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Summary Genomic prediction has been widely utilized to estimate genomic breeding values (GEBVs) in

farm animals. In this study, we conducted genomic prediction for 20 economically

important traits including growth, carcass and meat quality traits in Chinese Simmental

beef cattle. Five approaches (GBLUP, BayesA, BayesB, BayesCp and BayesR) were used to

estimate the genomic breeding values. The predictive accuracies ranged from 0.159 (lean

meat percentage estimated by BayesCp) to 0.518 (striploin weight estimated by BayesR).

Moreover, we found that the average predictive accuracies across 20 traits were 0.361,

0.361, 0.367, 0.367 and 0.378, and the averaged regression coefficients were 0.89, 0.86,

0.89, 0.94 and 0.95 for GBLUP, BayesA, BayesB, BayesCp and BayesR respectively. The

genomic prediction accuracies were mostly moderate and high for growth and carcass

traits, whereas meat quality traits showed relatively low accuracies. We concluded that

Bayesian regression approaches, especially for BayesR and BayesCp, were slightly superior

to GBLUP for most traits. Increasing with the sizes of reference population, these two

approaches are feasible for future application of genomic selection in Chinese beef cattle.
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Introduction

Genomic prediction has been widely utilized to estimate

genomic breeding values (GEBVs) for quantitative traits in

breeding program of farm animals (Hayes et al. 2009;

Goddard et al. 2010). The application of genomic selection is

considered an important revolution for the theory of animal

breeding over the past two decades (Hayes et al. 2009;

Heffner et al. 2009; de Los Campos et al. 2013; Spelman

et al. 2013). With the advances of genomic selection

technologies, this strategy has led to dramatic increases in

genetic progress in farm animals (Goddard et al. 2016;

Kumar & Hedges 2016). For instance, rates of genetic gain

per year for US Holstein increased from about 50% to 100%

for yield traits and from threefold to fourfold for lowly

heritable traits (Garcia-Ruiz et al. 2016).

In beef cattle, genomic prediction offers great promise to

predict genetic merits of selection candidates, especially for

traits that are difficult or expensive to measure, such as

carcass merit traits. The success of genomic selection

depends on the accuracies of GEBVs, which are largely

affected by the predictive approaches, the size of reference

population, trait heritability and the extent of the linkage

disequilibrium between SNPs and QTL (Hayes et al. 2009;

VanRaden et al. 2009). Many studies have assessed the

predictive accuracies of GEBVs for economically important

traits in different beef cattle populations using

the BovineSNP50 BeadChip (Saatchi et al. 2011, 2012;

Todd et al. 2014; Chen et al. 2015), and their results show

varying degrees of accuracy for GEBVs. For instance,

genomic prediction for growth, meat quality and reproduc-

tion traits in US Limousin and Simmental beef cattle

revealed accuracies of GEBVs ranging from 0.39 to 0.76

and 0.29 to 0.65 respectively(Saatchi et al. 2012). Accura-

cies of GEBVs for US Angus ranged from 0.22 to 0.69
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(Saatchi et al. 2011). Using genomic best linear unbiased

prediction (GBLUP) and BayesB methods, the accuracies of

genomic prediction for carcass traits in Canadian Angus

and Charolais cattle varied from 0.16 to 0.6 (Chen et al.

2015). Using simulation studies of carcass traits in UK

Limousin, terminal index accuracy of GEBVs varied from

0.18 to 0.73 (Todd et al. 2014). Only a few studies have

evaluated the predictive accuracies of multiple methods

using the Illumina BovineHD chip. For example, Neves et al.

(2014) and Fernandes Jr. et al. (2016) evaluated genomic

prediction for growth and carcass traits of Nellore cattle using

GBLUP, BayesC and Bayesian Lasso methods. Their findings

showed that the predictive accuracies varied among traits

using different approaches.

Chinese Simmental is one of the predominant beef cattle

in China (representing approximately 70% of beef market),

which is particularly renowned for rapid growth rate and

palatable meat quality (Niu et al. 2016). Previous studies

have comprehensively investigated the molecular mecha-

nisms underlying important traits, such as foreshank

weight, triglyceride levels and shear force, using genome-

wide association studies (Wu et al. 2014; Xia et al. 2016;

Zhang et al. 2016). Based on this population, genomic

prediction using Bayesian regression methods with variable

degrees of freedom and scale parameters have been evalu-

ated for live weight and tenderloin weight (Zhu et al. 2016).

However, until now, no studies have evaluated the accu-

racies of genomic prediction for economically important

traits such as growth, carcass (especially for retail beef cuts)

and meat quality traits using multiple methods in Chinese

Simmental cattle. The objective of this study was to estimate

and compare the predictive accuracies and abilities of

GEBVs for 20 traits, including growth, carcass and meat

quality, using five methods (GBLUP, BayesA, BayesB,

BayesCp and BayesR) in Chinese Simmental beef cattle.

Materials and methods

Ethics statement

All animals were treated following the guidelines for the

experimental animals established by the Council of China.

Protocols of the experiments were approved by the Science

Research Department of the Institute of Animal Science,

Chinese Academy of Agricultural Sciences (CAAS) (Beijing,

China).

Animals and phenotypes

Animals originated from five farms in Ulgai Grassland,

Xilingole League, Inner Mongolia of China. All animals

were born between 2008 and 2013 and were weaned at

approximately six months of age. After weaning, animals

were moved to Beijing Jinweifuren farm for fattening and

raised under the same feeding conditions. Animal were

measured for growth traits every six or 12 months until

slaughter. Live weight was measured after 24 h of fasting.

Slaughter age ranged from 18 to 24 months. After slaugh-

ter, carcass traits and meat quality traits were measured

according to the Institutional Meat Purchase Specification

for fresh beef guidelines and GB/T 27643-2011. In this

study, a total of 20 traits were measured and ana-

lyzed (Table 1): (i) growth traits: average daily gain (ADG;

kg) was calculated by subtracting the entering farm weight

from the live weight and dividing by the number of days

spent in the farm, and live weight (LW; kg) was measured

before slaughter with fasting 24 h; (ii) carcass traits: hot

carcass weight (CW; kg), dressing percentage (DP; %), lean

meat percentage (LMP; %), back fat thickness (BFT; mm)

and retail beef cuts including striploin (ST; kg), spencer roll

(SR; kg), chuck roll (CR; kg), tenderloin (TD; kg), fore shank

(FS; kg), conical muscle (CM; kg), outside (OU; kg),

Silverside (SI; kg), knuckle (KN; kg), inside cap off (ICO;

kg), hind shank (HS; kg) and retail meat weight (RMW; kg);

and (iii) meat quality traits: potential of hydrogen (pH) and

shear force (SF, kg).

Genotype and quality control

A total of 1302 Simmental beef cattle were genotyped

with the Illumina BovineHD SNP array. Missing SNPs

were imputed using BEAGLE v3.3.1 software (Browning &

Browning 2007). Prior to statistical analysis, genotypes

were edited using PLINK v1.07 software (Purcell et al. 2007)

for the following: (i) minor allele frequency (>0.05), (ii)

proportion of missing genotypes (<0.05) and (iii) Hardy-

Weinberg equilibrium (P > 10�6). SNPs satisfying these

criteria were used to interrogate the linkage disequilibrium

with syntenic SNPs located with a window of 100

neighboring markers, which resulted in only one SNP

form each pair of highly correlated SNPs (r2 > 0.995)

remaining in the SNP dataset. After these quality controls,

the final data consisted of 1217 individuals and 459 268

filtered SNPs in the autosomes. Genotype data are avail-

able from the Dryad Digital Repository (https://doi.org/10.

5061/dryad.4qc06).

Statistical model and genetic analyses

Heritabilities were calculated using a restricted maximum

likelihood method with an animal model in ASREML v3.0

software (Gilmour et al. 2009). Relationships between

animals were estimated using a G matrix, where G was

the genomic relationship matrix and inferred from SNP

markers, as suggested by VanRaden (2008). The animal

model included random additive polygenic effects, fixed

effects and residual for all traits. The additive polygenic

effects were treated as random and assumed to be mutually

independent. Fixed effects in the model included gender,

farm and year of measurement. In addition, animals’ age at
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slaughter were considered covariates in the model except for

average daily gain traits.

To estimate GEBVs, we used the following five statistical

methods: (i) (GBLUP) (VanRaden 2008) and (ii) Bayesian

regression using mixture models, including BayesA and

BayesB (Meuwissen et al. 2001), BayesCp (Habier et al.

2011) and a variable selection method BayesR (Erbe et al.

2012). These methods were compilied using C language

(Zhu et al. 2016).

In all cases, the statistical model used was the following:

y ¼ Xbþ Zgþ e ð1Þ

GBLUP

For GBLUP, y is an N 9 1 (N = number of observations)

vector of phenotype in Equation 1, X is an incidence matrix

of the fixed effects, Z is the incidence matrix allocating

records to GEBVs, g is the vector of GEBVs and e is a vector

of residuals. It is assumed that g follows a normal

distribution Nð0;Gr2gÞ. Given b and g, y is conditionally

independent and distributed as:

ðyjb; g; r2e Þ�NðXbþ Zg; Ir2e Þ

BayesA, BayesB and BayesCp

The Bayesian model used the same equation as in (1),

where y, X, b and e were defined as before, but g

represented an M 9 1 vector of SNP marker effects; Z is

an N 9 M matrix of SNPs, coded with values 0, 1 or 2 for

genotypes 11, 12 and 22 respectively; and Zij denotes

marker j of individuals i.

The prior for gj depends on the variance r2j and the prior

probability p. In BayesA, all SNPs have effects, i.e.

r2j � x�2ðv; vS2aÞ, and p is equal to 0. r2j denotes that SNP

j has its own variance, with the parameters of v and S2a . In

BayesB, the two-component mixture, with one component

being tð0; v; S2aÞ and the other component being a spike at 0,

are provided as:

ajjr2j �ðiddÞ 0 x0026; with probability p
Nð0; r2j Þ x0026; with probability ð1� pÞ

�

where j = 1, . . .. . . , P

Here, p represents the proportion of SNPs with no genetic

effects on the trait of interest. S2a is derived using following

equation, S2a ¼ ðv�2Þ�Eðr2j Þ
v , where v is 4.2, as reported by

Meuwissen et al. (2001). In BayesCp, the SNP effects have a

common variance, r2j ¼ r2gðj ¼ 1; . . .;PÞ, and r2g follows a

scaled inverse v2 prior with parameters v and S2a . As a

result, the SNP effects with probability (1 � p) follows a

mixture of multivariate Student’s t-distributions tð0; v; IS2aÞ.
The p parameter is treated as unknown with a uniform

(0,1) prior distribution.

BayesR

BayesR is an extension of BayesCp, where SNP effects are

assumed to be sampled from a mixture of normal

distributions (Erbe et al. 2012; Bolormaa et al. 2013).

The variance of each component of the mixture is fixed

(0, 0.01%, 0.1% or 1% of the genetic variance). The

number of SNPs belonging to each component of the

mixture is assumed to come from a multinomial distri-

bution with proportions pi (i = 1, 2, 3 or 4) in which the

Trait Number Mean SD Maximum Minimum Trait definition

ADG 1294 0.97 0.22 2.41 0.38 Average daily gain weight, kg

LW 1302 505.26 70.73 776.00 318.00 Live weight, kg

CW 1302 271.35 45.63 486.00 162.60 Carcass weight, kg

DP 1301 53.56 2.91 68.98 41.03 Dressing percentage, %

LMP 1301 45.47 3.08 61.56 32.51 Lean meat percentage, %

ST 1298 8.68 1.98 15.90 3.21 Striploin, kg

SR 1298 10.70 2.22 18.32 5.03 Spencer roll, kg

CR 1298 11.65 3.25 28.68 4.50 Chuck roll, kg

TD 1299 3.98 0.71 7.84 2.20 Tenderloin, kg

FS 1298 5.02 0.92 10.90 2.94 Fore shank, kg

CM 1158 1.07 0.19 2.20 0.60 Conical muscle, kg

OU 1299 15.06 2.33 23.60 7.88 Outside, kg

SI 1299 13.18 2.38 23.72 7.70 Silverside, kg

KN 1299 9.57 1.48 14.40 6.18 Knuckle, kg

ICO 1299 11.89 2.08 20.98 7.12 Inside cap off, kg

HS 1300 8.03 1.19 12.12 4.84 Hind shank, kg

RMW 1299 169.94 29.8 280.87 84.00 Retail meat weight, kg

BFT 654 2.70 2.01 13.40 0.05 Back fat thickness, mm

pH 1255 5.64 0.38 7.16 4.00 Potential of hydrogen

SF 1272 5.53 1.94 13.14 1.33 Shear force, kg

Table 1 Summary statistics of 20 traits

including abbreviation, number of animals,

mean, standard deviation (SD), minimum,

maximum and definition of 20 traits
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pi is drawn from a Dirichlet distribution (a multivariate

generalization of a beta distribution) with pseudo-counts

of 1 for each component of the mixture. Thus, the prior

assumes that the four components of the mixture are

equally probable but with minimal prior knowledge of

these probabilities.

SNP effects estimation

SNP effects were estimated using the Markov

chain Monte Carlo sampling algorithm in BayesA, BayesB,

BayesCp and BayesR. Markov chains were run for 50 000

cycles of Gibbs sampling. The first 10 000 were discarded as

burn-in. Then GEBVs were calculated as GEBVi = ∑Zijaj.

Validation of the models

To assess the predictive accuracies for 20 economically

important traits, we used a five-fold cross-validation

method (Luan et al. 2009). Overall, 1217 individuals were

divided into reference and validation populations. The

genotyped individuals were randomly divided into five

groups, whereas phenotypes of animals in validation set

were masked to be unknown. Thus, 974 individuals were

randomly sampled as the reference set, and the remaining

243 individuals as the validation set. The whole procedure

was repeated 10 times.

Comparison criteria

Three methods were utilized to evaluate the predictive

ability based on comparison of GEBVs with corrected

phenotypes of animals in the validation population:

The correlations between GEBV and corrected phenotype

were calculated to evaluate the predictive ability (rGEBV;ŷ).

To remove the influence of heritability on the predictive ability,

Pearson’s correlation between GEBV and corrected phenotype

was divided by the square root of heritability (rGEBV;ŷ

� ffiffiffiffiffi
h2

p
),

where ŷ was the corrected phenotype. This value is approxi-

mate to the correlation between the true breeding value and

GEBVs (Pryce et al. 2012).

The slope of the regression of ŷ on GEBV for animals in

the validation population (bŷ;GEBV) was calculate to measure

the degree of inflation or deflation of genomic prediction.

Estimates of bŷ;GEBV close to 1 are indicative of predictions

that are similar to that of corrected phenotype on scale.

The mean squared error of prediction (MSE) between ŷ

and GEBV in the validation population was used to measure

the overall fit of model, and the computation equation was

MSE ¼ 1
N

PðGEBV� ŷÞ, where N is the number of individ-

uals. A large estimated value of predictive accuracy is

indicative of reliable prediction, and a low MSE value means

a better overall fit.

Results

Heritability estimates

Heritability estimates for 20 traits ranged from 0.04 to

0.62. We found that 10 traits showed relatively high

heritabilities: FS (0.4), LW (0.43), RMW (0.43), ADG

(0.47), BI (0.47), ICO (0.51), ER (0.52), OU (0.6), HS

(0.61) and KN (0.62). Eight traits showed moderate heri-

tabilities—BFI (0.21), ST (0.24), SR (0.26), CR (0.27), DP

(0.31), CW (0.38), LMP (0.39) and TD (0.39)—whereas

three traits had low heritabilities—pH (0.04), BFT (0.1) and

SF (0.15). The standard errors for all heritability estimates

were less than 0.04 (Table 2).

Predictive ability of five methods

We evaluated the predictive abilities for these 20 traits

using different methods based on 5-fold cross-validation.

The summary of predictive results is presented in Table 3.

Overall, we observed that the predictive abilities (rGEBV;ŷ)

ranged from 0.059 (for LMP estimated by BayesCp) to

0.376 (for HS estimated by BayesB; Table 3). The average

predictive abilities across 20 traits were 0.216, 0.216,

0.221, 0.220 and 0.225 for GBLUP, BayesA, BayesB,

BayesCp and BayesR respectively.

Table 2 Estimates of variance components and heritability with

standard errors for twenty traits

Trait r2a r2e h2

ADG 0.012 0.013 0.47 � 0.03

LW 663.380 1139.880 0.37 � 0.02

CW 299.650 361.820 0.45 � 0.02

DP 0.950 4.960 0.16 � 0.02

LMP 0.850 5.110 0.14 � 0.01

ST 0.380 1.160 0.24 � 0.02

SR 0.490 1.390 0.26 � 0.01

CR 1.080 2.880 0.27 � 0.02

TD 0.078 0.120 0.39 � 0.03

FS 0.150 0.220 0.40 � 0.02

CM 0.008 0.009 0.47 � 0.02

OU 1.320 0.880 0.60 � 0.04

ER 1.200 1.130 0.52 � 0.03

KN 0.590 0.360 0.62 � 0.04

ICO 0.910 0.880 0.51 � 0.03

HS 0.370 0.230 0.61 � 0.02

RMW 126.130 169.570 0.43 � 0.02

BFT 0.330 2.940 0.10 � 0.01

pH 0.005 0.112 0.04 � 0.01

SF 0.340 2.000 0.15 � 0.01

r2a , additive genetic variance; r2e , environmental variance; h2, heri-

tability � standard error; ADG, BFT, back fat thickness; CM, conical

muscle; CR, chuck roll; CW, carcass weight; DP, dressing percentage;

FS, fore shank; ICO, inside cap off; HS, hind shank; KN, knuckle; LMP,

lean meat percentage; LW, live weight; OU, outside; pH, potential of

hydrogen; RMW, retail meat weight; SF, shear force; SI, silverside; SR,

spencer roll; ST, striploin; TD, tenderloin.
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To investigate the relationship between predictive ability

and trait heritability, we next estimated the regression

coefficient of predictive ability on heritability for these

methods. Our results showed that the predictive abilities

were linearly correlated with trait heritability. The

strongest correlation (0.5) was observed across 20 traits

using GBLUP compared with Bayesian methods (Fig. 1).

Among Bayesian methods, we found the highest regres-

sion coefficient of predictive ability on heritability was 0.47

in BayesR.

Predictive accuracy of five methods

After removing the influence of heritability from predictive

ability, we found obvious difference in predictive accuracies

ranging from 0.159 (LMP) to 0.518 (ST). The average

predictive accuracies across traits were 0.361 for GBLUP,

0.361 for BayesA, 0.367 for BayesB, 0.367 for BayesCp and

0.378 for BayesR respectively (Table 3). In general, we

observed the predictive accuracies of BayesA were consis-

tent with those of GBLUP for most traits, whereas other

Bayesian regression methods (BayesB, BayesCp and BayesR)

showed slightly higher accuracies than did GBLUP. The

advantage of Bayesian regression methods over GBLUP was

obtained for HS (6.5%), CW (1.5%) and ST (3.1%) using

BayesB, BayesCp and BayesR. Conversely, GBLUP was

slightly superior to BayesA, BayesB, BayesCp and BayesR

for KN (1.5%), RMW (0.9%), KN (0.4%) and KN (0.5%) in

the present study (Table 3).

Scale of genomic predictions and mean squared
prediction error

The regression coefficient of corrected phenotype on GEBV

was calculated as a measurement of the bias for the

prediction. In this study, we observed that predictions of

GEBV using both GBLUP and Bayesian regression methods

were inflated for most traits, whereas for traits ST, TD and

pH, the predictions from GBLUP and Bayesian regression

methods tended to be slightly deflated (Table 4). We found

that predictions of GEBV using GBLUP, BayesA and BayesB

were inflated for LW and RMW, whereas those from

BayesCp and BayesR were slightly deflated. The average

regression coefficients across traits were 0.89, 0.86, 0.89,

0.94 and 0.95 for GBLUP, BayesA, BayesB, BayesCp and

BayesR respectively.

For most traits, we found GBLUP generally outperformed

Bayesian regression methods based on the MSE (Table 4).

However, for ADG, LMP, TD, FS, BI, KN, HS and RMW,

lower estimates of MSE were obtained for Bayesian methods.

Table 3 Predictive abilities and accuracies for 20 traits in Chinese Simmental beef cattle based on five approaches using five-fold

cross-validation

Trait

rGEBV;ŷ rGEBV;ŷ

� ffiffiffiffiffi
h2

p

GBLUP BayesA BayesB BayesCp BayesR GBLUP BayesA BayesB BayesCp BayesR

ADG 0.194 0.197 0.197 0.204 0.214 0.283 0.287 0.288 0.298 0.312

LW 0.231 0.232 0.230 0.239 0.242 0.379 0.381 0.378 0.393 0.398

CW 0.251 0.253 0.252 0.261 0.268 0.374 0.377 0.376 0.389 0.400

DP 0.111 0.111 0.112 0.109 0.119 0.277 0.276 0.279 0.273 0.298

LMP 0.061 0.061 0.061 0.059 0.069 0.162 0.164 0.162 0.159 0.184

ST 0.239 0.238 0.241 0.239 0.254 0.487 0.486 0.492 0.487 0.518

SR 0.178 0.179 0.176 0.177 0.184 0.349 0.352 0.345 0.348 0.361

CR 0.168 0.169 0.169 0.169 0.176 0.322 0.326 0.324 0.325 0.339

TD 0.277 0.278 0.278 0.283 0.291 0.444 0.446 0.446 0.453 0.466

FS 0.249 0.250 0.254 0.250 0.252 0.394 0.395 0.402 0.395 0.398

CM 0.240 0.240 0.250 0.247 0.251 0.35 0.351 0.365 0.360 0.366

OU 0.346 0.347 0.347 0.352 0.358 0.447 0.448 0.447 0.455 0.462

ER 0.354 0.353 0.355 0.358 0.361 0.491 0.49 0.492 0.497 0.501

KN 0.315 0.304 0.339 0.312 0.311 0.400 0.385 0.431 0.396 0.395

ICO 0.258 0.259 0.259 0.269 0.268 0.362 0.363 0.363 0.377 0.375

HS 0.325 0.326 0.376 0.332 0.331 0.416 0.417 0.481 0.425 0.424

RMW 0.267 0.268 0.262 0.271 0.278 0.408 0.409 0.399 0.414 0.424

BFT 0.074 0.072 0.074 0.076 0.077 0.235 0.227 0.233 0.241 0.243

pH 0.073 0.073 0.073 0.074 0.078 0.366 0.365 0.365 0.370 0.390

SF 0.109 0.107 0.107 0.114 0.119 0.280 0.277 0.277 0.294 0.307

Note: Predictive ability (rGEBV;ŷ) was calculated by the correlation between GEBV and corrected phenotype. Predictive accuracy (rGEBV;ŷ

� ffiffiffiffiffi
h2

p
) was

computed as Pearson’s correlation between GEBV and corrected phenotype divided by square root of heritability.

ADG, average daily gain; BFT, back fat thickness; CM, conical muscle; CR, chuck roll; CW, carcass weight; DP, dressing percentage; FS, fore shank;

HS, hind shank; ICO, inside cap off; KN, knuckle; LMP, lean meat percentage; LW, live weight; OU, outside; pH, potential of hydrogen; RMW, retail

meat weight; SF, shear force; SI, silverside; SR, Spencer roll; ST, striploin; TD, tenderloin.
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Discussion

Previous studies have been conducted for genomic predic-

tion in multiple breeds including Angus, Limousin, Sim-

mental, Charolais, Hereford, Japanese Black, Nellore and

other crossbreds using BovineSNP50 and BovineHD SNP

arrays (Saatchi et al. 2011, 2012; Bolormaa et al. 2013;

Akanno et al. 2014; Gunia et al. 2014; Hulsman Hanna

et al. 2014; Onogi et al. 2014; Todd et al. 2014; Rolf et al.

2015; Fernandes Jr. et al. 2016). Su et al. (2012) have

investigated the difference of predictive accuracies between

the BovineHD array and BovineSNP50 using the GBLUP

method, and they found that the reliability of GEBV for

protein, fertility and udder health traits using the BovineHD

array was higher (0.5–1%) than that of 54K array in

Holstein.

We previously investigated the pattern of linkage dise-

quilibrium using the BovineHD SNP array in Chinese

Simmental cattle, and our findings suggested that the high

density SNP array was sufficient to achieve high accuracy

for genomic prediction in Chinese Simmental population

(Niu et al. 2016). To our knowledge, this study is the first

attempt to investigate the performance of genomic predic-

tion for 20 economically important traits using BovineHD

SNP arrays in Chinese Simmental beef cattle.

Comparisons of genomic prediction methods

In the current study, we found that the Bayesian regression

approaches performed better than did GBLUP for most

traits. Based on the estimations of predictive accuracies

and regression coefficients, Bayesian regression methods

were superior to GBLUP, whereas GBLUP had smaller MSE

compared to Bayesian regression approaches.

Previous studies suggested the superiority of Bayesian

regression approaches over GBLUP when the number of

SNPs is larger than the genotyped animals, i.e. several

simulation studies revealed that Bayesian regression

Figure 1 Regression of predictive ability on heritability for 20 traits using five statistics methods.

© 2019 The Authors. Animal Genetics published by
John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics, 50, 634–643

Genomic prediction for twenty traits of Simmental 639



approaches have higher accuracies than does GBLUP

(Meuwissen et al. 2001; Habier et al. 2007; Solberg et al.

2008; Clark et al. 2011). These findings were also consistent

with many previous studies using real data (Erbe et al. 2012;

Pryce et al. 2012; Gunia et al. 2014; Neves et al. 2014;

Fernandes Jr. et al. 2016). In this study, we found that ge-

nomic predictions using Bayesian regression approaches

were superior to that of GBLUP (Table 3). This can be

explained by the fact that the assumption of Bayesian

approaches ismore suitable for fitting the genetic architecture

of quantitative trait (Rolf et al. 2015). However, most of

the Bayesian regression approaches, except for BayesA,

showed high prediction accuracies for these 20 traits. A

large number of SNPswith small effects in BayesAare likely to

cause noise for the estimation of the GEBVs (Habier et al.

2011). In contrast, Bayesian approaches like BayesB,

BayesCp and BayesR assume that only a small proportion of

markers have effects, which may avoid the potential bias

caused by linkage disequilibrium (Erbe et al. 2012).

Moreover, we observed higher predictive accuracies using

BayesR for most of the traits, which implies the segregation

of genes with larger effects for them. For traits with

mutations of moderate effect segregating and a high

number of significant SNPs, a recent study showed that

the accuracy of GEBVs with BayesR was higher than

with GBLUP (Bolormaa et al. 2013). In our study, the

average predictive accuracies of 20 traits for BayesR

increased ~1.7% compared to GBLUP. Among 20 traits,

the highest increase in accuracy of BayesR over GBLUP was

observed for ADG (2.9%) and ST (3.1%). We also identified

several SNPs with large effects for ADG using BayesR. These

SNPs had been previously identified as significant associated

SNPs in the gene NCAPG and can explain ~4.01% of the

phenotypic variances (Zhang et al. 2016).

Predictive abilities and accuracies

The accuracy of GEBVs can be affected by trait heritabilities,

size of training population, and breed and statistical method

(Bolormaa et al. 2013). For example, traits with high

heritability (h2) and a large training population (n = T) give

higher accuracies, which can be expected from the theory

that Th2 is a critical parameter (de Roos et al. 2008). In our

study, we found that Bayesian regression approaches out-

performed GBLUP in predictive accuracies for most traits.

Moreover, the accuracy of GEBVs for several important

traits varied in other cattle populations. For instance, Neves

et al. (2014) presented the results of implementation of

genomic prediction for weight and carcass traits, gestation

length and scrotal circumference traits in 685 Nellore

cattle. They found that the average accuracy was 0.39 for

GBLUP and 0.44 for both BayesC and Bayesian LASSO

methods, which was higher than in our study. Under data-

splitting strategies by birth year, Chen et al. (2015) accessed

the predictive accuracies for hot carcass weight via PBLUP

(0.33 for Angus, 0.42 for Charolais), GBLUP (0.34 for

Angus, 0.18 for Charolais) and BayesB (0.34 for Angus,

0.21 for Charolais) using the BovineSNP50 Beadchip. Using

Table 4 Inflation and mean squared error (MSE) of genomic prediction for 20 traits in Chinese Simmental beef cattle based on five approaches using

five-fold cross-validation

Trait

b(ŷ,GEBV) MSE

GBLUP BayesA BayesB BayesCp BayesR GBLUP BayesA BayesB BayesCp BayesR

ADG 0.63 0.67 0.70 0.93 0.96 0.16 0.17 0.17 0.16 0.15

LW 0.84 0.85 0.83 1.08 1.04 45.48 47.16 46.21 46.51 46.54

CW 0.72 0.74 0.76 0.94 0.95 27.26 29.99 29.79 28.73 28.94

DP 0.87 0.88 0.91 0.65 0.88 2.34 2.40 2.41 2.54 2.48

LMP 0.28 0.31 0.27 0.47 0.43 2.44 2.49 2.47 2.42 2.46

ST 1.56 1.58 1.59 1.76 1.79 19.00 19.41 19.44 22.08 20.12

SR 0.82 0.82 0.86 0.85 0.88 1.42 1.45 1.45 1.45 1.45

CR 0.59 0.61 0.62 0.70 0.76 1.55 1.55 1.55 1.55 1.56

TD 1.01 1.04 1.09 1.19 1.21 2.36 2.42 2.37 2.36 2.35

FS 0.94 0.95 0.97 0.98 0.99 0.49 0.49 0.53 0.49 0.48

BI 0.96 1.00 1.07 1.27 1.25 0.88 0.88 0.89 0.88 0.87

OU 0.83 0.84 0.87 0.92 0.94 0.18 0.20 0.19 0.19 0.18

ER 0.78 0.77 0.78 0.81 0.87 1.65 1.84 1.92 1.91 1.89

KN 0.67 0.67 0.77 0.78 0.79 1.65 1.64 2.12 1.75 1.96

ICO 0.70 0.72 0.74 0.90 0.85 1.10 1.11 1.45 1.12 1.35

HS 0.75 0.76 0.86 0.87 0.89 1.41 1.41 1.55 1.40 1.48

RMW 0.94 0.95 0.97 1.15 1.02 0.86 0.87 0.84 0.92 0.89

BFT 0.45 0.37 0.45 0.50 0.48 0.96 0.96 0.96 0.96 0.97

pH 1.98 1.95 2.08 1.33 1.32 1.71 1.71 1.75 1.72 1.74

SF 1.39 0.64 0.63 0.79 0.76 1.30 1.30 1.31 1.31 1.31

ADG, average daily gain; BFT, back fat thickness; CM, conical muscle; CR, chuck roll; CW, carcass weight; DP, dressing percentage; FS, fore shank;

HS, hind shank; ICO, inside cap off; KN, knuckle; LMP, lean meat percentage; LW, live weight; OU, outside; pH, potential of hydrogen; RMW, retail

meat weight; SF, shear force; SI, silverside; SR, Spencer roll; ST, striploin; TD, tenderloin.
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five-fold cross-validation, we found that the predictive

accuracy of carcass weight with Bovine HD SNP array

was higher than those in Chen et al.’s (2015) study. Also,

Bolormaa et al. (2013) found that the accuracy of genomic

prediction for ADG and CW using the GBLUP approach in

multiple beef cattle populations were 0.21 and 0.27. Their

results also suggested relatively low accuracy compared to

the results in our study (ADG, 0.312 and CW, 0.40). Using

K-means clustering validation, the predictive abilities of

CW, BFT and SF were 0.59, 0.29 and 0.53 in 2703

registered Simmental beef cattle (Saatchi et al. 2012). Their

results revealed higher predictive ability for CW, BFT and SF

compared with our study, and this finding is likely to be

explained by the large population utilized in their study. In

addition, other studies have performed genomic prediction

for the ADG, CW, SF and BFT traits in diverse populations

(Akanno et al. 2014; Rolf et al. 2015; Fernandes Jr. et al.

2016). However, no study has been reported for genomic

prediction of DP, LMP and primal cuts in beef cattle.

Scale of genomic predictions

The scale of predictions is an important factor in determin-

ing whether GEBVs can be used for genetic evaluation. For

instance, the results of one previous study suggested that

overestimation of the genetic merit may cause potential

exaggeration of GEBVs compared with traditional EBVs

when both progeny-tested and genomic selection were used

for selecting candidates (Vitezica et al. 2011). In our study,

the average regression coefficients across traits were 0.89,

0.86, 0.89, 0.94 and 0.95 for GBLUP, BayesA, BayesB,

BayesCp and BayesR respectively (Table 4). This finding

indicates that the BayesR and BayesCp approaches generate

more reliable predictions for these traits in Chinese Sim-

mental population.

The estimation of scale of genomic predictions may vary

with population, genetic inherent of the studied trait and

the statistical approaches (Neves et al. 2014). Among our

studied traits in Chinese Simmental beef cattle, 13 traits

generated inflated prediction using GBLUP and Bayesian

approaches. Many studies showed a similar inflation trend

of genomic prediction in Nellore, Nellore-Angus crossbred,

Holstein and Jersey populations using Bayesian approaches

(Duchemin et al. 2012; Erbe et al. 2012; Hulsman Hanna

et al. 2014), whereas other studies revealed opposite trends

in American Angus using GBLUP and in French Holstein

and Montbeliarde populations using Bayesian approaches

(Saatchi et al. 2011; Colombani et al. 2013).

Conclusions

Using multiple methods (GBLUP, BayesA, BayesB, BayesCp
and BayesR), we conducted genomic prediction for eco-

nomically important traits including growth, carcass (espe-

cially on retail beef cuts) and meat quality traits in Chinese

Simmental cattle. Bayesian regression approaches, espe-

cially BayesR and BayesCp, were superior to GBLUP for

most traits. Thus, it may be feasible to apply these

approaches for genomic prediction of these economically

important traits in Chinese Simmental beef cattle. Further

improvements are required to enlarge population size and

reduce inflation of predictions. In addition, our findings

provide valuable insights for further implementation of

genomic selection in the commercial beef industry.
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