China) were then added, fol-

lowed by PCT-assisted digestion (120 cycles, 20 000 psi,

50 s on-time and 10 s off-time). 1% trifluoroacetic acid

(TFA) was added to terminate the digestion process.

The resulting peptides were desalted with 2% acetoni-

trile (ACN) and 0.1% TFA and reconstituted. Peptide

concentrations were measured with a Nanoscan (Ana-

lytic Jena, Germany) at A280, and samples were stored

at 4 °C for further analysis. All the chemical reagents,

unless specified, were obtained from Sigma-Aldrich.

2.3. Strong cation exchange (SCX) fractionation

of peptides

Clean peptides were fractionated by 100 mg SCX solid-

phase extraction (SPE) columns (HyperSepTM, Thermo

Fisher Scientific, San Jose, CA, USA) to enhance the pep-

tide coverage. 600 µg of pooled peptides, including all five

types of thyroid tissues (10 N, 42 MNG, 28 FA, 13 FTC,

38 PTC), was reconstituted in equilibration buffer

(2.5 mM KH2PO4/25% ACN, pH = 3.0). SCX columns

were washed with ddH2O water and equilibration buffer.

The pooled sample was then loaded onto conditioned car-

tridges. Loaded columns were washed with six diluents

with different ratios of buffer A (10 mM KH2PO4/25%

ACN, pH = 3.0) to buffer B (10 mM KH2PO4/1 M KCl/

25% ACN, pH = 3.0) to introduce increasing KCl con-

centrations. The samples were then split into six fractions

for each sample and cleaned by C18 spin columns (The

Nest Group, USA).

2.4. High-pH reversed-phase chromatography

fractionation of peptides

To further increase the peptide coverage in the spectral

library, another fractionation method, that is, high-pH

reversed-phase chromatography, was performed. Two

pooled samples were combined from 41 follicular thy-

roid neoplasms (21 FA and 20 FTC) and 16 PTC sam-

ples. ~ 200 lg of each pooled sample was separated by

Thermo Dinex Ultramate 3000 with an XBridge pep-

tide BEH C18 column (4.6 mm 9 250 mm, 5 lm,

1�pkg�1) at 45 °C. The gradient was 60 min long, with

a flow rate of 1 mL�min�1, and the mobile phase con-

sisted of buffer A (ddH2O water with 0.6% ammonia,

pH = 10) and buffer B (98% ACN with 0.6% ammo-

nia, pH= 10). The gradient was from 5% to 35% buf-

fer B in a condition of pH 10.0 at a flow rate of

1 mL�min�1. In all, 60 fractions were collected at

1 min separation interval. The 60 fractions were subse-

quently combined into 20 fractions for each pooled

sample to build the spectral library. The resulting frac-

tionated peptides were then resuspended into 20 µL
buffer (2% of ACN, 0.1% FA) for MS injections.

2.5. DDA

The fractionated peptides spiked with iRT (Biognosys,

Schlieren, CH) at a concentration of 10% were sepa-

rated by UltiMateTM 3000 RSLCnano System (Thermo

Fisher Scientific). The system was equipped with a

homemade 15 cm 9 75 µm silica column custom

packed with 1.9 µm 100 �A C18-Aqua. The mobile
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phase comprised buffer A (2% ACN, 0.1% formic

acid) and buffer B (98% ACN, 0.1% formic acid).

Peptides were separated on a 60 min effective liquid

chromatography (LC) buffer B gradient (3% to 28%

at 300 nL�min�1). Ionized peptides were transferred

into a Q ExactiveTM HF MS (Thermo Fisher Scien-

tific). Full MS scans were measured with an Orbitrap

at a resolution of 60 000 full widths at half maximum

(FWHM) at m/z of 200 Th covering 400–1200 Th pre-

cursors, with automatic gain control (AGC) target

value of 3E6 charges and 80 ms maximum injection

time (max IT). The top 20 precursor signals were cho-

sen to be fragmented in a higher energy collisional dis-

sociation cell with 27% normalized collision energy

and then transferred to an Orbitrap for MS/MS analy-

sis at a resolution of 30 000 FWHM and an AGC tar-

get value of 1E5. Using 60 min LC gradients, we

acquired 46 DDA files. More details are listed in

Table S2.

2.6. Spectral library construction

SpectronautTM Pulsar X version 14.6 (Biognosys) was

used to generate a spectral library specific to the thy-

roid tissues. All 46 DDA raw files were searched by

Pulsar against a human Swiss-Prot FASTA database

(downloaded on 2020-01-22) which included 20 367

protein sequences with false discovery rate (FDR) of

0.01. The enzyme was set to ‘trypsin/P’ allowing no

more than two missed cleavages; cysteine car-

bamidomethyl was set to a fixed modification, while

methionine oxidation was set to a variable modifica-

tion; mass tolerance was automatically determined,

while other settings were default.

2.7. Quantitative analysis of thyroid samples by

DIA and PulseDIA

Together with paired pericancer tissues, three PTC

samples were prepared as previously described [11,22].

Proteomic data for these tested thyroid samples were

acquired by DIA or PulseDIA, a gas phase fractiona-

tion method [23]. The LC effective gradient was

45 min for each run, with 3%–25% buffer B at

300 nL�min�1. MS1 was performed over an m/z range

of 390–1010 Th for the DIA, and 390–1210 Th for the

PulseDIA, with a resolution of 60 000 FWHM, an

AGC target of 3E6 and a max IT of 80 ms. MS2 was

performed with a resolution of 30 000 FWHM, an

AGC target of 1E6 and a max IT of 55 ms. For DIA,

24 isolation windows were performed: 20 with m/z of

21 Th windows, 2 with 41 Th windows and 2 with 61

Th windows. For PulseDIA, five or four injections

with 24 isolation windows per injection were per-

formed [23]. DIA data were analysed by SpectronautTM

(version 14.6) and DIA-NN (version 1.7.15). All set-

tings were set to their default values.

2.8. Targeted proteins analysis by parallel

reaction monitoring (PRM)

PRM validation was performed on 37 selected pro-

teins. Six proteins were chosen from differentially

expressed proteins (DEPs) with adjusted P value less

than 0.05. And the other 31 proteins were originated

from geNetClassifier selection. We selected at least one

peptide precursor for one protein to be monitored with

the limitation of no modification and missed cleavage

and the peptide length ranging from 8 to 20 using SKY-

LINE (Version 21.1). PRM was performed on a Q Exac-

tiveTM HF MS (Thermo Fisher Scientific) system with

UltiMateTM 3000 RSLCnano System (Thermo Fisher

Scientific). Cleaned peptides from FA and FTC sam-

ples were separated at a flow rate of 300 nL�min�1

along a 60 min 10%–30% linear LC buffer B effective

gradient. The mobile phase buffers were the same as

the buffers mentioned in the method of DDA section.

The time-scheduled acquisition was in a � 3 min

retention time window. The full scans were collected

with m/z from 300 to 2000 Th with a resolution of

60 000 FWHM. The AGC target was 3E6 and the

maximum injection time was 55 ms. Target precursors

were then isolated through an m/z window of 1.6 Th,

followed by fragmentation at 27% normalized collision

energy. The product ions were scanned with a resolu-

tion of 30 000 FWHM, AGC target value of 2E5

charges and maximum injection time of 100 ms. Here,

26 peptide precursors from 22 proteins and 20 CiRT

peptide precursors were analysed.

2.9. Classification of FTC and FA

To distinguish FTC from FA, two data matrices were

acquired. The PulseDIA matrix was produced from 24

FA and 22 FTC samples (the Second Hospital of

Dalian Medical University), and the PRM matrix was

acquired from 18 FA and 19 FTC samples (the First

Affiliated Hospital of Zhejiang University). The pro-

teomic data matrices were log2 transformed, and then

the missing values for each protein were imputed by

0.8* minimum of their non-missing values.

R package geNetClassifier provides a method to

identify a minimum subset within the input protein set

that can be used to distinguish disease subtypes [24].

In brief, the package uses an unsupervised way (para-

metric empirical Bayes) first to rank the input proteins
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and keep only the proteins whose posterior probabili-

ties are above the threshold (95%) as candidate fea-

tures to build a support vector machine (SVM)

classifier to stratify thyroid nodules. Global accuracy

and call rate were calculated to evaluate the perfor-

mance of the SVM classifier. Default parameters were

set for the protein selection and classification by

geNetClassifier in this study. A subset of proteins

within the input protein set, that is, PulseDIA matrix

of 204 differentially expressed proteins (DEPs), were

selected to build up a linear SVM classifier.

Among the 37 proteins (six proteins from DEPs and

31 proteins from geNetClassifier) detected by PRM,

nine proteins were confirmed to be significantly dysreg-

ulated (adjusted P value < 0.05) in an independent

sample set. The PRM dataset was randomly divided

into training (n = 25) and testing (n = 12) sets. Based

on R package mlr3 [25], we built an SVM model on

the training set (n = 25) with the nine proteins using

the same hyper-parameters setting (linear kernel, unit

cost of constraints violation) as previously employed

in 31 proteins of PulseDIA data and evaluated the

model on the testing set (n = 12).

2.10. Statistical and bioinformatic analyses

Statistical analysis was performed using R software

(version 3.5.1). Protein annotation was performed by

Ingenuity Pathway Analysis (IPA) and the database of

KinMap [26]. DEPs were analysed by the R package

of limma with a threshold of P value less than 0.05

and BH adjusted P value less than 0.05. Heatmap was

drawn by R package of pheatmap. Hierarchical clus-

tering after row normalization with default parameter

setting in pheatmap. Pathway enrichment was per-

formed by IPA, in which P value was calculated by

right-tailed Fisher’s exact test. Statistical significance

in the box plots was calculated by two-tailed Student’s

t-test.

3. Results

3.1. Thyroid spectral library construction

This study introduces a thyroid-specific spectral library

to support protein identification and quantification in

thyroid nodules by DIA-MS (Fig. 1). Five types of

thyroid tissues were collected, namely normal tissues,

two types of benign nodules MNG and FA, and two

types of thyroid carcinomas FTC and PTC. Normal

thyroid and thyroid nodule tissues were processed by

PCT; extracted and desalted peptides were then

combined into three different pooled samples: (a)

pooled sample containing all five types, (b) PTC

pooled sample, and (c) FA and FTC pooled sample.

The pooled peptides were fractionated in two ways,

that is, SCX or high-pH reversed-phase chromatogra-

phy, to achieve higher peptide coverage. Peptide frac-

tions were injected into HPLC-MS/MS with 60 min-

gradient using DDA-MS. We totally acquired 46

DDA files. Our thyroid-specific spectral library com-

prises 925 330 transition groups, 157 548 precursors,

121 960 peptides, 9941 protein groups and 9826 pro-

teins from proteotypic peptides (Table 1). We then val-

idated this library by four DIA datasets acquired with

four different acquisition strategies and applied it in

proteomic stratification of FA and FTC (Fig. 1).

3.2. Characteristics of thyroid spectral library

In our spectral library, the peptide precursor m/z was

between 400 Th and 1200 Th, and approximately 82%

of the precursors were between m/z of 400-850 Th

(Fig. 2A). Precursors primarily displayed two (53%)

or three (37%) charges, and their charge distributions

were comparable to those of different spectral libraries

(Fig. 2B) [27]. 82% peptides were 8–20 amino acids

long, with a median length of 14 amino acids, consis-

tent with the properties of trypsinized peptides

(Fig. 2C). We next focused on peptide modifications.

Oxidation on methionine, the most common modifica-

tion in our library, was detected in 22 853 out of

121 960 peptides. Sample preparation generated 2818

carbamidomethyled peptides at cysteine residues and

2231 N-terminal acetylated ones (Fig. 2D). A total of

7634 proteins were detected with at least three proteo-

typic peptides, and nearly half of the proteins were

found with more than 10 peptides (Fig. 2E). Addition-

ally, fragments from y ions were more frequently

detected than those from b ions due to the collision

mode (Fig. 2F). Compared with the existing spectral

libraries, our thyroid-specific spectral library includes

572 proteins and 35 384 peptides which are not cov-

ered in the published pan-human spectral library, pan-

human spectral library (PHL) [14] and DIA pan-

human spectral library (DPHL) [15] (Fig. 2G).

We next used Gene Ontology (GO) to identify the

main enriched protein categories within our library. A

total of 9826 proteins were annotated by IPA software:

the enriched protein cellular locations (red words) and

protein functions (black words) are shown in Fig. 2H.

By matching our data to the kinase database KinMap

[26], our library was found to contain 340 kinases

from seven families, accounting for 63.4% (340/536) of

the entire kinase database (Fig. 2I). Thus, our library
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provides a valuable reference for applying the DIA-

MS method to human thyroid samples.

3.3. Technical validation on four datasets

acquired by four strategies of DIA

To further validate our library, we analysed three PTC

samples, together with paired pericancer tissues. Four

datasets were then acquired with the following four

strategies: single-shot DIA (dataset 1), PulseDIA

(dataset 2), pre-fractionation DIA (dataset 3), and a

combination of pre-fractionation and PulseDIA (data-

set 4). All datasets were subsequently analysed using

Spectronaut (version 14.6) and DIA-NN (version

1.7.15) against our established thyroid tissue-specific

spectral library. The search results for the four data-

sets are shown in Fig. 3 and Fig. S1. All three tumour

tissues expressed more proteins and peptides than the

matched normal thyroid tissues (pericancer tissues),

especially at the peptide level (Fig. 3A,B). The number

of identified peptides and proteins using the single-shot

DIA were the fewest due to the relatively short gradi-

ent and the presence of a highly abundant protein,

thyroglobulin. PulseDIA and pre-fractionation DIA

led to more identifications. PulseDIA identified more

Thyroid nodules

Spectral library construction Spectral library applicationSpectral library validation

N, MNG, FA, 
FTC, and PTC

Peptides Peptides

Lysis and 
digest

Lysis and 
digest

20 fractions6 fractions

46 DDA files

6 DIA files 30 DIA files 30 DIA files 60 DIA files

925,330 transition groups
157,548 precursors
121,960 peptides

9941 protein groups
9826 proteotypic proteins

Single-shot
DIA
45 min

PulseDIA
45 min*
5 Pulses

PulseDIA
45 min * 4 Pulses

Bioinformatic analysis

Selected proteins

PRM
validation

Pre-fractionation
DIA
45 min

Pre-fractionation
PulseDIA
45 min*
2 Pulses

SpectronautTM v14.6 SpectronautTM v14.6
DIA-NN v1.7.15

DIA-NN v1.7.15

103,663 precursors
76,019 peptides

7847 protein groups
7777 proteotypic proteins

HPLC-MS/MS 60 min
DDA

Pooled PTC
samples

Pooled FA & FTC
samples

Pooled
samples

PTC (n=3)
 N* (n=3) FTC (n=22)

 FA (n =24)

Hospital DL Hospital ZY
FTC (n =19)
 FA (n =18)

by SCX

Pre-fractionation
Hospital DL Hospital ZY

...

...

20 fractions

6 samples * 5 fractions

...

...

...

Dataset 2 Dataset 3 Dataset 4

PCT PCT

Peptides

Lysis and 
digestPCT

Spectral library

Thyroid 
spectral library

Dataset 1

by high-pH
reversed-phase

HPLC

by high-pH
reversed-phase
HPLC

by high-pH
reversed-phase

HPLC

Fig. 1. Generation, validation and application of a comprehensive thyroid-specific spectral library. Left panel, generation of the spectral

library. Five types of thyroid tissues were collected and prepared for proteomic analysis using pressure cycling technology (PCT). Three

pooled thyroid samples were fractionated using strong cation exchange (SCX) or high-pH reversed-phase chromatography. Each peptide

fraction was analysed using data-dependent acquisition (DDA) MS for spectral library generation using Spectronaut v14.6. Middle panel,

validation of the spectral library. The established library was validated by four DIA data acquisition strategies. Right panel, application of

spectral library for proteomic analysis of follicular thyroid adenoma and carcinoma in a multicentre study. N*, the pericancer tissues.

Table 1. Statistics of the thyroid-specific spectral library

Library

Transition groups 925 330

Peptide precursors 157 548

Peptides 121 960

Protein groups 9941

Proteotypic proteins 9826

1616 Molecular Oncology 16 (2022) 1611–1624 ª 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies.

Identification of a new type of Z,E-mixed prenyl reductase Y. Sun et al.



(A)

(D)

(H)

(G)

(I)

(B)

(E)

(C)

(F)

0

1000

2000

3000

400 600 800 1000 1200
m/z of peptide precursors

C
ou

nt
 o

f p
re

cu
rs

or
s

741

83 567

57 704

13 505

1982 490

20 000

40 000

60 000

80 000

1 2 3 4 5 6
Charge states of peptide precursors

C
ou

nt
 o

f p
re

cu
rs

or
s

0

2500

5000

7500

10 20 30 40 50
Peptide length

C
ou

nt
 o

f p
ep

tid
es

22,853

2231 2818

0

5000

10 000

15 000

20 000

Ace
tyl

 (P
rot

ein
 N

−te
rm

)

Carb
am

ido
meth

yl

Oxid
ati

on
 

C
ou

nt
 o

f p
ep

tid
es

 (C
ys

tei
ne

)

Nucleus

Plasma membrane

Cytokine

Enzyme

Cytoplasm

Other

Other

Ligand−dependent
nuclear receptor

Kinase
Ion channel

Growth factor

G-protein coupled
receptor

Peptidase
Phosphatase

Extracellular space

Transporter
Transmembrane receptor
Translation regulator

Transcription regulator

TK

CMGC

CAMK

AGC

CK1

STE

TKL

(M
eth

ion
ine

) 0e+00

2e+05

4e+05

6e+05

b y
Fragment type

Fr
ag

m
en

ts

189,918

735,412

0

2500

5000

7500

10 000

Library

C
ou

nt
 o

f p
ro

te
in

s

Proteotypic peptides
per protein (Count)

11 (3716)
10 (314)
9 (382)
8 (395)
7 (422)
6 (479)
5 (554)
4 (619)
3 (753)
2 (934)
1 (1257)

Thyroid-specific 
spectral library

DPHL

PHL

35,384
23,130

Peptides

558,139

14,475

48,971

44,324

41,360

572
708

993

387

8159

1081

694

Thyroid-specific 
spectral library DPHL

PHL

Proteins

(FRMD3)

CA4
ITIH5
GMIP
PTPRE
KPNA2
GPD1

LRP4
SMOC2
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peptides than pre-fractionation DIA, but a comparable

number of proteins. The combination of pre-

fractionation and PulseDIA generated the best results

at both peptide and protein levels: 65 544 peptides and

7863 proteins. DIA-NN results (Fig. S1) were similar

to the results searched by Spectronaut. These results

showed that a longer gradient allows the detection of

more peptides and proteins.

We next calculated the coefficient of variation (CV)

of peptides and proteins abundance to evaluate the

quality of these datasets. The median peptides CVs

were less than 0.05 for all datasets (Fig. 3C). Similarly,

the median protein CVs were all less than 0.04

(Fig. 3D). These results indicate that all four datasets

performed well, as the quantitative differences were

negligible. Thus, our spectral library is a valuable

resource and provides a robust reference for proteomic

exploration of thyroid disease.

3.4. Proteomic analysis of FA and FTC samples

Next, we compared the proteomes of 46 follicular

tumour samples for FA (n = 24) and FTC (n = 22),

by PCT-PulseDIA and DIA-NN against the thus

established thyroid spectral library. Two randomly

selected samples from the 46 samples were treated as

technical replicates and analysed twice. With the

library, we identified 103 663 peptide precursors,

76 019 peptides and 7847 protein groups, and 7777

proteins. In all, 7643 of 7777 (98.3%) were identified

in both FA and FTC (Fig. 4A). t-Distributed

Stochastic Neighbour Embedding (t-SNE) analysis

showed FA and FTC could not be distinguished by

their global proteomes (Fig. 4B). Furthermore, a ser-

ies of quality control analyses showed that we

obtained high-quality data with negligible artificial

and biological bias (Fig. S2).

We next identified DEPs between the two sample

types. There were 204 DEPs comprising 139 upregu-

lated proteins, 56 downregulated proteins and 9 pro-

teins that could be only detected in FTC (Fig. 4C).

Five of 204 DEPs were matched with the list of 345

prognosis-related genes of thyroid cancer analysed by

The Cancer Genome Atlas (TCGA) transcriptome

data. Next, we exhibited the expression of the top six

substantially dysregulated proteins in box plots

(Fig. 4D). Furthermore, we performed pathway

enrichment analysis of the 204 DEPs. The most active

pathway was the ferroptosis signaling pathway

(Fig. 4E).

(A)

(C)

(B)

(D)

23 618

47 894

59 428
65 544

23 027

57 392

45 988

63 186

9096

29 269 30 484

44 924

0

20 000

40 000

60 000

All Tumors Normal thyroid
(Tumor adjacent tissues)

C
ou

nt
 o

f p
ep

tid
es

Label Dataset 1

CV of peptide intensity

Dataset 2 Dataset 3 Dataset 4

3191

6742 6687

7863

3150

66246696

7805

2002

5183
5746

7118

0

2000

4000

6000

8000

All Tumors Normal thyroid
(Tumor adjacent tissues)

C
ou

nt
 o

f p
ro

te
in

s

0.
0

0.
4

0.
8

1.
2

Dataset 1
Dataset 2

Dataset 3
Dataset 4

N_CV

C
V

 

0.
0

0.
5

1.
0

1.
5 T_CV

C
V

Dataset 1
Dataset 2

Dataset 3
Dataset 4

CV of protein intensity

0.
0

0.
4

0.
8

1.
2 T_CV

C
V

Dataset 1
Dataset 2

Dataset 3
Dataset 4

0.
0

0.
5

1.
0

1.
5 N_CV

C
V

Dataset 1
Dataset 2

Dataset 3
Dataset 4

Fig. 3. Results from a technical validation of our thyroid-specific spectral library searched by Spectronaut. Four datasets were acquired with

single-shot DIA (dataset 1), PulseDIA (dataset 2), pre-fractionation DIA (dataset 3) and a combination of pre-fractionation and PulseDIA

(dataset 4). Identified (A) peptides and (B) proteins were obtained by searching against our thyroid-specific spectral library. Coefficient of

variation of (C) peptides and (D) proteins abundance in tumours (T_CV) and their pericancer tissues (N_CV).

1618 Molecular Oncology 16 (2022) 1611–1624 ª 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies.

Identification of a new type of Z,E-mixed prenyl reductase Y. Sun et al.



Moreover, we selected 31 proteins from the 204

DEPs to distinguish FTC and FA by geNetClassifier.

Unsupervised clustering heatmap for Pearson correla-

tion coefficients showed that FA and FTC were well

separated based on the expression of the 31 proteins

(Fig. 4F).

To further verify the reliability of differentially

expressed and characteristic proteins from SVM, we

collected another dataset from an independent hospital

and detected the peptides from the selected proteins by

PRM, a targeted proteomic strategy. From the 37 pro-

teins (six proteins from DEPs and 31 proteins from

(A)

(B)

(C) (D)

(E) (F)

7777 proteins

t-SNE

Group FA FTC

FA FTC

19
(0.2%)

115
(1.5%)

7643
(98.3%)

16

18

20

LGALS9 (P = 5.3e−07)

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

12

14

16

18
GMIP (P = 2.6e-04)

MVP (P = 3.2e−05)

18
19
20
21
22
23

15

17

19

21

CA4 (P = 2.9e−05)

18

20

22
ITIH5 (P = 7.9e−05) 

FA

FTC

16

18

20

ACE (P = 5.2e−05)

Group Correlation

FA FTC
−0.5 0 0.5 1

0

2

4

6

−3 −2 −1 0 1 2 3
log2 (fold change, FTC/FA)

lo
g1

0 
(P

 v
al

ue
)

Up-regulated proteins 
Matched with TCGA

Down-regulated proteins
Matched with TCGA

LGALS9

GMIP

CA4

ACE

ITIH5

MVP
MATN2

DPP4

COLEC12

FRMD3NPC2

−30

−20

−10

0

10

20

−10 0 10

-log10 (P value)
0 1 2 3 4 5

Ingenuity Canonical Pathways

Ephrin Receptor Signaling
Neuroinflammation Signaling Pathway

LXR/RXR Activation
VEGF Family Ligand-Receptor Interactions

VEGF Signaling
Endocannabinoid Developing Neuron Pathway

Estrogen Receptor Signaling
Ephrin B Signaling

Fc Epsilon RI Signaling
Actin Cytoskeleton Signaling

Endothelin-1 Signaling
Synaptic Long Term Depression

 HIF1α Signaling
Leukocyte Extravasation Signaling

IL-8 Signaling
Hepatic Fibrosis Signaling Pathway

 Fcγ Receptor-mediated Phagocytosis
in Macrophages and Monocytes

Xenobiotic Metabolism General Signaling Pathway
Tumor Microenvironment Pathway

Ferroptosis Signaling Pathway

0.5
1.0
1.5
2.0
2.5

z-score
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Venn diagram shows 98.3% overlap of protein identification between FA and FTC. (B) The t-SNE plot shows FA and FTC cannot be
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geNetClassifier) detected by PRM, nine proteins were

confirmed to be significantly dysregulated (adjusted P

value < 0.05) in the new sample set, which was

matched with the PulseDIA data as described above

(Fig. 5A,B). Subcellular location and averaged expres-

sion in each group of the nine proteins are shown in

Fig. S3A. Four of nine proteins are located in the

membrane and four proteins are enzyme or phos-

phatase. The fold changes and adjusted P values of

the two-group comparison for the nine proteins are

listed in Table 2.

To validate the performance of the nine characteris-

tic proteins acquired by PRM on distinguishing FA

and FTC, we trained a SVM classifier using the same

hyper-parameters setting as previously employed for

the 31 proteins of PulseDIA data. The model achieved

an AUC of 0.963 and an accuracy of 91.7% on the

testing set (Fig. S3B). Furthermore, FA and FTC sam-

ples were satisfactorily separated in the t-SNE plot

based on the nine proteins (Fig. S3C). Our data sug-

gest that these nine proteins are promising biomarkers

for distinguishing FA and FTC tumours.

4. Discussion

Differential diagnosis of benign and malignant follicu-

lar thyroid tumours, that is, FA and FTC, remains a

great challenge. Histologically, the benign and malig-

nant tumour cells are identical under microscopy, and

no genomic aberrancy has been identified to distin-

guish them. In this study, we analysed the proteome of

FA and FTC with a goal to explore whether there are

differentially expressed proteins that can be used to

separate them. The proteome of thyroid tumours has

been understudied compared to many other common

tumours. In the literature, up to 2682 proteins have

been characterized for thyroid tumours [28]. Here, we

present a thyroid-specific spectral library that com-

prises 925 330 transition groups, 157 548 precursors,

121 960 peptides, 9941 protein groups and 9826 pro-

teins from proteotypic peptides, which largely expands

our understanding of proteins expressed in thyroid

tumours. Compared with the existing pan-human spec-

tral libraries, our thyroid-specific spectral library

includes 572 proteins and 35 384 peptides which are

not covered in those libraries [14,15] (Fig. 2G). This

thyroid-specific spectral library offers a specific and in-

depth spectral resource for studying the proteome of

thyroid tissues, allowing exploration of potential pro-

teins differentiating FA and FTC.

Then we analysed the proteome of 24 FA and 22

FTC tumours using PulseDIA and this spectral

library, leading to characterization of 7777 proteins, in

which 204 DEPs were identified. Of these, three pro-

teins were reported as relevant for FTC, namely, car-

bonic anhydrase 4 (CA4) [29], inter-alpha-trypsin

inhibitor heavy chain H5 (ITIH5) [30] and

angiotensin-converting enzyme (ACE) [31]. Three pro-

teins have not previously been associated with FTC,

but are related to thyroid function or other types of

cancer, namely, major vault protein (MVP) [32],

GEM-interacting protein (GMIP) [33] and galectin-9

(LGALS9) [34]. Furthermore, the pathway enrichment

analysis of the 204 DEPs shows that the ferroptosis

signaling pathway is the most active pathway

(Fig. 4E), which has not been associated with FTC

but reported in other types of cancers [35]. Ferroptosis

was first proposed as a novel mechanism of cell death,

which suggests a perspective in cancer therapeutics.

Ferroptosis is associated with the tumour immune

microenvironment and other enriched pathways, such

as tumour microenvironment pathway, leukocyte

extravasation signaling and IL-8 signaling [36].

Next, we prioritized 31 proteins to distinguish FA

and FTC using geNetClassifier. Together with top six

DEPs, we employed PRM to check the expression of

these 37 protein candidates in an independent sample

set, containing 18 FA and 19 FTC samples, from a

different hospital. Nine proteins were confirmed in this

independent sample set. Three of the nine proteins

have been involved in FTC. Higher expression of

SPARC-related modular calcium binding 2 (SMOC2),

a secreted protein, in FA than in FTC has been

observed using tissue microarrays (TMA) [37]. More-

over, the high mRNA expression of SMOC2 was asso-

ciated with better outcomes in patients with PTC [37].

ITIH5 is a member of inter-alpha-trypsin inhibitor

(ITI) family, which functions as a tumour suppressor

in breast cancer [38] and thyroid cancer [39]. Further-

more, Pfeifer et al. built up a five-gene-based classifier

based on mRNA expression to distinguish FA and

FTC, and ITIH5 was a member of the panel [30].

Downregulated expression of CA4 in FTC was

reported in a sample set of 26 FTC and 53 FA [29], in

Fig. 5. PRM-MS analysis for nine selected proteins. (A) A representative peak group chromatography of a peptide precursor (left) and a box

plot (right) showing the protein abundance in FA and FTC. Statistical significance was calculated by two-tailed Student’s t-test. (B) Heatmap

showing the z-score scaled expression of nine proteins in each sample, and the average expression of nine proteins in 18 FA and 19 FTC.
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consistent with our observation here. Two of the nine

proteins were reported to be modulated in PTC,

namely, LDL-receptor-related protein 4 (LRP4) and

protein tyrosine phosphatase receptor type E

(PTPRE). LRP4 was found significantly upregulated

in PTC compared with normal thyroid tissues by gene

chip and validated by quantitative polymerase chain

reaction (qPCR) [40]. The mRNA level of LRP4 has

been utilized to construct a panel to distinguish PTC

from normal thyroid tissue [40]. PTPRE was upregu-

lated in PTC compared with normal thyroid tissue

based on TCGA dataset [41]. The remaining four pro-

teins have not been reported in thyroid cancer, await-

ing further investigation.

5. Conclusion

In conclusion, we present a comprehensive spectral

library for DIA and PRM analysis of thyroid tissue

samples and identified nine characteristic proteins that

can be used to separate FA and FTC. Further valida-

tion of these potential biomarkers in independent

cohorts is required in future studies.
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