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ABSTRACT: Fatty acid binding protein 5 (FABP5) is a
promising target for development of inhibitors to help control
pain and inflammation. In this work, computer-based docking
(DOCK6 program) was employed to screen ∼2 M commercially
available compounds to FABP5 based on an X-ray structure
complexed with the small molecule inhibitor SBFI-26 previously
identified by our group (also through virtual screening). The
goal was discovery of additional chemotypes. The screen resulted
in the purchase of 78 candidates, which led to the identification of a new inhibitor scaffold (STK-0) with micromolar affinity
and apparent selectivity for FABP5 over FABP3. A second similarity-based screen resulted in three additional hits (STK-15,
STK-21, STK-22) from which preliminary SAR could be derived. Notably, STK-15 showed comparable activity to the SBFI-26
reference under the same assay conditions (1.40 vs 0.86 μM). Additional molecular dynamics simulations, free energy
calculations, and structural analysis (starting from DOCK-generated poses) revealed that R enantiomers (dihydropyrrole
scaffold) of STK-15 and STK-22 have a more optimal composition of functional groups to facilitate additional H-bonds with
Arg109 of FABP5. This observation suggests enantiomerically pure compounds could show enhanced activity. Overall, our
study highlights the utility of using similarity-based screening methods to discover new inhibitor chemotypes, and the identified
FABP5 hits provide a strong starting point for future efforts geared to improve activity.

Fatty acid binding proteins (FABP) are a family of lipid
chaperone proteins that transport fatty acids and other

lipophilic substances. The 10 mammalian FABP isoforms are
widely expressed in humans, each with distinct tissue
expression patterns and ligand binding preferences.1,2

Although the amino acid sequence identity of different
FABPs range from ∼20% to ∼70%, they share highly similar
tertiary structure and binding site conformation.2 A wide range
of physiological functions have been proposed and studied for
FABPs. In general, they are involved in transporting fatty acids
and other lipophilic ligands to various intracellular sites for
metabolism, storage, and signal transduction.1−3

Epidermal-type fatty acid binding protein (FABP5, E-
FABP), in particular, has been demonstrated to be involved
in the N-acylethanolamine (NAE) regulation pathways.3 NAEs
are a family of signaling lipids including the endocannabinoid
anandamide (AEA) that activates cannabinoid receptors (CB)

and oleoylethanolamide (OEA) and palmitoylethanolamide
(PEA) that largely signal through nuclear peroxisome
proliferator-activated receptor alpha (PPARα).4−6 It has been
demonstrated through various experiments that visceral,
inflammatory, and neuropathic pain can be alleviated by
inhibiting fatty acid-amide hydrolase (FAAH), the principal
NAE hydrolyzing enzyme, with the subsequent activation of
CB and PPARα receptors.7−10 FABP5 acts as an intracellular
shuttle to bring the hydrophobic NAEs through the aqueous
environment of the cytoplasm to FAAH for catabolism.3,11

Pharmacological inhibition or genetic elimination of FABP5
results in significantly elevated NAE levels, thereby increasing
activation of CB and PPARα receptors, resulting in
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antinociceptive and anti-inflammatory effects.12−14 Conse-
quently, there is evidence that development of small molecule
FABP5 inhibitors is a viable path toward a new class of
analgesic therapeutics. However, knockout of the closely
related heart-type fatty acid binding protein (FABP3, H-
FABP) has been implicated in causing cardiac hypertrophy in
rodent models,15 therefore compounds selective against the
FABP3 isoform are desirable.
As a potentially important pharmacological target for pain,

inflammation, and amelioration of drug withdrawal effects (as
seen in rodents), efforts by a number of groups, including our
own, have been directed into developing effective small
molecule FABP inhibitors.1,12,13,16−21 Due to the lack of a
viable FABP5/small molecule cocomplex at the time, prior
work by our group as reported in Berger et al.,12 employed
large-scale virtual screening (DOCK program) to identify
FABP leads using an X-ray structure of FABP7 complexed with
oleic acid (with oleic acid removed). Importantly, the
campaign identified several active compounds represented by
SBFI-26 (Ki = 0.93 ± 0.08 μM)12 with ∼3-fold selectivity for
FABP520 against FABP3. Follow up work included the design,
synthesis, and testing of a large series of SBFI-26 analogues,
although none of the analogues showed significant improve-
ments in both affinity and selectivity for FABP5.13,20

Subsequent X-ray structures of (S)-SBFI-26 complexed with
FABP5 and FABP7 provided additional structural insights on
small molecule inhibitor binding to FABPs. Notably, the
DOCK-predicted binding geometry for SBFI-26 (termed
binding pose) with FABP7 corroborated key aspects of the
experimentally determined pose despite a difference in ligand
stereochemistry.12,19

The goal of the current study is to expand upon our previous
FABP5 inhibitor development utilizing the newly solved crystal
structure of FABP5 cocomplexed with SBFI-26 and a much
larger library for virtual screening. The main objectives were 4-
fold: (1) perform an in silico screening of ∼2 million drug like
small molecules from the ZINC database22 and prioritize
docked poses using similarity-based scoring functions in
DOCK using the X-ray pose of SBFI-26 as a reference, (2)
purchase and experimentally test a diverse subset of the most
promising compounds, (3) prioritize and purchase additional
analogues based on any experimentally identified hits for a
second iteration of experimental testing, and (4) conduct a
comprehensive structural and energetical analysis on com-
pounds showing experimental activity. As detailed below, this
approach has led to the identification of a series of nonacid
compounds that inhibit FABP5 with moderately strong
affinities.

■ METHODS
Structure Selection. The crystallographic coordinates

employed in this study have recently been published by Hsu
et al. (PDB code 5UR9, 2.2 Å resolution)19 and contained the
FABP5 isoform cocrystallized with compound (S)-SBFI-26
originally identified by Berger et al.12 Having a cocomplex is
valuable from a structure-based screening standpoint because
the target binding site is “preformed” to accommodate small
molecule binding. Ligand (S)-SBFI-26 (hereafter referred to
simply as SBFI-26) provides a key “reference” that can be used
to identify additional compounds that make similar inter-
actions with specific protein residues. Chain G protein from
the oligomeric X-ray structure was used as the structure for
docking because the ligand was well organized in the binding

pocket and there were no missing residues or other factors that
might negatively impact the virtual screen.

Docking Setup. Following previously reported procedures
and protocols,23−25 the FABP5-SBFI-26 cocrystal complex
5UR919 was prepared for docking. Briefly, coordinates were
extracted from chain G of the structure, and the AMBER1626

program antechamber and tleap modules were used to add
hydrogen atoms to the protein, assign ff99SB27 parameters to
the protein, and assign GAFF28 augmented by AM1-BCC29,30

parameters for the ligand SBFI-26. Default AMBER proto-
nation states were employed (Asp and Glu deprotonated, Lys
and Arg protonated, His protonated at epsilon nitrogen).
Hydrogen atom orientations were optimized using the sander
module in AMBER16 for a maximum of 100 cycles of
minimization, with heavy restraints (1000.0 kcal mol−1 Å−2) on
all non-hydrogen atoms. Protein and ligand coordinates were
extracted and saved in MOL2 format required by DOCK6.
Finally, the reference ligand SBFI-26 was minimized in the
context of the DOCK setup with positional restraints of 5 kcal
mol−1 Å−2, resulting in a small 0.81 Å root-mean-square
deviation (RMSD) from the crystal geometry (heavy atoms).
The FABP5 structure was then used to create a molecular

surface using the program dms31 which was used as input for
the program sphgen32 to generate docking spheres which will
guide the initial orientation of ligand “anchors”, the largest
rigid fragment from which the rest of a molecule can be rebuilt.
Spheres within 8 Å of the minimized reference ligand (SBFI-
26) were selected, up to a maximum of 75, which were used to
define a bounding box (binding site) for docking by including
an 8 Å margin in each dimension from the entire sphere group.
The DOCK grid33 module was then used to prestore van der
Waals (VDW) and electrostatic (ES) terms for the protein at
grid point locations which were 0.3 Å apart which speeds up
the calculations. Following lab protocols, a 6−9 Lennard−
Jones potential was used for the VDW term to soften the
energy landscape and a distance dependent dielectric (ddd) =
4r was used for the ES term as a crude approximation of
solvation effects. Figure 1 visualizes the key components of the
docking setup for FABP5.

Figure 1. Docking setup for virtual screening targeting FABP5 (PDB
5UR9),19 protein surface in tan, docking spheres represented by blue
spheres, SBFI-26 reference ligand in cyan, and docking bounding box
in gray.
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Virtual Screening Protocol. A library of ∼2 M druglike
small molecules from the ZINC database22 was docked (FLX
protocol)25 to the FABP5 active site using the program
DOCK6.23 The FLX protocol samples ligand torsion and rigid
body degrees of freedom using the anchor and grow algorithm
with the receptor (FABP5) being held rigid. We have
previously employed this DOCK procedure to successfully
identify inhibitors targeting HIVgp41,34−37 FABP,12,19

HER2,38 and BoNT.39,40 For each screened molecule, only
the best grid-based energy conformation (pose) was retained.
Each pose was subsequently minimized in DOCK Cartesian
energy (DCE) space, using a 6−12 Lennard−Jones potential
and a distance dependent dielectric constant (ddd = 4r), to
remove grid-energy approximations and facilitate prioritization
by enhanced scoring functions.
Enhanced Scoring Functions. The energy-minimized

poses were evaluated and prioritized by a series of enhanced
scoring functions available in DOCK6.8, including footprint
similarity score (FPS)41 score, pharmacophore matching
similarity (FMS)42 score, Hungarian matching similarity
(HMS)43 score, and volume overlap similarity (VOS) score.
Footprints are a breakdown of the energetic interactions
between a ligand and protein by primary sequence, and an FPS
score between any docked candidate and a reference (in this
case ligand SBFI-26 from the X-ray structure) is quantified by
computing the Euclidean distance between the two interaction
vectors (footprint interaction patterns). The FMS score
quantifies similarity between docked candidates and a
reference based on the number of matched pharmacophore
features and quality of the matches. The HMS score uses the
Hungarian algorithm44,45 to calculate an RMSD-like metric
which quantifies the overall minimum distance between two
molecules based on comparisons of atom pairs of the same
atom type. Lastly, the VOS score, based on the algorithm
reported by Sastry et al.,46 quantifies geometric volume overlap
between candidates and a reference molecule using all-atom,
hydrophobic and hydrophilic atoms, and positively and
negatively charged atom definitions.
Compound Selection (Initial Screen). To promote

molecular diversity among the compounds selected for
purchase, the top 100 000 molecules ranked initially by DCE
score were clustered using a best first clustering algorithm with
a Tanimoto similarity score cutoff of 0.95 based on the
MACCS47 fingerprint method as implemented in the
Molecular Operating Environment (MOE) software suite.48

To help prioritize compounds, the resultant clusterheads were
then reranked by eight different criteria: (1) DCEVDW+ES,
DOCK Cartesian energy score consisting of van der Waals plus
electrostatic terms, (2) FPSVDW+ES, footprint similarity score
consisting of van der Waals plus electrostatic terms, (3)
FPSVDW, footprint similarity score consisting of only the van
der Waals term, (4) FPSES, footprint similarity score consisting
of only the electrostatic term, (5) Total Score, a linear
combination of DCEVDW+ES and FPSVDW+ES, (6) FMS,
pharmacophore matching similarity score, (7) HMS, Hungar-
ian matching similarity score, and (8) VOS, volume overlap
similarity score. Additional molecular descriptors including
number of rotatable bonds, molecular weight, numbers of
hydrogen bond donors and acceptors, number of chiral
centers, SlogP, formal charge, and logS were calculated
(MOE and/or DOCK programs) and used in some cases to
eliminate compounds with undesirable properties. Figure 2
outlines the overall virtual screening protocol. Upon visual

examination of docked poses in the binding site from different
rank-ordered lists, 78 compounds were ultimately purchased
(ChemDiv vendor) for experimental testing.

Fluorescence Displacement Binding Assays. Purifica-
tion of recombinant human FABP3 and FABP5 were
performed as previously described.11 Binding assays were
carried out in 96-well Costar plates (Corning Life Science,
Kennebunk, ME). Recombinant human FABP3 or FABP5 (3
μM) was incubated with the fluorescent probe (500 nM) in
binding assay buffer (30 mM Tris-HCl, 100 mM NaCl, pH
7.6). Competitor test compounds (0.1−50 μM) were then
introduced to the well and mixed, and the system was allowed
to equilibrate for 20 min at 25 °C in the dark. All experimental
conditions were tested in triplicate. Each independent assay
also included a strong competitive binder (arachidonic acid, 10
μM) as a positive control for probe displacement and
background wells that did not contain any protein. Loss of
fluorescence intensity was monitored with an F5 Filtermax
Multi-Mode Microplate Reader (Molecular Devices, Sunny-
vale, CA) using excitation (ex.) and emission (em.) wave-
lengths appropriate for each probe (NBD-stearate ex./em. =
465/535 nm, DAUDA ex./em. = 345/535 nm). Single point
experiments utilized the NBD probe while dose response
experiments utilized the DAUDA probe. Following back-
ground subtraction, raw fluorescence intensity values were
normalized and fit to a one-site binding analysis using the
Graphpad Prism software (Prism version 7.0 for Mac OS;
Graphpad Software Incorporated, La Jolla, CA).

Cytotoxicity. Human umbilical vein endothelial cells
(HUVEC) were grown in Endothelial Cell Growth Medium
(Sigma-Aldrich) supplemented with 10% FBS, 100 units/mL
penicillin/streptomycin, and 1 mM sodium pyruvate. Cell
viability was assessed by MTT colorimetric assay. HUVEC
cells were seeded into 96-well culture plates and grown in
complete medium until the following day. The media was
aspirated from the wells, gently washed with PBS, and 200 μL
serum-free medium supplemented with 0.05% bovine serum
albumin (BSA) and containing indicated concentrations of
compound or vehicle (0.5% DMSO). Each plate contained
three wells with 0.5% sodium dodecyl sulfate (SDS) that was
used as a positive control for cell death and three wells with no
cells seeded to be used as a background reading. The plates
were then incubated for 24 h at 37 °C, at which time the drug-
containing media was removed and 200 μL serum-free media
containing 0.5 mg/mL MTT was added to all wells and
incubated for 3.5 h at 37 °C. The media was gently aspirated
and DMSO was added to solubilize the resulting formazan

Figure 2. DOCK6 Virtual Screening Protocol
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crystals. Plate absorbance was read at 585 nm with an F5
Filtermax Multi-Mode Microplate Reader. Background read-
ings were subtracted and the IC50 was determined by plotting
the resulting curve with Graphpad Prism software.
Analog Selection (Secondary Screen). To further

interrogate the scaffolds of experimentally verified active
compounds, hits from the first screen were used to select
analogues via two different methods: (1) The first method
involved rescoring the originally docked library with FPS,
FMS, HMS, and VOS similarity-based functions using the
most promising hit compound as a reference. Compounds
related to the hit were chosen from the intersection of the
different rank-ordered lists (100 top-scoring molecules each).
(2) The second method employed the similarity search feature
in ZINC15 to identify commercially available analogues having
a Tanimoto score of 0.75 or higher. Available compounds were
downloaded, and flexible docking and continuous space
minimization were performed in a similar manner as the
original virtual screen. To help generate a “consensus pose” the
DOCK multigrid scoring function49 was used which
incorporates a footprint-based energy term which favors
geometries making similar interactions as a reference
(discussed in Results and Discussion).
Molecular Dynamics Simulations and Free Energy

Calculations. Molecular dynamics simulations and free
energies of binding (MM-GBSA method50,51) were also
performed to further interrogate the geometric and energetic
stability of the experimentally verified hits. Starting from each
DOCK-predicted pose, MD-ready complexes were constructed
using the AMBER16 package.26 Briefly, proteins were
parametrized with the ff14SB force field,52 and ligands were
parametrized using GAFF28 (augmented with AM1-BCC29,30

partial charges) which were assigned using the antechamber
module. Each complex was solvated with TIP3P53 water in an
octahedron with a 13 Å margin in each direction. For all
neutral ligands, one sodium counterion was added to the
systems to keep the formal charge of the system neutral. No
additional salts were added.
A previously employed nine-step minimization and equili-

bration protocol37 was used to relax each system prior to
production MD. The first steps employed energy minimization
of hydrogens atoms and solvent molecules with solute heavy
atoms heavily restrained (20 kcal mol−1 Å−2) to their initial
starting positions, followed by a minimization of the entire
complex. Each system was then heated sequentially from 50 to

300 K, over 250 ps, with the same 20 kcal mol−1 Å−2 solute
restraints. Five additional MD equilibrations were performed
(4 × 200 ps, 1 × 500 ps) with positional restraints on protein
backbone and ligand atoms gradually reduced from 5.0 kcal
mol−1 Å−2 to 0.1 kcal mol−1 Å−2 with the last equilibration step
having no ligand restraints. Lastly, 20 ns of production data
was collected for each system using the CUDA-accelerated
version of pmemd in AMBER16 under NPT conditions with a
0.1 kcal mol−1 Å−2 positional restraint on the protein backbone
only. Snapshots of each trajectory were saved every 5 ps for
data analysis and fit to the initial MD frame using protein
backbone heavy atoms. We have employed similar MD
protocols (i.e., overall setup, equilibration and production
procedures, simulation lengths) to characterize protein−ligand
binding in a variety of systems.35−38,40

Analyses of the trajectories including root-mean-square
deviation (RMSD) calculations, distance measurements, and
clustering which were performed with the cpptraj54 module.
For RMSD calculations for ligands no additional fitting was
performed. Clustering of evenly spaced snapshots from
trajectories were performed using the hierarchical agglomer-
ative algorithm as implemented in cpptraj. End-state free
energies of binding (ΔGbind) were estimated using the “single-
trajectory” MM-GBSA50,51 method, facilitated by the
AMBER16 program MMPBSA.py,55 using the periodically
saved snapshots. Error analysis was performed using
autocorrelation functions (ACF) and block-averaged standard
errors of the mean (BASEM)56,57 as previously reported by our
group58,59 (see the Supporting Information). The MD
snapshots were also used to compute time-averaged molecular
footprints as outlined in previous work.37,40,59−61

■ RESULTS AND DISCUSSION

Virtual screening outcomes: Overlap between highly
ranked compounds. As described in Methods, compound
prioritization involved consideration of eight different rank-
ordered lists of compounds generated using different DOCK
scoring functions that include similarity-based metrics (Figure
2. Numerous docked candidates might have been expected to
be highly ranked by different functions and therefore would be
included in multiple lists, given that only a single reference
ligand was used (SBFI-26). However, since different scoring
functions quantify 3D similarity from different perspectives
(i.e., footprint similarity, pharmacophore, Hungarian, volume

Table 1. Number of Top-Ranked Compounds in Common for Different Ligand Ensembles (N = 200 Each) Obtained by
Different Scoring Functionsa

DCEVDW+ES FPSVDW+ES FPSVDW FPSES TotalScore HMS FMS VOS

DCEVDW+ES 200 0 0 0 61 0 0 0
FPSVDW+ES 0 200 37 55 5 3 11 8
FPSVDW 0 37 200 4 0 6 5 8
FPSES 0 55 4 200 6 1 11 3
TotalScore 61 5 0 6 200 0 1 0
HMS 0 3 6 1 0 200 12 19
FMS 0 11 5 11 1 12 200 13
VOS 0 8 8 3 0 19 13 200

aDCEVDW+ES = DOCK Cartesian energy score consisting of van der Waals plus electrostatic terms, FPSVDW+ES = footprint similarity score consisting
of van der Waals plus electrostatic terms, FPSVDW = footprint similarity score consisting of only the van der Waals term, FPSES = footprint similarity
score consisting of only the electrostatic term, TotalScore = a linear combination of DCEVDW+ES and FPSVDW+ES, FMS = pharmacophore matching
similarity score, HMS = Hungarian matching similarity score, VOS = volume overlap score. Matrix values quantify the number of top-ranked
compounds in common for pairs of ligand ensembles (N = 200 each) obtained by two different DOCK scoring functions.
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overlap), a significant level of diversity is in fact observed as
shown in Table 1.
For example, among the top-200 ranked compounds, the

DCEVDW+ES list (standard DOCK energy function) shows
overlap only with TotalScore (N = 61) which is reasonable
because DCEVDW+ES is included as component of TotalScore
and it is an energy-based function only (not similarity-based).
Although there is overlap between FPSVDW+ES with FPSVDW (N
= 37) or FPSES (N = and 55), again because FPSVDW and
FPSES both contribute to FPSVDW+ES score, there is little
overlap between the components themselves (N = 4) because
they quantify similarity only in terms of their van der Waals or
electrostatic interactions patterns, respectively. The generally
small overlap between the four main different similarity-based
list (FPSVDW+ES, HMS, FMS, and VOS) indicates significant
diversity among the different group compounds which
highlights the potential benefit of using multiple scoring
metrics to help prioritize compounds for purchase and
experimental testing. On the other hand, the fact that there
is some overlap between the different groups suggests there are
a small number of compounds that were predicted to bind to
FABP5 in an extremely similar fashion as the SBFI-26
reference with respect to multiple binding descriptors.
To visually emphasize how use of different functions leads to

different outcomes Figure 3 shows docked ensembles (200
clusterheads each) rank-ordered by (a) DCEVDW+ES, (b)
FPSVDW+ES, (c) TotalScore, (d) HMS, (e) FMS, and (f)
VOS. As observed in prior studies,34,35,40 use of the
DCEVDW+ES function (Figure 3a) generally leads to compounds
that are larger in size (MW bias) compared to other ensembles.
In contrast, the ligands prioritized using similarity-based
methods are more compact (especially Figure 3b,d,f), and
are more spatially clustered around the reference ligand SBFI-
26 (not shown in figure for clarity). The TotalScore function
was designed to provide more of a balance between a purely
energetic (DCEVDW+ES) and a similarity-based method
(FPSVDW+ES). The resultant TotalScore ensemble shown in
Figure 3c does, in this case, appear to contain molecules that
are more spatially balanced between those selected by either
component alone (Figure 3a,b).

Virtual Screening Outcomes: Compounds Selected
for Experimental Testing. To arrive at the prioritized group
for purchase and experimental testing, the top-ranked cluster-
heads were visually inspected using 3D stereographics in the
context of their predicted binding pose along with an
examination of key molecular properties (descriptors)
including: (1) position relative to the reference ligand, (2)
similar footprint interaction pattern compared to the reference,
(3) low number of chiral centers, (4) low computed ClogP
values, and (5) Lipinski rules violations. In total, 134
compounds were selected for experimental testing divided
roughly evenly among the different functions employed:
DCEVDW+ES = 20, FPSVDW+ES = 28 (FPSVDW and FPSES were
not explicitly used for compound prioritization due to their
high overlap with the FPSVDW+ES ranked list, see Table 1),
TotalScore = 24, HMS = 26, FMS = 21, and VOS = 22. Of
these, only 78 out of 134 were in stock and were purchased for
experimental testing. One particularly notable feature of the
FABP5 active site is that ligand binding (i.e., native substrate
AEA or inhibitor SBFI-2619) involves a key electrostatic
interaction with Arg129. Visualization of the 78 purchased
compounds (Figure 4) highlights this interaction in which
different functional groups H-bond with Arg129 through
carbonyl oxygens, nitrogens, sulfones, and carboxylic acids.

Figure 3. Overlay of top-ranked clusterheads (200 compounds each) prioritized by different scoring functions with FABP5: (a) DCEVDW+ES, (b)
FPSVDW+ES, (c) TotalScore, (d) HMS, (e) FMS, and (f) VOS. See text for scoring function descriptions.

Figure 4. Close-up view of FABP5 residue Arg129 with the 78 docked
and purchased compounds (orange) highlighting a key conserved H-
bond interaction (magenta lines).
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Experimental Testing of Compounds Based on the
DOCK Virtual Screen. The 78 purchased compounds were
tested for FABP5 and FABP3 affinity at two concentrations
(20 μM and 5 μM). The activity trends were consistent for the
compounds at both concentrations thus for simplicity only the
results at 5 μM are discussed below. As shown in Figure 5a,

four compounds displayed 60% or greater probe displacement
at 5 μM with FABP5, which is a comparable range of relative
binding affinity to the positive control SBFI-26 (Figure 5,
green). However, the two compounds with the strongest
affinity for FABP5 (V015-5448, F255-0055) also showed
strong affinity for FABP3 and therefore were not pursued. The

Figure 5. Fluorescence displacement binding assay results for the first set of 78 compounds (5 μM) against (a) FABP5 and (b) FABP3. The results
were arranged in the order of their mean % Fluorescence value against FABP5. Control compounds are arachidonic acid (red) and SBFI-26
(green).

Figure 6. Comparison of STK-0 and SBFI-26 showing (a) 2D structures, (b) activities with FABP5, and (c) binding site geometries (STK-0
orange, SBFI-26 green).
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fourth strongest hit (colored orange in Figure 5, compound
Y070-2541 (ZINC09463091), was ultimately selected for
additional study based on its reasonable affinity for FABP5
and low affinity to FABP3 which suggests a favorable selectivity
profile. The docked pose for Y070-2541 also showed high
overlap in terms of favorable FPS (5.67) and HMS (−0.21)
similarity scores relative to the inhibitor SBFI-26 reference.
Further investigation of Y070-2541 (hereafter called STK-0)

at different concentrations confirmed it to be a strong binder
to FABP5. As shown in Figure 6a, the Ki value of STK-0 with
FABP5 was determined to be 5.53 ± 0.89 μM which is ∼6-fold
less active than SBFI-26 (0.86 ± 0.18 μM) under the current
assay conditions. Considering that SBFI-26 is one of the most
potent FABP5 inhibitors previously reported and the fact that
STK-0 has a novel chemotype, it is a reasonable starting point
for further refinement to improve affinity. Figure 6b visually
shows the significant overlap between predicted binding pose
for STK-0 (orange) and the X-ray pose for SBFI-26 (green).
Notably, the docked scaffold of STK-0 shares many of the
important aromatic and polar features with SBFI-26. It is worth
noting that STK-0 was ranked only 38 081 by the standard
DCEVDW+ES score, thus it would never have been selected for
experimental testing if only intermolecular energy (i.e.,
DCEVDW+ES score) was used as the criteria for prioritization.
This dramatic observation highlights the utility of similarity-
based scoring functions, in this case HMS43 score, during
compound selection.
Identification and Selection of STK-0 Analogues. The

most promising compound (STK-0) from the virtual screen
was subsequently used as a reference to identify a second
group of analogs for experimental testing using two distinct
procedures (see Methods): (1) 3D search queries of the
initially docked library using DOCK similarity metrics and (2)
2D search queries of ZINC using molecular Tanimoto
similarity score.
For the 3D searches (Figure 7a), the existing docked library

of ∼2 M compounds was reprioritized with four DOCK

similarity-based functions and provides an example of data
mining. Analogous to the methods used in the original virtual
screen, the data mining employed FPS, FMS, HMS, and VOS
scores; however, the reference was the docked pose of STK-0
(not SBFI-26). Ultimately, seven compounds were identified
from the intersection of the four rank ordered lists (100
molecules each). As expected, visualization of this group
(Figure 7a) showed good correspondence in terms of
functional group overlap with the STK-0 reference.
For the 2D searches (Figure 7b), STK-0 was employed to

query the ZINC database, using a Tanimoto similarity cutoff of

0.75, which resulted in the identification of an additional
related group of compounds (N = 88). It is worth noting that
STK-0 and the identified analogues all have two chiral centers,
thus among the 88 hits, there were actually only 22 chemically
unique molecules (four enantiomers each). For any analogue
to be considered further, we imposed the requirement that
DOCK-generated poses for at least one of enantiomers be
similar to that of the reference. This was deemed important,
given that a congeneric series would be expected to have
similar binding geometries to establish and further predict
structure−activity relationships.
However, our initial examination of the 22 × 4 poses

generated with DOCK using the standard DCE energy
function yielded a wider diversity of geometries than expected,
despite the molecules having a common core. We hypothesize
this outcome was a result of the following: (1) the binding site
of FABP5 is relatively large which, in some cases, allow flexible
ligands to adopt a variety of conformations; (2) each of the 22
unique molecules had 4 enantiomers, some of which could not
adopt a similar pose as the parent due to chirality; (3) the
scaffold of STK-0 and its analogues is branched, and the
branches share somewhat similar chemical functionalities,
mostly aromatic rings. Therefore, different arrangements (i.e.,
alternative quasi-symmetric conformations) can result in
similar scores when only the DCE function was used.
As an alternative protocol, we redocked the 22 × 4

analogues using the DOCK multigrid similarity (MGS)
function which includes a footprint-based term to reward
poses making similar interactions as a reference (in this case
SBFI-26 from the X-ray structure). With this protocol, the
consistency of predicted binding geometries increased
significantly such that 48 out of the 88 top-scored poses
resembled that of STK-0 by visual inspection (Figure 7b).
Overall, the calculations showed that at least one enantiomer
from each of the 22 analogues could bind to FABP5 in a
manner similarly as the parent STK-0. In total, 26 out of the
unique compounds identified from the combination of the
secondary 3D and 2D similarity searches were available for
purchase and ordered for experimental testing. This group of
compounds was coded STK-1 thru STK-26.

Experimental Testing of Analogues Derived from the
Similarity-Based Searches. The STK group was subse-
quently tested using the same assay with the NBD-stearate
probe at both 5 μM and 20 μM concentrations. Compounds
were first reconstituted in DMSO to a concentration of 5 mM.
Out of the 26 compounds, 4 were not soluble at the stock
concentration and were not considered further. Figure 8a
shows results for 22 compounds at 5 μM in comparison to the
parent compound STK-0 and the previously identified
inhibitor SBFI-26. Encouragingly, two compounds (STK-15,
STK-22) displayed better affinity for FABP5 than STK-0 and
one compound (STK-15) appeared to be slightly more potent
than SBFI-26. In terms of selectivity for FABP5 over FABP3
(Figure 8b), although no analogues were as selective as the
STK-0 parent, STK-15 and STK-22 were more selective than
SBFI-26.
Structurally, all analogues share the same central dihydro-

pyrrole group that is predicted to maintain the key interaction
with Arg129 observed in the SBFI-26 X-ray structure. The
analogues contain modifications to the STK-0 ethyl-phenyl,
chloro-phenyl and benzofuran groups that include substitu-
tions with functional groups of similar size, replacement of
chlorine with other halogens or larger functional groups, and/

Figure 7. Comparison of DOCK predicted binding geometries for
parents (cyan) vs analogues (magenta) derived from (a) 3D similarity
searches of the originally docked library (N = 7) and (b) 2D similarity
searches in ZINC based on parent compound STK-0 (N = 48).
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or the addition of other functional groups to either phenyl ring.
Remarkably, within the STK series rank-ordered by their %
fluorescence with FABP5 (Figure 8a), the 14 top ranked
compounds (STK-15 through STK-20) all retain the N-
substituted ethyl-phenyl group relative to the STK-0 parent,
with the sole exception of STK-16 (methyl-phenyl) which
interestingly has the largest error among this group.
Conversely, the eight compounds showing much weaker
activity for FABP5 (STK-24 through STK-2) do not have an
N-substituted ethyl-phenyl with the exception of STK-12 and
STK-13. Taken together, these SAR trends strongly indicate
that the N-substituted phenyl group should be conserved and

the chloro-phenyl group is a promising position for further
exploration. The fact that the most potent analogues (STK-15
and STK-22) replace the chlorine with oxy-phenyl or methoxy-
phenyl functionality, two bulkier groups unique among the
series of compounds tested, suggest that exploration of
alternative bulkier aromatic rings would be worthwhile.
For the three STK compounds with the most FABP5 activity

at 5 μM (STK-15, STK-21, and STK-22), rigorous dose
response affinity and cytotoxicity experiments were subse-
quently performed as shown in Figure 9. Encouragingly, all
three compounds showed clear dose−response behavior, had
excellent cytotoxicity profiles (>75% cell viability up to 100
μM), and the measured Ki values for STK-15 (1.40 ± 0.35
μM), STK-21 (3.13 ± 0.21 μM), and STK-22 (2.90 ± 0.93
μM) were lower than the initial parent STK-0 (5.53 ± 0.89
μM).
The four hits were also examined with respect to possible

nonspecific effects as a result of colloidal aggregation, pan-assay
interference compound (PAINS) liabilities, or promiscuity.
According to the Aggregator Advisor (advisor.bkslab.org) Web
site, none of the hits had been previously reported as an
aggregator. Conversely, the ZINC database (zinc15.docking.
org) searches yielded 2-D similarity scores ranging from 0.55
to 0.60 to a previously reported aggregator ZINC13127469.
However, the fact that the four hits, in particular STK-0 and
STK-15, preferentially bind to FABP5 over FABP3 (Figure 8)
suggests their measured activities are not due to colloidal
aggregation. The well-behaved dose−response curves in
comparison to the known inhibitor SBFI-26 (Figure 6b),
tested under the exact same conditions, also suggests that
activity is not a result of aggregation. According to cbligand
(cbligand.org/PAINS) and SwissADME (swissadme.ch), none
of the four hits contain PAINS liabilities. Finally, in terms of
promiscuity, PubChem (pubchem.ncbi.nlm.nih.gov) searches
did not show that the compounds had previously been tested.

Ensemble-Based Characterization of STK Enan-
tiomers. It should be noted that the hits share a common
scaffold (Figure 6a, Figure 9a−c); however, as the
experimentally tested samples were racemic mixtures (four
enantiomers each) it is not known if different enantiomers
might have similar activities. To explore the effects of
stereochemistry on binding in greater detail, we performed

Figure 8. Fluorescence displacement binding assay results for STK
compounds (5 μM) against (a) FABP5 and (b) FABP3. The results
were arranged in the order of their mean % Fluorescence value against
FABP5. Control compounds are arachidonic acid (red) and SBFI-26
(green).

Figure 9. 2-D structures and dose response curves for binding (blue) and HUVEC cell viability (red) for (a) STK-15, (b) STK-21, and (c) STK-
22. Values represent the average of three independent experiments.
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molecular dynamics (MD) simulations and free energy
calculations for each enantiomer of each hit (4 × 4 setups).
For each setup, four MD replicas were executed following the
protocols outlined in Methods. Examination of the initial
DOCK poses for the most potent compound STK-15 showed
that top scored poses for 3 out of the 4 enantiomers share an
overall consistent binding pose with considerable overlap in
terms of functional group placement (Figure 10a). Further-
more, and in agreement with the trend obtained previously for
two different enantiomers of SBFI-26,19 the footprint patterns
between the S,R-STK15 and R,R-STK15 enantiomers studied
here also show striking accord (Figure 10b). Also, for the
second most active compound STK-22, 2 out of the 4
enantiomers had top scored poses that shared this same
geometry. Although the predicted best poses for STK-0 and
STK-21 showed more variability, with only one enantiomer in

each case adopting a similar pose, a consensus-like geometry
was always within the top 5 DOCK results with scores well
within the margin of error compared to the lowest energy.
Thus, all MD simulations were initiated using poses that
resembled this overall consensus pose.
Table 2 summarizes the MD results which include (1) ligand

heavy atom RMSD values to their respective initial geometries
(RMSD to pose), (2) free energies of binding (MM-GBSA
method), and (3) distances between the ligand dihydropyrrole
scaffold and Arg109 (defined in Table 2 legend, potential H-
bonding illustrated in Figure 11. In general, the simulations
showed good ligand stability with 12 of the 16 enantiomers
yielding RMSD values under 3.0 Å to their initial DOCK
consensus pose (values ranged from 1.67 to 3.84 Å). The
computed free energies of binding were also favorable (i.e.,
negative) although there was a relatively wide range of values

Figure 10. (a) Overlay of 3 of the 4 STK-15 enantiomers: S,R-STK-15 (blue), S,S-STK-15 (tan), and R,R-STK-15 (magenta). (b) Footprint (per-
residue energy) comparison between S,R-STK-15 (blue) and R,R-STK-15 (magenta). Energies in kcal/mol.

Table 2. Molecular Dynamics Simulation Results for Four Enantiomers of STK-0, STK-15, STK-21, and STK-22a

R,S-STK-0 R,R-STK-0 S,S-STK-0 S,R-STK-0b averages

RMSD to pose (Å)c 1.67 ± 0.42 2.77 ± 1.28 3.20 ± 0.31 2.76 ± 0.40 2.60
ΔGbind (kcal/mol)d −27.56 ± 0.25 −30.78 ± 0.54 −30.91 ± 0.16 −32.12 ± 0.40 −30.34
Lig−Arg distance (Å)e 5.16 ± 0.85 5.82 ± 1.87 7.15 ± 0.85 5.44 ± 0.67 5.89

R,S-STK-15 R,R-STK-15 S,S-STK-15 S,R-STK-15 averages

RMSD to pose (Å) 2.84 ± 0.26 2.88 ± 0.73 2.79 ± 0.36 3.84 ± 0.72 3.09
ΔGbind (kcal/mol) −40.57 ± 0.37 −36.95 ± 0.55 −31.77 ± 0.33 −36.25 ± 0.50 −36.39
Lig−Arg distance (Å) 3.34 ± 0.57 3.84 ± 0.97 5.17 ± 1.54 6.47 ± 1.25 4.71

R,S-STK-21 R,R-STK-21 S,S-STK-21 S,R-STK-21 averages

RMSD to pose (Å) 2.37 ± 1.38 2.22 ± 0.86 2.28 ± 0.22 2.69 ± 0.31 2.39
ΔGbind (kcal/mol) −26.31 ± 0.42 −28.13 ± 0.40 −30.86 ± 0.28 −32.65 ± 0.25 −29.49
Lig−Arg distance (Å) 5.54 ± 1.43 5.28 ± 1.25 6.83 ± 0.75 6.79 ± 0.98 6.11

R,S-STK-22 R,R-STK-22 S,S-STK-22 S,R-STK-22 averages

RMSD to pose (Å) 3.35 ± 0.72 2.70 ± 0.25 2.76 ± 0.54 3.67 ± 0.58 3.12
ΔGbind (kcal/mol) −42.35 ± 0.65 −45.00 ± 0.31 −32.62 ± 0.61 −33.39 ± 0.37 −38.34
Lig−Arg distance (Å) 3.11 ± 0.51 2.91 ± 0.31 6.01 ± 0.99 6.12 ± 1.04 4.54

aThe results for each enantiomer were averaged over four individual MD replicas of 20 ns each. bS,R-STK-0 (bolded cells) was the enantiomer first
docked to FABP5 and the original hit. cReference based on consensus pose. Fluctuations in standard deviation. dSingle trajectory MM-GBSA
method without entropy. Fluctuations in block-averaged standard error of the mean at a block size of 200 frames (see the Supporting Information).
eLig−Arg distance defined as the distance between the ligand dihydropyrrole scaffold oxygen adjacent to N and the closest nitrogen on Arg109.
Fluctuations in standard deviation.
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(−26.31 to −45.00 kcal/mol). The initial experimentally
verified hit (S,R-STK-0, Table 2, bolded cells) yielded a 2.76 Å
RMSD and a free energy of binding of −32.12 kcal/mol. For
comparison, the known inhibitor SBFI-26, starting from its
crystallographic binding geometry, had an RMSD of 1.87 Å ±
0.46 and a free energy of binding of −33.83 ± 0.54 kcal/mol,
which suggests the specific MD protocols used here are robust.
Overall, the simulation results reaffirm the predicted consensus
binding geometry in Figure 10a.
Interestingly, the two most potent compounds STK15 and

STK22 have, on average over all enantiomers (Table 2, far
right column), more favorable predicted free energies of
binding (−36.39 and −38.34 kcal/mol) compared to STK0
and STK21 (−30.34 and −29.49 kcal/mol). Also, for STK15
and STK22 in particular, the R,S (−40.57 and −42.35 kcal/
mol) and R,R (−36.95 and −45.00 kcal/mol) enantiomers are
predicted to bind much more tightly than their respective S,S
(−31.77 and −32.62 kcal/mol) or S,R (−36.25 and −33.39
kcal/mol) forms. An inspection of the MD trajectories revealed
an interesting pattern for the R forms (i.e., R,S, and R,R forms)
of STK-15 and STK-22 in which the ligand would shift slightly
in the binding pocket which enabled additional H-bonding
with Arg109 (Figure 11. Compellingly, calculated ligand−
Arg109 distances (Table 2) for these four complexes were
significantly smaller (2.91−3.84 Å) than the other 12 systems
(5.16−7.15 Å). Thus, the more favorably calculated free
energies of binding observed for these four enantiomers appear
to be a direct consequence of increased H-bonding with
Arg109. Together, the analysis suggests that enantiomerically
pure compounds could show increased activity.
Origins of Enhanced H-Bonding with Arg109 for R-

STK-15 and R-STK-22. To understand why only the R forms
(R,S, and R,R) of STK15 and STK22 showed enhanced H-
bonding with Arg109, we compared the initial starting
coordinates with those from MD trajectories. Figure 12a

illustrates that the initial consensus poses for R,R-STK-15
(meta O-phenyl, orange) and R,R-STK-0 (meta chlorine, gray)
were well overlaid, particularly along the central pyrrole ring
and that the ligand pyrrole oxygen was not within H-bonding
distance of Arg109. All enantiomers had similar starting poses.
Thus, as expected, there was no initial structural biases that
might have favored H-bonding with Arg109 for certain ligands
or enantiomers and any conformational shifts happened
spontaneously during the MD simulations.
One standout feature observed during the MD trajectories

was a relatively minor rotation of the FABP5 Phe65 side chain
(cyan vs purple) as illustrated in Figure 12b for R,R-STK-15.
Mechanistically, the Phe65 rotation appears to accommodate
an extended conformation of the N-substituted ethyl-phenyl
group (green) on R,R-STK-15 into a groove formed by Ile54,
Thr56, Phe65, Gln96, and Arg109, which enables the ligand to
shift to the left (green vs orange) and interact with Arg109.
Concurrently, this shift appears to place the larger phenoxy-
phenyl (STK-15) or phenoxy-ethylphenyl (STK-22) groups at
an optimal distance to interact with a pocket formed by Met25,
Val28, Leu32, and Lys61. Due to their smaller sizes, ligands
STK-0 (chlorophenyl) and STK-21 (bromophenyl) were not
able to reach both this pocket and Arg109 simultaneously. In
addition, as the initial X-ray conformer of Phe65 (purple)
would clash with the N-substituted ethyl-phenyl group
conformation seen if H-bonding with Arg109, this explains
the absence of DOCK poses that interact with Arg109.
Enhanced H-bonding and binding energy seen in MD
simulations of R,S-STK-15, R,R-STK-22, R,S-STK-22 are
expected to involve the same proposed mechanism.
A natural question is why do the S forms (i.e., S,S or S,R)

not shift to interact with Arg109 (distances all greater than 5
Å)? Figure 13a compares representative MD snapshots

between S,R-STK-15 (orange) and R,R-STK-15 (green) in
which the pyrrole scaffold of R (green) shifts slightly (∼1.2 Å)
to the left of S (orange) to facilitate H-bonding with Arg109.
In contrast, as a result of the flipped stereochemistry of the
phenoxy-phenyl group in the S form, the N-substitute phenyl
group is now positioned upward relative to the pyrrole ring
which would clash in the protein conformation adapted to R
(Figure 13b, black arrow, blue surface clash). On the other
hand, the reverse experiment of placing R,R-STK-15 in the
protein conformation coupled to the S enantiomer shows no
such clash (Figure 13c) and ligand maintains most of the same
interactions with the site. Taken together, the differences
inherent to the 3D spatial arrangement of functionality in R vs
S forms, coupled with the extra stabilization available as a
result of larger functionality in STK-15 and STK-22 (phenoxy-
phenyl or phenoxy-ethylphenyl) compared to STK-0 and STK-

Figure 11. Comparison of poses for (a) R,R-STK-15 and (b) S,R-
STK-15 from representative snapshots from the largest MD clusters
observed over 80 ns of simulation.

Figure 12. (a) Starting coordinates for R,R-STK-15 (meta O-phenyl,
orange) and R,R-STK-0 (meta chlorine, gray) in the FABP5 X-ray
crystal structure. (b) Comparison of starting coordinates (orange =
R,R-STK-15, purple = Phe65) vs representative MD snapshot (green
= R,R-STK-15, cyan = Phe65).

Figure 13. (a) Binding site comparison between S,R-STK-15 (orange
ligand, tan protein) and R,R-STK-15 (green ligand, blue protein). (b)
Overlay showing the S,R-STK-15 ligand (orange) in the R,R-STK-15
protein (blue) conformation through protein backbone alignment. (c)
Overlay showing the R,R-STK-15 ligand (orange) in the S,R-STK-15
protein (blue) conformation.
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21 (Cl or Br), enables enhanced H-bonding with Arg109 when
Phe65 undergoes a rotameric shift.

■ CONCLUSION
The primary goal of this work was to identify small organic
molecules with inhibitory activity and specificity for FABP5
compared to FABP3. Employing a structure-based screening
strategy (DOCK6 program), ∼2 M commercially available
compounds were docked to the FABP5 active site structure
originally cocomplexed with SBFI-26 (a compound previously
identified by our group through virtual screening and
confirmed by X-ray crystallography (Figure 1). The 100 000
top-scoring compounds (DCE function) were retained and
used to create additional smaller independent rank-ordered
lists for compound prioritization based on different scoring
metrics that employed unique similarity-based functions
(Figure 2). There were no overlapping results between the
top 200 compounds prioritized by energy-based (DCE) vs
similarity-based methods (FPS, HMS, FMS, VOS), and there
were relatively few overlaps using different similarity-based
scoring metrics (Table 1). This helps validate the hypothesis
that use of multiple scoring metrics leads to a more diversified
pool of candidates and that the different similarity-based
functions encode different information. Ultimately, 78
compounds from the initial virtual screen were purchased for
experimental testing (Figures 4 and 5).
Using a fluorescence displacement binding assay with an

NBD-stearate substrate, 4 out of the 78 tested compounds
showed better than 60% fluorescence at 5 μM concentration
against FABP5. One compounds in particular (Y070-2541,
code name STK-0), identified through Hungarian Matching
Similarity (HMS) scoring, had a good selectivity profile against
FABP3 (Figure 4) and a reasonable Ki value (5.53 ± 0.89 μM)
compared to the known control SBFI-26 (0.86 ± 0.18 μM)
(Figure 6) and was thus retained for further analysis.
Subsequent similarity searches using STK-0 as reference,
with the additional requirement that the analogues should have
the same general binding pose as the parent (Figure 7), yielded
26 additional compounds that were purchased (STK-1 to
STK-26 series). All of the analogues contained the same
central dihydropyrrole scaffold as the STK-0 parent.
Encouragingly, several of the analogues showed better or
comparable levels of activity to STK-0 (Figure 8), which helps
validate our hypothesis that chemically similar compounds
would yield comparable biological activities.
The results also allowed some preliminary SAR to be

determined including the observation that the N-substituted
phenyl group should likely be conserved and that the meta
chloro-phenyl group is a promising position for further
exploration. Of the four most active hits (STK-0, STK-15,
STK-21, and STK-22), the two most potent analogues (STK-
15 and STK-22) replaced the chlorine with bulkier oxy-phenyl
or methoxy-phenyl functionality suggesting that further
explorations at this position would be worthwhile. Notably,
the most potent hit STK-15 (1.40 μM) was only 2-fold less
active than the SBFI-26 control (0.86 μM).
Somewhat surprisingly, although the DOCK6 consensus

binding geometry for the STK series was similar to the
crystallographic pose of SBFI-26, follow up MD simulations
revealed that only the R form (chiral center on central scaffold)
for two of the four hits (STK-15 and STK-22) consistently
underwent a subtle but important conformational change that
enabled new H-bonds to be formed with Arg109 (Table 2,

Figure 11). This new interaction was in addition to the
canonical Arg129 H-bond observed in X-ray structures with
fatty acid substrates or SBFI-26. Subsequent computational
analysis led to the conclusion that only the R forms of STK-15
and STK-22 interact with Arg109 given inherent geometric
differences arising from R vs S stereochemistry, and their larger
size compared to STK-0 and STK-21 which stabilizes binding
following a rotameric change in the side chain of Phe65
(Figures 11−13). The analysis suggests that enantiomerically
pure R,R-STK-15 and R,S-STK-15 may show enhanced activity
against FABP5, and this aspect would be worthwhile to
investigate in future work. In summary, this study has
demonstrated the ability of similarity-based virtual screening
methods to identify experimentally validated compounds
against FABP5 and provides a strong starting point for further
optimization efforts to improve their activity.
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