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The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested
interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly,
such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop.
In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure
for each decoupled loop. The paper’s main objective is to develop a parameterization technique for decoupling and control
schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization
(BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops.
This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging
algorithms. According to the simulation results, this hybridized technique ensures lowmathematical burdens and high decoupling
and control accuracy.Moreover, the behavior analysis of the proposedBELBIC shows a remarkable improvement in the timedomain
behavior and robustness over the conventional PID controller.

1. Introduction

Controller design for multi-input multiple-output (MIMO)
systems is of significant importance, as they constitute the
majority of physical systems. However, the design of such
controllers is confronted with the challenge to overcome
the influence of the nested interrelationship between system
inputs and outputs. Based on the level of interrelationship
between system inputs and outputs, the control structure
is to be selected. The systems, which are characterized
with moderate interaction between control loops, can be
controlled with the decentralized control structure so that a
single controller is assigned for each control loop [1–5]. On
the other hand, a centralized controller has to be designed for
systemswith higher level of interrelationship between control
loops [6–9], so that a central matrix of controllers is allocated
for the whole MIMO system. In spite of this, the central-
ized controllers are not widely utilized due to their high

complexity. Alternatively, the issue of high interrelationship
can be alleviated by decoupling the MIMO system into sev-
eral relatively independent single-input single-output (SISO)
control loops [10–15]. Accordingly, the multivariable process
can be controlled based on independent loop structure. In
this paper, the decoupled control structure is utilized for
controlling the presentedMIMOsystem. For the decoupler to
be designed, the adequate input-output pairings are primarily
determined through the evaluation of the system relative
gains [16–19]. Accordingly, the decoupling network has to
be designed, so that the interaction between control loops
is minimized [20, 21]. For control purposes, conventional
control schemes as PID can be utilized [22–24]. It is to
mention that the nonlinearity and the model imprecision
that characterize the majority of physical systems reduce the
robustness and accuracy of such controllers.

Control design approaches based on intelligent algo-
rithms as fuzzy logic, neural network, and genetic algorithms
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are of increasing spread due to their proven ability to over-
come system model uncertainty [25–27]. The computational
model of emotional learning in mammalian brain, which
is introduced in [28, 29], inspired a new learning algorithm.
Afterwards, this learning technique is deployed in the system
control design presenting the novel Brain Emotional Learn-
ing Based Intelligent Controller (BELBIC) [30]. Thus, the
Brain Emotional Learning Based Intelligent Controller (BEL-
BIC) has shown robustness in the control of the nonlinear
and uncertain systems such as VanDer Pol oscillator, Duffing
forced oscillator and automatic self-balancing scale [31],
washing machine [32], microheat exchanger [33], switched
reluctance motor [34], unmanned aerial vehicle [35], path
tracking of a vehicle [36], two-coupled distillation column
process [37], multiple-area power systems [38], and contin-
uous stirred tank reactor [39, 40].

The parameterization of the decoupling compensation
network and the BELBIC are still open research topics.
Currently, the detailed analytical methods used in purpose of
the parameterization of the decoupling compensation net-
work cost excessive mathematical burdens. Regarding the
parameterization of BELBIC, the trial and error is widely used
for controller parameters estimation. Thus, the utilization of
various optimization techniques based on artificial intelli-
gence introduces an efficient alternative in both cases [11, 37].

The utilization of the biologically inspired algorithms as
Ant Colony Optimization (ACO) [41], Genetic Algorithm
(GA) [42], and Particle Swarm Optimization (PSO) [43, 44]
in optimization problems constitutes currently a promis-
ing solution. Recently, the new evolutionary computation
technique depending on the behavior of foraging of E. coli
bacteria, which is named as Bacterial Foraging Optimization
Algorithm (BFOA), is proposed by [45]. This technique has
been successfully deployed in many applications as power
systems [46–49], stockmarket prediction [50, 51], and design
of PI/PID controllers [52, 53].The key drawback of the BFOA
is the delay in reaching the global solution because it is
based on random searching directions. For this delay to be
overcome, the BFOA is integrated with the Particle Swarm
Optimization (PSO) technique, introducing the Bacterial
SwarmOptimization (BSO) algorithm [54]. One of themajor
characteristics of PSO technique, which is inherited to the
BSO algorithm, is the idea of velocity updating. Accordingly,
the process of searching for the global solution in the
BSO technique depends on the individual and global best
positions concurrently. As discussed in [55–58],TheBacterial
Swarm Optimization (BSO) algorithm grants better perfor-
mance in determining the optimum solution compared with
PSO and BFOA algorithms.

This research paper aims to investigate the feasibility of
applying the Bacterial Swarm Optimization (BSO) algorithm
in the field of MIMO control system. As an example for
MIMO system the two-coupled distillation column is to be
studied. Primarily, the mathematical model of the system is
decoupled into several independent loops. The parameters
of the decoupling compensation network are determined
based on the summation minimization of the integral time-
weighted squared outputs (ITSOs) of unpaired outputs

regarding a particular input. In this regard, the BSO tech-
nique is utilized. On the other hand, an optimal BELBIC is
designed for each decoupled control loop through the sum-
mation minimization of the integral time-weighted squared
errors (ITSEs) of all loops using BSO as well. For the com-
parison purpose the PID controller is also implemented for
the same application, so that the strength of each of consid-
ered control structures can be studied.

2. Two-Coupled Distillation Column Process

As formerly stated, the two-coupled distillation column is
handled in this paper as an example of MIMO system. In this
section, the physical system is discussed. Primarily, the
function of the system and its components are presented.
Afterwards, the system mathematical modeling and decou-
pling are handled.

2.1. System Description. Distillation units are mainly utilized
for the separation of fluid mixture components. The distilla-
tion column major components can be listed as follows:

(i) A vertical shell in which the separation of fluid
substances is accomplished

(ii) A cascade of trays for improving component separa-
tion

(iii) A reboiler for maintaining the required heat energy
for the distillation process

(iv) A condenser for liquefying the vapor leaving the
column

(v) A reflux drum in which portion of the condensed
liquid is recycled back to the vertical shell.

The physical process considered in this research com-
prises two-coupled distillation columns as shown in Figure 1.
Thereby, ternary petrochemical mixtures can be separated.
While the main glass column is composed of 40 bubble cap
trays excluding those of the boiler and condenser, the side
glass column contains 10 bubble cap trays. At the 22nd stage,
the system intake port is located, at which the fluid mixture
is to be fed. The three separated fluid components are to be
extracted from the process, so that the heaviest and the
lightest components can be provided from the bottom and
the top of themain column, respectively, and the intermediate
component is derived from the top of the side column.

2.2. Mathematical Modeling of the Two-Coupled Distillation
Column. Primarily, the manipulated variables are to be
determined. Thus, the selected manipulated variables are the
heat input to the reboiler (QE), the vapor flow rate in the
vapor transfer line (SAB), the reflux ratio in themain column
(RL1), and the reflux ratio in the second column (RL2) [59].
Regarding the system technical constraints, the input heat
energy rateQE and the vapor flow rate SABhave to not exceed
the values 8.2 KW and 3.95m3/h, respectively, in order to
avoid flooding of the smaller side column [59]. Secondly, the
controlled values are selected to be the fluid temperature at
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Figure 1: The two-coupled distillation columns process.

four different stages. The selection of these stages is based on
the following requirements:

(i) The temperatures should be sensitive to the major
disturbances as changes in feed rate and feed concen-
trations.

(ii) The temperatures should exhibit a fairly linear behav-
ior.

(iii) They should be a good indication of product quality.

Accordingly, the temperature at the 11th, 30th, 34th, and
48th trays are chosen to form the controlled variables [59].
The mathematical model of realistic two-coupled distillation
column, mentioned in [59], is to be used in this research.The
transfer function matrix of the considered MIMO system is
stated in (1).

𝐺 (𝑠) =
[[[[[[[[[[
[

2.61.69𝑠 + 1 −6.0983.5𝑠 + 1 −4.99 (0.2𝑠 + 1)(4.5𝑠 + 1) (0.06𝑠 + 1) 0.0713.5𝑠 + 17.32 (1.05𝑠 + 1)(10.4𝑠 + 1) (0.14𝑠 + 1) −1.450.4𝑠 + 1 −1.57 (0.23𝑠 + 1)(1.34𝑠 + 1) (0.2𝑠 + 1) −0.141.92𝑠 + 14.6 (0.53𝑠 + 1)(2.78𝑠 + 1) (0.09𝑠 + 1) −2.37 (0.23𝑠 + 1)(2𝑠 + 1) (0.3𝑠 + 1) −2.71.75𝑠 + 1 −0.36 (0.02𝑠 + 1)(2.47𝑠 + 1) (0.04𝑠 + 1)2.110.92𝑠 + 1 −2.11 (0.06𝑠 + 1)(2.38𝑠 + 1) (0.05𝑠 + 1) −1.752.16𝑠 + 1 −0.3 (1.89𝑠 + 1)(4.35𝑠 + 1) (0.16𝑠 + 1)

]]]]]]]]]]
]

. (1)

As shown in the transfer function matrix, the physical
system is characterized by the high interrelationship between
all system inputs and outputs. As discussed in the introduc-
tion, the control structure adopted in this paper is based
on the mathematical model decoupling, so that each output
is independently controlled by a single input, forming four
independent SISO control loops.

Primarily, the noninteracting design is preceded by a
relative gain analysis to determine the most suitable input-
output pairings. In this regard, the relative gain array (RGA)

method is used. Afterwards, a decoupling compensation
network is designed for the reduction of residual interactions
[11].

2.2.1. The Relative Gain Array. The RGA matrix for 𝑁 × 𝑁
system represented in (2) is used for the valuation of the input
influences on each system output [16–19], so that output “𝑖”
is to be paired with input “𝑗” for which 𝛾𝑖𝑗 is a positive value
and as close to unity as possible.
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Figure 2: The decoupled MIMO system including controllers.

RGA𝑁×𝑁 = [𝐺 (𝑠 = 0)] ⋅ ∗ [𝐺 (𝑠 = 0)]−𝑇

=
[[[[[[
[

𝛾11 𝛾12 ⋅ ⋅ ⋅ 𝛾1𝑁𝛾21 𝛾22 ⋅ ⋅ ⋅ 𝛾2𝑁... ... ...
𝛾𝑁1 𝛾𝑁2 ⋅ ⋅ ⋅ 𝛾𝑁𝑁

]]]]]]
]
, (2)

where 𝐺(𝑠) is the transfer function matrix of the MIMO
process and “⋅∗” operator implies element by element mul-
tiplication.

2.2.2. Decoupling Compensation Network Design Procedure.
The steady state decoupling compensation matrix illustrated
in (3) is to be integrated into the given MIMO system in
the way demonstrated in (4), so that interrelationships
between each input and unpaired outputs is minimized [20,
21]. In this paper, the simplest form of the decoupling com-
pensationmatrix introduced in the previous study [11], which
has unity diagonal elements, is replacedwith the general form

presented in (3). This modification introduces a remark-
able improvement in the system response as discussed in
Section 5. Figure 2 illustrates the decoupling compensation
network scheme integrated with the required controllers.

Λ ss =
[[[[[[
[

𝜆11 𝜆12 𝜆13 ⋅ ⋅ ⋅ 𝜆1𝑁−1 𝜆1𝑁𝜆21 𝜆22 𝜆23 ⋅ ⋅ ⋅ 𝜆2𝑁−1 𝜆2𝑁... ... ... ... ...
𝜆𝑁1 𝜆𝑁2 𝜆𝑁3 ⋅ ⋅ ⋅ 𝜆𝑁𝑁−1 𝜆𝑁𝑁

]]]]]]
]
, (3)

[𝑌 (𝑠)] = [𝐺 (𝑠)] [Λ ss] [𝑊 (𝑠)] , (4)

where [𝑌(𝑠)] is the output vector, [𝑊(𝑠)] is the input vector,[𝐺(𝑠)] is the transfer function matrix of the MIMO process,
and [Λ ss] is the steady state decoupling compensationmatrix
of MIMO process.

2.2.3. Fitness FunctionDesign. Asdiscussed in the former two
sections, the determination of the adequate system input/



Computational Intelligence and Neuroscience 5

output pairing as well as the elements’ values of the decou-
pling compensationmatrix define the effectiveness of interre-
lationship minimization between system inputs and outputs.
The selection of the proper input/output pairing is already
tackled by the relative gain array concept. For the elements’
values of the decoupling compensationmatrix to be estimated
using optimization techniques, the fitness functions have
to be designed that minimize the interrelationship between
system inputs and their unpaired outputs.

The four commonly used performance criteria for fitness
function design are the integral absolute error (IAE), integral
squared error (ISE), integral time-weighted squared error
(ITSE), and Integral time-weighted absolute error (ITAE). It’s
to mention that in the context of decoupling system design,
the performance criteria are concerned with the minimiza-
tion of the system outputs towards the unpaired inputs
rather than control system error. Accordingly, the corre-
sponding criteria are integral absolute output (IAO), integral
squared output (ISO), integral time-weighted squared output
(ITSO), and Integral time-weighted absolute output (ITAO).
Although the criteria ISO and IAO grant less overshoot in the
system dynamics, none of these criteria is adopted in this
research due to the long settling time [56]. This drawback
could be overcome by utilizing the ITAO. However, this cri-
terion is not used in this research for the difficulty of its ana-
lytical tracking [60]. Thus, the ITSO performance criterion
is employed in this work for ensuring the minimization of
settling time without being confronted with unnecessary
analytical complications.

In the former research [11], the decoupling compensation
matrix elements are estimated by applying the PSO technique,
so that the integral squared outputs (ISOs) of unpaired
outputs with respect to a specific input are minimized. On
the other hand, the proposed technique in this paper is based
on the minimization of the integral time-weighted squared
outputs (ITSOs) by utilizing the BSO technique.

The integral time-weighted squared outputs (ITSOs) for
each input are calculated such that

if𝑊1(𝑠) = 1/𝑠 and𝑊2,𝑊3, . . . ,𝑊𝑁 are zeroes, then
ITSO11 = ∫∞

0
𝑡 {𝑌1}2 ⋅ 𝑑𝑡,

ITSO21 = ∫∞
0

𝑡 {𝑌2}2 ⋅ 𝑑𝑡,
...

ITSO𝑁1 = ∫∞
0

𝑡 {𝑌𝑁}2 ⋅ 𝑑𝑡
(5)

and if 𝑊2(𝑠) = 1/𝑠 and 𝑊1,𝑊3, . . . ,𝑊𝑁 are zeroes,
then

ITSO12 = ∫∞
0

𝑡 {𝑌1}2 ⋅ 𝑑𝑡,
ITSO22 = ∫∞

0
𝑡 {𝑌2}2 ⋅ 𝑑𝑡,

...
ITSO𝑁2 = ∫∞

0
𝑡 {𝑌𝑁}2 ⋅ 𝑑𝑡.

(6)

Consecutively, if 𝑊𝑁(𝑠) = 1/𝑠 and 𝑊1,𝑊2, . . . ,𝑊𝑁−1
are zeroes, then

ITSO1𝑁 = ∫∞
0

𝑡 {𝑌1}2 ⋅ 𝑑𝑡,
ITSO2𝑁 = ∫∞

0
𝑡 {𝑌2}2 ⋅ 𝑑𝑡,

...
ITSO𝑁𝑁 = ∫∞

0
𝑡 {𝑌𝑁}2 ⋅ 𝑑𝑡.

(7)

Thus the fitness function for specific input 𝑊𝑗 can be
described as follows:

Fitness𝑗 = 𝑁∑
𝑖=1

ITSO𝑖𝑗, 𝑗 = 1, 2, 3, . . . , 𝑁, 𝑖 ̸= 𝑞, (8)

where 𝑖 is the specific output subscript, 𝑗 is the specific input
subscript, and 𝑞 is the subscript of the output that has been
paired with input 𝑗.
3. Controlling of Two-Coupled

Distillation Column Process

In this section, the proposed BELBIC and the conventional
PID controller are handled regarding the control structure.

3.1. Brain Emotional Learning Based Intelligent Controller
(BELBIC) Model. As formerly stated, the considered MIMO
system is to be split into several decoupled SISO systems with
theminimumpossible interrelationship between them.Thus,
each of these systems can be independently controlled. In this
research, the BELBIC adaptive control structure is utilized for
each single control loop.This control structure is based on the
functional model of brain emotional learning introduced by
[28, 29]. Over the past decade, this control scheme has
proven its robustness in many complex control applications
[31–40]. Apart from the application in control systems, the
computational model of brain emotional learning in its
discrete and continuous form is discussed here, respectively.
Afterwards, the methodology of the proposed BSO-BELBIC
scheme, which assigns one BELBIC for each decoupled loop,
is presented.

The emotional learning computational model designed
by [28, 29] is graphically illustrated in Figure 3. In mam-
malian brains, the emotional learning process occurs in a
part of the brain called the limbic system, which consists of
fourmain components corresponding to the amygdala, orbit-
ofrontal cortex, thalamus, and the sensory cortex. As shown
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in the figure, sensory input signals are primarily passed to the
thalamus model, which relay the sensory information from
the peripheral sensory systems to the sensory cortices. More-
over, the sensory input maximum value is passed directly to
the amygdala for the fast response to be insured. Then, the
available sensory data are to be processed by sensory cortex
model. Hence, highly analyzed data are to be sent to the
amygdala and orbitofrontal cortex models. The emotional
evaluation of stimuli and the formulation of long-term
memories are carried out by the amygdala. Finally, the
orbitofrontal cortex is supposed to inhibit inappropriate
responses from the amygdala.

The outputs of the model two major components amyg-
dala and orbitofrontal cortex are described in (9) and (10),
respectively. The feedback element MO󸀠 is defined in (11) as
the subtraction of the orbitofrontal cortex inhibitory outputs
(𝑂𝑖) from the summation of amygdala nodes (𝐴 𝑖) excluding𝐴 th node. As illustrated in relation (12), the output (MO)

of the brain emotional learning model (BEL) constitutes the
subtraction of the orbitofrontal cortex inhibitory outputs (𝑂𝑖)
from the summation of amygdala nodes (𝐴 𝑖) including the𝐴 th node.

𝐴 𝑖 = 𝑆𝑖𝐺𝐴𝑖, (9)

𝑂𝑖 = 𝑆𝑖𝐺𝑂𝑖, (10)

MO󸀠 = ∑
𝑖

𝐴 𝑖 −∑
𝑖

𝑂𝑖 (excluding 𝐴 th node.) , (11)

MO = ∑
𝑖

𝐴 𝑖 −∑
𝑖

𝑂𝑖 (including 𝐴 th node.) , (12)

where 𝑆𝑖 forms the 𝑖th sensory input, and 𝐺𝐴 and 𝐺𝑂 are the
plastic connection weights of the amygdala and orbitofrontal
cortex, respectively. These plastic connection weights are
responsible for the emotional change towards specific object
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characteristics.Thus, they constitute the adaptive component
in the model structure, as their values are to be updated
continuously. While the formulas (13) and (14) represent the
discrete form for the change in plastic connection weights,
(15) and (16) constitute the continuous one. It is to mention
that the continuous form is utilized in this research.

Δ𝐺𝐴𝑖 = 𝛼(𝑆𝑖max[[0,Rew −∑
𝑗

𝐴𝑗]]) , (13)

Δ𝐺𝑂𝑖 = 𝛽 (𝑆𝑖 [MO󸀠 − Rew]) , (14)

𝑑𝐺𝐴𝑖𝑑𝑡 = 𝛼 ⋅ 𝑆𝑖 ⋅ (Rew − 𝐴 𝑖) , (15)

𝑑𝐺𝑂𝑖𝑑𝑡 = 𝛽 ⋅ 𝑆𝑖 ⋅ (𝐴 𝑖 − 𝑂𝑖 − Rew) , (16)

where 𝛼 and 𝛽 are learning rate constants, and the symbol
Rew forms the reward signal. The operator “max” in the
formula (13) is the responsible formaintaining themonotonic
learning change of amygdala. This characteristic models the
incapability of the amygdala to unlearn the formerly learned
emotions [28, 29]. In the continuous form, the operator
“max” is eliminated for analytical simplicity [61].

The BELBIC internal structure as well as its interface
with the controlled physical plant is illustrated in Figure 4.
As shown, sensory input block as well as the reward signal
builder manipulates orbitofrontal cortex and amygdala based
on the control error signal according to (17) and (18), respec-
tively.

𝑆 = 𝐾 ⋅ 𝑒, (17)

Rew = 𝐾𝑝 ⋅ 𝑒 + 𝐾𝑖 ⋅ ∫ 𝑒 ⋅ 𝑑𝑡 + 𝐾𝑑 ⋅ 𝑑𝑒𝑑𝑡 , (18)

where 𝐾, 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 besides the learning rate constants
(𝛼 and 𝛽) constitute the controller parameters, which charac-
terize the controlled dynamic system behavior.

The BELBIC parameterization is one of the current
challenges confronting such a novel control structure. In this
regard, the utilization of optimization techniques like Particle
Swarm Optimization (PSO) has shown a robust behavior
[37]. In the frame of this research, the feasibility of applying

the Bacterial Swarm Optimization (BSO) algorithm regard-
ing the tuning process of BELBIC parameters is to be inves-
tigated. As mentioned in the previous section, the integral
time-weighted squared errors (ITSEs) of all control loops are
selected to be minimized rather than the integral-squared-
errors (ISEs) for its faster settling response. Accordingly, the
fitness function is represented in (19).

Fitness function = ∫∞
0

𝑡 (𝑇30 desired − 𝑇30)2 ⋅ 𝑑𝑡
+ ∫∞
0

𝑡 (𝑇11 desired − 𝑇11)2 ⋅ 𝑑𝑡
+ ∫∞
0

𝑡 (𝑇34 desired − 𝑇34)2 ⋅ 𝑑𝑡
+ ∫∞
0

𝑡 (𝑇48 desired − 𝑇48)2 ⋅ 𝑑𝑡.

(19)

Twenty-four parameters (six for each loop) should be
tuned simultaneously with the aim of minimizing the fitness
function.

3.2. PID Control. Themain terms that constitute the conven-
tional PID controller are the proportional, the integral, and
the derivative terms.The three terms are added to each other
as shown in Figure 5. The transfer function of the conven-
tional PID controller is stated in (20).

𝐺𝑐 (𝑠) = 𝐾𝑝 + 𝐾𝑖𝑠 + 𝑠𝐾𝑑, (20)

where𝐾𝑝,𝐾𝑖, and𝐾𝑑 are proportional gain, integral gain, and
a derivative gain, respectively.

The Bacterial Swarm Optimization (BSO) algorithm is
utilized regarding the parameterization of PID controllers
with the same policies as BELBICs.

4. Bacterial Swarm Optimization Algorithm

Bacterial Swarm Optimization Algorithm (BSO) forms a
hybrid between two efficient optimization techniques. These
algorithms are the Particle Swarm Optimization (PSO) and
the Bacterial Foraging Optimization Algorithm (BFOA).
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Figure 5: Block diagram of the conventional PID controller.

PSO is a stochastic optimization approach inspired from
the behavior of the flock of birds, insects, and fish. Every
single particle in the search space adjusts its own direction
based on its own experience as well as the experience of the
most successful particle in the swarm [43, 44]. Nevertheless,
the optimization technique based on the PSO algorithmmay
lead to entrapment in local optimum solution rather than
catch the global one due to the rapidity and simplicity of the
algorithm [62].

On the other hand, BFOA is a new bio-inspired algorithm
depending on foraging behavior of Escherichia coli (E. coli)
bacteria [45]. Bacteria have the tendency to group around the
nutrient-rich regions by the activity named chemotaxis. The
bacteria which fail to reach nutrient-rich areasmay die due to
the nutrient lack. However, the ones that survived reproduce
the next generation in nutrient-rich areas. Once the current
living environment becomes inconvenient to the bacteria,
it tends to disperse randomly to search for an alternative
environment. Consequently, the optimization technique that
simulates the foraging behavior of these bacteria requires a
long time for achieving the global optimum solution due to
the dependence on random search directions [57].

The time consumed by BFOAfinding the global optimum
solution can be reduced by granting the E. coli bacteria the
ability of exchanging social information.This ability is inher-
ited from the PSO technique forming the BSO algorithm.
Therefore, BSO algorithm requires less time for the optimum
solution determination, while maintaining the BFOA ability
in finding a new solution with elimination and dispersal.
Thus, the BSO algorithm solves the insufficient scattering
problem that confronted the PSO algorithm. Furthermore,
the chemotaxis step of BSO technique safeguards against the
PSO shortcoming regarding the weak search ability.

As mentioned, the BSO technique is utilized for the
parameterization of the decoupling compensation network as
well as the BELBIC.As an overview, the procedure of applying
the proposed technique on the case study is demonstrated in
the process chart in Figure 6. Afterwards, the basic flowchart
of the BSO algorithm is presented in Figure 7. Moreover, the
pseudocode of the BSO algorithm is stated delivering more
details.

The pseudocode of the BSO algorithm is as follows.

Step 1. The initialization of all stated parameters: 𝑝, 𝑆, 𝑆𝑟,𝑁𝑐,𝑁𝑠, 𝑁re, 𝑁ed, 𝑃ed, 𝐶(𝑖) (𝑖 = 1, 2, . . . , 𝑆), Delta, 𝑤, 𝐶1, 𝐶2, 𝑅1,
and 𝑅2, where

(i) 𝑝 is dimension of search space,

The mathematical model of realistic
two-coupled distillation column process

The relative gain array (RGA) method
is used to determine the most suitable

input-output pairings

A decoupling compensation network is
designed

A scheme of Brain Emotional Learning
Based Intelligent Controller (BELBIC)

is designed

The BSO technique is utilized to obtain
the optimal value of the controller

parameter

The fitness functions of BSO technique
are deduced

The BSO technique is used to estimate
the values of steady state decoupling

compensation matrix

Figure 6: Process chart for the main steps of applying the proposed
technique on the case study.

(ii) 𝑆 is the number of bacteria,
(iii) 𝑆𝑟 is the number of bacteria splits per generation,
(iv) 𝑁𝑐 is the number of chemotactic steps,
(v) 𝑁𝑠 is the limits of the length of a swim,
(vi) 𝑁re is the reproduction steps number,
(vii) 𝑁ed is the amount of elimination-dispersal events,
(viii) 𝑃ed is the elimination-dispersal probability,
(ix) 𝐶(𝑖) is the bacteria step size length,
(x) Delta is the direction of each bacteria,
(xi) 𝑤 is the weight of inertia,
(xii) 𝐶1 is the weight of local information,
(xiii) 𝐶2 is the weight of global information,
(xiv) 𝑅1, 𝑅2 are two Random numbers.

Step 2. Loop of elimination and dispersal: 𝑙 = 𝑙 + 1.
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Figure 7: Flowchart of BSO algorithm.

Step 3. Loop of reproduction: 𝑘 = 𝑘 + 1.
Step 4. Loop of chemotaxis: 𝑗 = 𝑗 + 1.
Substep 4.1. For 𝑖 = 1, 2, . . . , 𝑆 each bacterium 𝑖 moves a
chemotactic step as follows.

(a) Calculate cost function, 𝐽(𝑖, 𝑗, 𝑘, 𝑙).
(b) Let 𝐽last = 𝐽(𝑖, 𝑗, 𝑘, 𝑙) to save the current value of the

cost function in order to be able to compare it with
the one determined in the next swim.

(c) Let 𝐽local(𝑖, 𝑗) = 𝐽last; the better cost per each bacteria
is going to be chosen to be the local best 𝐽local.

(d) Update position 𝑃(𝑖, 𝑗 + 1, 𝑘, 𝑙) = 𝑃(𝑖, 𝑗, 𝑘, 𝑙) + 𝐶(𝑖) ∗
Delta(𝑖).

(e) Calculate cost function, 𝐽(𝑖, 𝑗 + 1, 𝑘, 𝑙).
(f) Swim

(i) Let𝑚 = 0 (counter for swim length).
(ii) While 𝑚 < 𝑁𝑠 (if have not climbed down too

long).

(1) Let𝑚 = 𝑚 + 1.
(2) If 𝐽(𝑖, 𝑗 + 1, 𝑘, 𝑙) < 𝐽last (if doing better), let𝐽last = 𝐽(𝑖, 𝑗 + 1, 𝑘, 𝑙) and let

𝑃 (𝑖, 𝑗 + 1, 𝑘, 𝑙) = 𝑃 (𝑖, 𝑗 + 1, 𝑘, 𝑙) + 𝐶 (𝑖) ∗ Delta (𝑖) (21)

and use this 𝑃(𝑖, 𝑗 + 1, 𝑘, 𝑙) to calculate the
new 𝐽(𝑖, 𝑗 + 1, 𝑘, 𝑙).

(3) For each bacteria estimate the current posi-
tion and local cost

𝑃current (𝑖, 𝑗 + 1) = 𝑃 (𝑖, 𝑗 + 1, 𝑘, 𝑙) ,
𝐽local (𝑖, 𝑗 + 1) = 𝐽 (𝑖, 𝑗 + 1, 𝑘, 𝑙) . (22)
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(4) Else, let
𝑃current (𝑖, 𝑗 + 1) = 𝑃 (𝑖, 𝑗 + 1, 𝑘, 𝑙) ,
𝐽local (𝑖, 𝑗 + 1) = 𝐽 (𝑖, 𝑗 + 1, 𝑘, 𝑙) ,

𝑚 = 𝑁𝑠.
(23)

(5) While statement end.

(g) Go to next bacterium (𝑖 + 1) if 𝑖 ̸= 𝑆 (i.e., go to (b) to
execute the next bacterium).

Substep 4.2. For each bacteria estimate the local best position
(𝑃𝐿best) and global best position (𝑃𝐺best).

Substep 4.3. For each bacteria estimate the new direction as

𝑉 = 𝑤 ∗ 𝑉 + 𝐶1 ∗ 𝑅1 (𝑃𝐿best − 𝑃current) + 𝐶2
∗ 𝑅2 (𝑃𝐺best − 𝑃current) ,

Delta = 𝑉.
(24)

Step 5 (if 𝑗 < 𝑁𝑐, go to Step 4). In this situation keep on
chemotaxis since the life of the bacteria is not terminated.

Step 6 (reproduction).

Substep 6.1. For 𝑘 and 𝑙 and for each 𝑖 = 1, 2, . . . , 𝑆, the health
of the bacterium 𝑖 is given by

𝐽𝑖health = 𝑁𝑐+1∑
𝑗=1

𝐽 (𝑖, 𝑗, 𝑘, 𝑙) . (25)

Sort bacteria cost 𝐽health in ascending order (greater cost
indicates lower health).

Substep 6.2. The 𝑆𝑟 bacteria with the lowest 𝐽health values split
and the rest of the 𝑆𝑟 bacteria die.
Step 7 (if 𝑘 < 𝑁re, return to Step 3). In this instance, the
specified maximum number of reproduction steps is not
over; therefore the bacteria begin a new generation of a
chemotactic loop.

Step 8 (elimination dispersal). For 𝑖 = 1, 2, . . . , 𝑆 with
probability 𝑃ed, eliminate and then disperse one to a random
place. If 𝑙 < 𝑁ed, then go to Step 2, otherwise end.

5. Simulation and Results

The decoupled physical system and its controllers are
designed and simulated with MATLAB� Simulnik�.

The RGA method is applied on the mathematical model
of the two-coupled distillation column process, and the
resulted matrix is given by

RGA4×4 =
[[[[[
[

−0.0429 0.5629 0.4083 0.0717
1.4559 0.5558 −0.9138 −0.0980
−0.4647 −3.1110 4.4832 0.0926
0.0517 2.9923 −2.9777 0.9337

]]]]]
]
. (26)

According to the RGA matrix the suitable input-output
pairing is

(𝑇11 − SAB) ,
(𝑇30 −QE) ,
(𝑇34 − RL1) ,
(𝑇48 − RL2) .

(27)

Depending on the suitable pairing, the fitness functions
of the 1st, 2nd, 3rd, and 4th input are described in (28), (29),
(30), and (31), respectively.

Fitness1 = ITSO11 + ITSO31 + ITSO41
= (16185764.6415 ∗ 𝜆211)

+ (−31208202.2860 ∗ 𝜆11 ∗ 𝜆21)+ (−29085704.6263 ∗ 𝜆11 ∗ 𝜆31)+ (−2104353.3818 ∗ 𝜆11 ∗ 𝜆41)
+ (23626420.1763 ∗ 𝜆221)
+ (40518661.8661 ∗ 𝜆21 ∗ 𝜆31)+ (1053225.6938 ∗ 𝜆21 ∗ 𝜆41)
+ (17625377.5018 ∗ 𝜆231)
+ (1142698.7804 ∗ 𝜆31 ∗ 𝜆41)
+ (112317.1448 ∗ 𝜆241)

(28)

Fitness2 = ITSO22 + ITSO32 + ITSO42
= (39587638.7663 ∗ 𝜆212)

+ (−25965747.1866 ∗ 𝜆12 ∗ 𝜆22)+ (−27602372.6861 ∗ 𝜆12 ∗ 𝜆32)+ (−3313543.6120 ∗ 𝜆12 ∗ 𝜆42)
+ (6085664.7540 ∗ 𝜆222)+ (12367844.1767 ∗ 𝜆22 ∗ 𝜆32)+ (1689163.6136 ∗ 𝜆22 ∗ 𝜆42)
+ (6408628.3541 ∗ 𝜆232)
+ (1716766.7412 ∗ 𝜆32 ∗ 𝜆42)
+ (119596.6264 ∗ 𝜆242)

(29)

Fitness3 = ITSO13 + ITSO23 + ITSO43
= (32387849.9550 ∗ 𝜆213)

+ (−30918315.4051 ∗ 𝜆13 ∗ 𝜆23)+ (−28156040.3138 ∗ 𝜆13 ∗ 𝜆33)+ (−1472985.7141 ∗ 𝜆13 ∗ 𝜆43)
+ (21869260.2750 ∗ 𝜆223)
+ (36396234.4688 ∗ 𝜆23 ∗ 𝜆33)
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+ (403039.5905 ∗ 𝜆23 ∗ 𝜆43)+ (15212859.0003 ∗ 𝜆233)+ (390512.5127 ∗ 𝜆33 ∗ 𝜆43)+ (57318.4117 ∗ 𝜆243)
(30)

Fitness4 = ITSO14 + ITSO24 + ITSO34
= (40741561.5731 ∗ 𝜆214)

+ (−37368063.2195 ∗ 𝜆14 ∗ 𝜆24)+ (−36883365.2610 ∗ 𝜆14 ∗ 𝜆34)+ (−2495963.4210 ∗ 𝜆14 ∗ 𝜆44)
+ (22451663.5575 ∗ 𝜆224)
+ (39102720.2746 ∗ 𝜆24 ∗ 𝜆34)+ (623243.6320 ∗ 𝜆24 ∗ 𝜆44)
+ (17326594.9351 ∗ 𝜆234)
+ (837511.9391 ∗ 𝜆34 ∗ 𝜆44)
+ (77118.8721 ∗ 𝜆244) .

(31)

The BSO algorithm parameters’ values which are utilized
to implement an optimized decoupling network as well as an
optimized BELBIC are summarized in Table 1. The resulting
values of the steady state decoupling compensation elements
that minimize the above fitness functions are summarized in
Table 2.

The resulting best gains’ values for different BELBICs
that minimize the summation of the integral time-weighted
squared errors (ITSEs) for different decoupled loops are
presented in Table 3. The best gains’ values of the designed
conventional PID controllers are shown in Table 4. The PID
controllers’ parameters are determined utilizing the same
algorithm utilized for the design of BELBICs. In this regard,
proposed BSO algorithmwith the same gains given in Table 1
is used to minimize the same fitness function.

The dynamic behavior of the system is analyzed based on
its step response based on the sequential step input shown in
Figure 8. In Figure 9, the decoupled system response on the
given step sequence is illustrated. As shown, the experimental
results demonstrate the efficiency of the designed decoupling
technique. Thus, the interrelationship between system inputs
and their unpaired outputs is noticeably minimized com-
pared to the formerly deployed techniques [11]. Accordingly,
the spikes in the response of the decoupled system outputs
on the unpaired inputs are significantly reduced. The step
response of the designed closed loop control system is shown
in Figure 10.

For verification purposes, the response of the designed
control scheme, which is based on the minimization of
ITSEs of all control loops utilizing the BSO algorithm, is
compared to that of the latest research that considers the
same application. It is to mention that the control scheme of
the previous research is mainly based on the minimization
of the ISE using the PSO algorithm [37]. In Figure 11, the
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Figure 8: Step changes in system inputs [37].

proposed technique is compared to the former study in terms
of step response. Moreover, the steady state errors for both
controllers are stated in Table 5.

As shown, the control scheme presented in this research
offers a valuable improvement in the last three control loops
(𝑇11, 𝑇34, and 𝑇48) in terms of minimizing steady state errors.

The step response of the proposed BELBICs and con-
ventional PID controllers is compared in the presence of a
disturbance stepwith the final value of “1” at the 500th second
in the first and the third decoupled loop. The simulation
results are presented in Figure 12. In the figure it is clearly
recognizable that the robustness of the proposed BELBICs
is higher than that of the conventional PID controllers
regarding the handling of the unexpected disturbance. The
controlled system using BELBICs is better damped as well.
On the other side, the PID controllers in all control loops
achieve remarkably less steady state error.

For comparison purpose, the PID controllers are
designed by utilizing the PSO technique for minimizing the
summation of the integral time-weighted squared errors
(ITSEs) of system control loops. This controller is to be
compared with the one designed using the BSO algorithm
regarding the integral time-weighted squared errors (ITSEs)
for each control loop, which are listed in Table 6. The
remarkable difference between both algorithms regarding
ITSEs indicates that the BSO technique is more efficient in
determining the global best solution in the field of MIMO
control system.

6. Conclusions

The challenge of decoupling and controlling higher order
multi-input multioutput (MIMO) process is tackled in this
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Table 1: Gains of BSO.

Parameter Symbol BSO for decoupling network implementation BSO for BELBIC implementation
Number of bacteria in the population 𝑆 50 50
Dimension of search space 𝑝 4 24
Maximum number of swim length 𝑁𝑠 4 4
Maximum number of chemotactic steps 𝑁𝑐 100 20
Number of reproductive steps 𝑁re 4 2
Number of elimination dispersal events 𝑁ed 2 2
Elimination dispersal probability 𝑃ed 0.25 0.25
Step size 𝐶(𝑖) 0.05 0.05
Cognitive factor 𝐶1 1.2 1.2
Social acceleration factors 𝐶2 0.5 0.5
Momentum/inertia 𝑤 0.9 0.9

Table 2: Resulting values of steady state decoupling compensation elements based on BSO.

Fitness function Final value of fitness function Values of steady state decoupling elements (𝜆s)
Fitness1 9.8506 𝜆11 = 0.2453 𝜆21 = −0.4755 𝜆31 = 0.7210 𝜆41 = 0.8564
Fitness2 0.5941 𝜆12 = −0.0195 𝜆22 = −0.1090 𝜆32 = −0.0967 𝜆42 = 1.1934
Fitness3 7.6138 𝜆13 = −0.0481 𝜆23 = 0.6249 𝜆33 = −0.7904 𝜆43 = −0.1218
Fitness4 0.3040 𝜆14 = −0.0026 𝜆24 = 0.1492 𝜆34 = −0.1790 𝜆44 = 0.3273

Table 3: The proper gains of the BELBICs optimized by the BSO for different loops.

Loop Gains𝛼 𝛽 𝐾 𝐾𝑝 𝐾𝑖 𝐾𝑑(QE, 𝑇30) 0.2321 0.8914 −0.4830 3.4765 0.0028 −0.6471(SAB, 𝑇11) 0.3418 −1.3651 0.3936 −21.5658 −1.0949 −0.7771(RL1, 𝑇34) 87.3587 −8.9268 −0.1020 29.4672 17.3183 14.6593(RL2, 𝑇48) 17.4282 22.6201 0.2650 −62.2460 −0.6042 10.8162

Table 4: The proper gains of the PID controllers optimized by the
BSO for different loops.

Loop Gains𝐾𝑝 𝐾𝑖 𝐾𝑑(QE, 𝑇30) 1.9662 0.3524 0.7445(SAB, 𝑇11) 1.0643 1.9718 0.2621(RL1, 𝑇34) 1.6276 1.4202 −0.0366(RL2, 𝑇48) 0.0784 −3.0889 0.8859

Table 5: The steady state errors for all loops after control.

Loop Steady state errors
Former technique Proposed technique(QE, 𝑇30) 0.087510 0.1189(SAB, 𝑇11) 0.019915 0.0117(RL1, 𝑇34) 0.036152 0.0041(RL2, 𝑇48) 0.189710 0.0207

research. The Bacterial Swarm Optimization (BSO) tech-
nique is used to develop an optimized scheme for decoupling

Table 6: Comparison between PID controllers designed by PSO
and BSO algorithms regarding integral time-weighted squared error
ITSE.

Loop ITSE
PSO technique BSO technique(QE, 𝑇30) 11.5703 3.2552(SAB, 𝑇11) 0.4473 1.8333(RL1, 𝑇34) 2.7937 1.8592(RL2, 𝑇48) 11.8501 5.9165

Summation 26.6614 12.8642

highly interactive 4 input/4 output two-coupled distillation
column processes. The scheme consists of two stages. In the
first stage, the optimum group of fitness functions is deter-
mined through the analysis of precalculated proper pairing,
which is based on the derived relative gain array (RGA).
The derivation of the RGA is based on the transfer function
matrix of the physical process. In the second stage, the
values of decoupling compensation elements (𝜆s) that min-
imize the interactions are estimated based on the formerly
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Figure 9: The outputs of different decoupled loops in case of no controllers.
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Figure 10: The outputs of different decoupled loops in the presence of the controller.

driven fitness functions. Designing the decoupled system
based on the general form of the decoupling compensation
matrix showed a remarkable improvement in the system
dynamics compared to the utilization of the simple form
of the compensation matrix. The simulation results showed
the efficiency of the proposed BSO technique in estimating

steady state decoupling compensation elements values. For
control purpose a scheme of Brain Emotional Learning
Based Intelligent Controller (BELBIC) is designed and opti-
mized using BSO algorithm to obtain the optimal values
of controllers’ parameters. Furthermore, PID controllers are
developed using the same optimization technique, in order
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Figure 11: Comparison between the step response of the proposed technique and that of the formerly studied technique.

to validate the robustness of the BELBIC. The robust control
behavior of the designed BELBIC-based control scheme is
validated in the simulation results. The BELBIC designed
using the BSO algorithm showed a remarkable improvement
in the transient and steady state errors of the last three control
loops compared with the controller designed utilizing the
PSO technique.

List of Symbols

QE: Heat input to the reboiler
SAB: Vapor flow rate in the vapor transfer line
RL1: Reflux ratio in the main column
RL2: Reflux ratio in the second column𝑇11: Temperature at the 11th tray𝑇30: Temperature at the 30th tray𝑇34: Temperature at the 34th tray𝑇48: Temperature at the 48th tray𝐺(𝑠): Transfer function matrix of the process in 𝑠

domain

𝛾𝑖𝑗: Relative gain between the output “𝑖” and input
“𝑗”Λ ss: Steady state decoupling compensation matrix𝜆𝑖𝑗: Decoupling compensation element between the
output “𝑖” and input “𝑗”𝑌(𝑠): Output vector of the process𝑊(𝑠): Input vector of the decoupling network

MO: The model output of Brain Emotional Learning
Based Intelligent Controller (BELBIC)𝑂𝑖: Orbitofrontal cortex node𝐴 𝑖: Amygdala node𝑆𝑖: The 𝑖th sensory input𝐺𝐴: Plastic connection weights of the amygdala𝐺𝑂: Plastic connection weights of the orbitofrontal
cortex𝛼: The amygdala learning rate𝛽: The orbitofrontal cortex learning rate

Rew: The reward signal𝑒: Error signal
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Figure 12: Comparison between the step response of the designed BELBIC and that of the PID controller in the presence of disturbance at𝑡 = 500 seconds.

𝐾, 𝐾𝑝,𝐾𝑖,𝐾𝑑: Controller parameters𝑇30 desired: Reference signal for output 𝑇30𝑇11 desired: Reference signal for output 𝑇11𝑇34 desired: Reference signal for output 𝑇34𝑇48 desired: Reference signal for output 𝑇48𝑝: Dimension of search space𝑆: The number of bacteria𝑆𝑟: The number of bacteria splits per generation𝑁𝑐: The number of chemotactic steps𝑁𝑠: Limits of the length of a swim𝑁re: The reproduction steps number𝑁ed: The amount of elimination-dispersal events𝑃ed: Elimination-dispersal probability𝐶(𝑖): The bacteria step size length
Delta: The direction of each bacteria𝐶1: Weight of local information𝐶2: Weight of global information𝑅1, 𝑅2: Two random numbers.
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