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Abstract: The current expansion of the Internet of things (IoT) demands improved communication
platforms that support a wide area with low energy consumption. The 3rd Generation Partnership
Project introduced narrowband IoT (NB-IoT) as IoT communication solutions. NB-IoT devices
should be available for over 10 years without requiring a battery replacement. Thus, a low energy
consumption is essential for the successful deployment of this technology. Given that a high amount of
energy is consumed for radio transmission by the power amplifier, reducing the uplink transmission
time is key to ensure a long lifespan of an IoT device. In this paper, we propose a prediction-based
energy saving mechanism (PBESM) that is focused on enhanced uplink transmission. The mechanism
consists of two parts: first, the network architecture that predicts the uplink packet occurrence
through a deep packet inspection; second, an algorithm that predicts the processing delay and
pre-assigns radio resources to enhance the scheduling request procedure. In this way, our mechanism
reduces the number of random accesses and the energy consumed by radio transmission. Simulation
results showed that the energy consumption using the proposed PBESM is reduced by up to 34% in
comparison with that in the conventional NB-IoT method.
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1. Introduction

Internet of things (IoT) is being applied in various fields, from small sensors to industrial
control systems, by supporting the interconnection between devices, and it aims to improve the
quality of life [1]. Recently, new challenges are emerging for machine-type communication (MTC),
such as public safety and problems in the field of smart grids. In addition, it is predicted that the
IoT market will rapidly grow above ten times that of cellular communications [2]. Furthermore,
5G technology, expected to be commercially available by 2020, includes the development of two
IoT-specific features, namely, massive IoT, suitable for high-density networks, and mission-critical
IoT, aimed to delay-sensitive services [3]. To support various services, IoT networks will coexist with
different technologies according to the type of service, rather than being unified by a single solution.

The connectivity technology for IoT services is classified into two categories according to the
coverage distance: short-range technology, for applications including smart home and smart health,
and long-range technology, for applications including tracking and monitoring for connected cars
and smart watches. Short-range connectivity relies on technologies such as wireless local area
network (WLAN), Bluetooth, and ZigBee, and the resulting network connects devices based on
multiple technologies and forms an infrastructure with a gateway to connect to external networks.
In this architecture, however, network maintenance, operation cost, and network complexity rise
exponentially as the number of devices grows. In contrast, long-range connectivity relies on
cellular network technologies such as global system for mobile communications (GSM), wideband

Sensors 2017, 17, 2008; doi:10.3390/s17092008 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1576-5607
https://orcid.org/0000-0001-6359-6903
http://dx.doi.org/10.3390/s17092008
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2008 2 of 22

code-division multiple access (WCDMA), long-term evolution (LTE), and LTE-MTC that cover several
kilometers and support both device mobility without connection loss and high-speed transmission.
However, these technologies present drawbacks including protocol overhead, reduced battery life,
and high cost.

Some connectivity solutions currently require low-frequency operation and tolerate some amount
of delay, but also demand to continuously operate for several years in a wide area [4,5]. However,
the conventional connectivity technology cannot suitably satisfy these requirements. Given that the
cellular network is optimized for voice, multimedia, and high-speed services, it is difficult to achieve
low cost and low energy consumption for IoT modules. Likewise, the requirement of a gateway to
provide connection with external networks in short-range connectivity technologies causes similar
problems to those when using a wired or cellular network. To solve these problems, the low-power
wide area network (LPWAN) technology was introduced. This technology extends the coverage
area to several kilometers and improves the device cost and energy consumption by reducing the
modem complexity. Figure 1 illustrates the LPWAN technology and IoT services according to coverage
and throughput.
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A LPWAN is designed with the following requirements: communication distance up to 40 km,
thousands of devices supported by one base station, availability for over 10 years without battery
replacement, and module price below US$5. Examples of LPWAN technologies that use the unlicensed
industrial, scientific, and medical bands include SIGFOX and long range (LoRa), whereas the
narrowband IoT (NB-IoT), recently introduced by the 3rd Generation Partnership Project (3GPP),
uses the licensed bands [6]. The NB-IoT introduced the evolved packet system (EPS) optimization
that reduces the protocol overhead of state transition to achieve low energy consumption in addition
to reduce the modem complexity. In existing LTE networks, the control signals and application data
are transmitted separately via the control and user planes, respectively, and a radio bearer setup
is necessary to send application data. On the other hand, the NB-IoT enables a piggyback small
application packet into the non-access stratum (NAS) signaling message. This scheme improves
the transmission efficiency by skipping the bearer setup. Despite these features, there has been no
progress in the scheduling request procedure to reduce energy consumption. Given that the NB-IoT is
developed based on LTE, auxiliary procedures are necessary for the uplink radio resource allocation
that is performed only by a random-access procedure.
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In this article, we proposed a novel mechanism to improve energy consumption based on the
predictive resource allocation. Prediction-based algorithms have been studied to guarantee the
bandwidth and minimize the latency in poor channel condition. In [7], the authors investigated the
predictability of user behavior to minimize bandwidth to achieve certain quality of service. However,
this work does not exploit the non-continuous traffic characteristics and power consumption problem.
In [8,9], the algorithm that predicts uplink radio resources by monitoring bandwidth measurement for
the video stream was proposed. These papers analyzed real-time service which generates packet with
short deterministic interval continuously. In contrast, our work is for IoT data traffic that only a few
handshakes with small size packet exist. In [10], the authors made traffic model for machine-to-machine
communication and proposed uplink packet prediction algorithm based on the idea that data traffic
can be generated at similar time by machines in the same group with a high probability. But again,
it does not exploit the correlation between uplink and downlink packet.

The remainder of this article is organized as follows. We briefly introduce the NB-IoT technology
in Section 2 and identify the energy consumption problem caused by scheduling request procedures in
Section 3. Then, we propose the algorithms to alleviate this problem in Section 4. Section 5 presents
the simulation results and evaluation, and we provide a conclusion in Section 6.

2. NB-IoT

This section describes the NB-IoT key technologies to achieve low energy consumption
and extended coverage, including baseband characteristics, data transmission scheme, extended
discontinuous reception (eDRX), power saving mode (PSM), and control-plane cellular IoT (CP CIoT)
EPS optimization.

2.1. NB-IoT with Other 3GPP Technologies

The 3GPP completed the first NB-IoT specification in 2016 and standardization is ongoing for
schemes to strengthen mobility and reduce transmission delay. Although the NB-IoT appeared after
LoRa and SIGFOX, it solves the congestion problem by using licensed bands, which enable more
reliable services for mission-critical applications. In addition, given that the NB-IoT can coexist with
GSM and LTE networks, which have already been successfully deployed, it is possible to use the
existing network hardware and reduce the deployment cost [11]. Considering other 3GPP technologies,
the maximum NB-IoT data rate has decreased, but its cell coverage is enhanced and the hardware
complexity is reduced by 90% compared to that of LTE Cat-1, as shown in Figure 2. Hence, the NB-IoT
can reduce the cost and energy consumption, which are the main shortcomings of cellular network
technology for IoT devices.
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2.2. NB-IoT Key Technologies

2.2.1. Baseband Characteristics

The radio frequency consists of a 180 kHz narrowband corresponding to one physical resource
block (PRB) of an LTE network. Thus, it is possible to operate in the same band with an LTE network.
In addition, half-duplex transmission, single antenna, single receiver chain, and low modulation
scheme reduce the complexity and cost of the user equipment (UE). The downlink is composed of a
15 kHz subcarrier spacing using orthogonal frequency-division multiple access (FDMA), whereas the
uplink can use both 15 kHz and 3.75 kHz single-carrier FDMA. Given the difficulty to increase the
UE transmission power, the NB-IoT dedicates a 3.75 kHz subcarrier spacing for the uplink to support
extended coverage.

2.2.2. Deployment Scenario

The NB-IoT deployment is classified into in-band, standalone, and guard-band scenarios
according to its relationship with the legacy cellular network as shown in Figure 3. The in-band scenario
allocates 200 kHz of the LTE carrier to the NB-IoT and reuses the frequency that is already secured by
the network operator. Hence, the deployment cost can be reduced because additional spectrum is not
necessary. However, the resource map should be adjusted to guarantee the orthogonality with existing
network and the available bandwidth for the LTE network can decrease. Next, the standalone scenario
does not use LTE band resources, but assigns a dedicated spectrum to the NB-IoT. In addition, it can
coexist with the GSM network by re-farming the network frequency. Finally, the guard-band scenario
operates in the LTE guard band. Hence, it does not to require additional spectrum, but the number
of available channels is limited. For instance, in the case of LTE with 20 MHz channel bandwidth,
as shown in the Figure 3, only two 1 MHz guard bands are available, whereas the 10 MHz channel
bandwidth has two 500 kHz guard bands [12,13].
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2.2.3. Coverage Extension

Although the LTE can operate up to 144 dB in the maximum coupling loss (MCL), the NB-IoT
was designed to satisfy 164 dB MCL for extended cell size in environments with high penetration
loss. An additional 20 dB link budget can be obtained from the lower bandwidths and repeating
transmission. LTE operates in PRB units of 180 kHz, but the NB-IoT can operate with 15 kHz and
3.75 kHz, and thus can take additional 14 dB and 17 dB gains in terms of power spectral density,
respectively. Likewise, the retransmission count of up to 128 for the uplink and 2048 for the downlink
allows to obtain the additional link budget.
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2.2.4. Data Transmission Scheme

Compared with LTE and for simplicity, the NB-IoT supports only one hybrid automatic repeat
request (HARQ) that is asynchronous and adaptive for both uplink and downlink to support
scheduling flexibility of the base station [14]. Figure 4 shows the physical channel and timing relation
for uplink and downlink data transmission. A narrowband physical dedicated control channel
(NPDCCH) carries the downlink control information (DCI) that includes scheduling delay, modulation
coding scheme, and repetition number for both the narrowband physical uplink shared channel
(NPUSCH) and narrowband physical downlink shared channel (NPDSCH). The NPUSCH conveys
not only a medium access control (MAC) protocol data unit (PDU), but also HARQ acknowledgment
(ACK)/negative acknowledgment (NACK) information, unlike LTE. The repetition number of each
channel is determined from the base station based on the coverage-enhancement (CE) level of the UE,
which is determined through the random-access procedure. In addition, the time interval between each
channel can be distributed for the flexibility of scheduling policy. Since the NB-IoT is a half-duplex
system, a transmission switching time above 3 ms is required.
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2.2.5. eDRX

Discontinuous reception (DRX) is a technology to deactivate the UE modem during a specific
period that is negotiated with base station. Hence, the UE turns on the modem and monitors the
downlink channel only during a specified time. Consequently, the transmission is delayed until the
next monitoring period when the base station has a packet to send and the UE modem is deactivated.

DRX is classified into idle and connected DRX according to the radio resource control (RRC)
connection state. In idle DRX, the RRC is not connected with base station, and the UE monitors
only the paging signal for 1 ms per DRX period. Thus, it is possible to save energy by activating
the modem only in the monitoring period. Moreover, as the DRX cycle becomes larger, the average
energy consumption decreases and the battery life increases. However, a long DRX period increases
the response time, thus compromising the user experience. Taking the user experience effects into
account, the maximum DRX period of an LTE network is 2.56 s. In contrast, energy consumption is
more important than an immediate response for the IoT. Thus, the DRX period can reach 175 min in
the NB-IoT by employing hyper frame number. Figure 5 shows the maximum period of DRX and
eDRX along with the UE power state.
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management entity (MME), a packet data network gateway (P-GW), and a serving gateway (S-GW) 
are used to reduce the network signaling overhead. In addition, encryption and header compression 
can be processed on the MME, and data transmission does not require the access stratum (AS) setup. 
Both AS security and user-plane radio bearer setup are mandatory in LTE networks. Thus, at least 9 
messages are required before the transmission of the first application packet, as shown Figure 7a. On 
the other hand, the NB-IoT CP CIoT EPS optimization allows to transmit application packets after 4 
messages, as shown in Figure 7b. 
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2.2.6. PSM

Some IoT devices do not require to frequently send packets and receive a packet from the network
sporadically. For instance, in the case of a fire alarm, data transmission is mostly triggered from
the temperature sensor, and it is not necessary to monitor paging except for firmware updates and
keepalive. Thus, for some applications, the downlink latency is not important, and it is enough to
monitor paging every several days. If paging does not need to be monitored for a long time, the UE
is able to deactivate, besides the modem hardware, most parts of the device such as memory refresh.
Figure 6 illustrates the relationship between the PSM operation and the UE power state. The PSM
interval is negotiated and decided via a tracking area update (TAU) procedure with a maximum
interval of several months.
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2.2.7. CP CIoT EPS Optimization

The existing EPS is optimized for high-end services, including multimedia, voice, and Internet
access. Thus, transmitting the IoT packet that is small and infrequent is inefficient through this system.
Specifically, a connection setup is always required regardless of the packet size, and the EPS supports
only IP packets with large overhead. Consequently, EPS optimization has been applied for the NB-IoT
on both control and user plane aspects. In this paper, we focus on optimization for the control plane.
The CP CIoT EPS optimization is designed to allow a piggyback application packet into the NAS PDU
to reduce the radio resource usage when establishing the user-plane radio bearer. First, a CIoT-serving
gateway node (C-SGN) that is a logical node and plays the role of mobility management entity (MME),
a packet data network gateway (P-GW), and a serving gateway (S-GW) are used to reduce the network
signaling overhead. In addition, encryption and header compression can be processed on the MME,
and data transmission does not require the access stratum (AS) setup. Both AS security and user-plane
radio bearer setup are mandatory in LTE networks. Thus, at least 9 messages are required before the
transmission of the first application packet, as shown Figure 7a. On the other hand, the NB-IoT CP
CIoT EPS optimization allows to transmit application packets after 4 messages, as shown in Figure 7b.
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3. Problem Statement for Scheduling Request

Even after the radio bearer is established and the RRC is in the connected state (RRC_Connected),
the uplink packets cannot be transmitted without a scheduling request procedure. In this section,
we present the scheduling request procedure and the energy consumption problem in NB-IoT networks.

Similar to LTE networks, the NB-IoT radio resources for packet transmission are shared among
UEs, and an evolved node B (eNB) scheduler dynamically assigns these resources to each UE based on
the scheduling policy. Scheduling commands, which contain assigned time, resource, and decoding
information, represent DCI transmitted via the NPDCCH. The UE decodes the NPDCCH information
by using a radio network temporary identifier (RNTI) at specific times with the decoding period
configured when the connection is established. This RNTI-based decoding identifies whether the radio
resource for the NPUSCH is assigned to the UE.

Figure 8 illustrates the uplink packet transmission procedure including the physical control
channel in the case that the UE does not have any assigned radio resources for uplink. In contrast to
LTE networks, the NB-IoT does not have dedicated radio resources for scheduling requests. Hence,
the uplink radio resources can be only requested through a random-access procedure. Since this
procedure competes with that of other devices, the contention resolution could fail and the UE retries
random access after a back-off time. As shown in step (1) of Figure 8, the preamble is transmitted via a
narrowband random-access channel (NPRACH). Then, the eNB sends the random-access response
through the NPDSCH and NPDCCH. The NPDCCH includes the DCI to decode the NPDSCH, and
the NPDSCH carries an identifier for contention resolution and a scheduling command for the next
NPUSCH, as shown in steps (2) and (3) of Figure 8. The eNB scheduler has no information on the
amount of data in the UE buffer. Hence, it first assigns a small radio resource to receive the UE
buffer status information. Next, when the UE receives the uplink scheduling command, it sends the
buffer status report through the scheduled NPUSCH, as shown in step (4) of Figure 8. Finally, the
eNB acknowledges the UE buffer status and continuously assigns uplink radio resources until the
data transfer corresponding to the reported size is completed, as illustrated in steps (5) though (8) in
Figure 8.
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Thus, although the radio bearer is established, additional interactions are required due to the
scheduling request procedure. Given that the random-access procedure can be used to send a RRC
connection request besides the scheduling request, the response message is typically composed of a
88-bit scheduling command, a size appropriate for that type of message [15]. Therefore, even packets
with few bytes are difficult to transmit in MSG3 (step (4) of Figure 8), and another uplink transmission
is required to complete the packet transmission, like step (6) of Figure 8. Given the NB-IoT repeating
transmission for coverage enhancement, as the number of uplink application packets increases, so does
the energy consumption.

Clearly, there is no effect of the scheduling request when a session completes after the transmission
of one small packet, as that shown in Figure 7b. However, if a handshake between the UE and network
is required, as shown in Figure 9, the battery consumption by the scheduling request increases.
Figure 9a illustrates the scenario where the network server responds to the application report, and
a radio link control (RLC) ACK packet corresponding to the downlink data should be transmitted
with the scheduling request procedure. Figure 9b illustrates the scenario of a session triggered by
the network command. In the worst case, two scheduling request procedures can occur by the RLC
ACK and application response due to different processing times. As the active time increases by
the random-access procedure, both the battery life and cell capacity can decrease due to failure on
contention resolution.

Besides the handshake triggered by application packets, the energy consumption problem arises
by the transport protocol stack used in the IoT network, such as constrained application protocol
(CoAP), datagram transport layer security (DTLS), and multicast domain name system (mDNS).
The DTLS protocol, which is intensively investigated for the IoT [16], needs additional handshakes
for security-context creation and resuming [17]. Given the memory cost for the server to maintain
several security contexts from IoT devices, the refresh operation at the server is inevitable. In this
case, an inappropriate timeout value can cause more scheduling request procedures and increase
energy consumption. Figure 10 illustrates the initial 6-way handshake to create security context in the
CoAP/DTLS protocol. The uplink DTLS and RLC ACK packets need a scheduling request procedure
per transmission.
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4. Prediction-Based Energy Saving Mechanism

In this section, we propose a prediction-based energy saving mechanism (PBESM) that allows
predictive resource allocation to reduce the energy consumption caused by the scheduling request
procedure in an NB-IoT network. The PBESM predicts the uplink occurrence and processing delay
from packet inspection, and the eNB pre-assigns radio resources for uplink packet transmission. Thus,
the PBESM allows to send uplink packets without requiring a scheduling request procedure.
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4.1. Network Architecture with PBESM.

Figure 11 shows the NB-IoT network architecture that includes proposed mechanism. It is
basically the same as the conventional network architecture and interface structure, but considers two
new entities, namely, the packet inspection entity (PIE) and packet prediction entity (PPE).
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The PIE, which is logically located on the MME, determines the session type from the packet
header inspection, e.g., protocol type, port number, and IP address. Then, the PIE predicts the
occurrence of the uplink response message with strategy as o the paging delay in the PSM.

Table 1. Moreover, it measures the response time for each session and sends this information
to the PPE, which operates in the base station. The PIE is located on the MME because the paging
delay in the PSM may pull the predictive processing delay in the wrong direction, and the MME can
prevent this case. The estimated information is transmitted through the existing S1-MME interface in
the downlink packets. Though the response message of the NAS and transport protocol (e.g., DTLS,
CoAP, and transmission control protocol–TCP) can be predicted in the PIE, it is difficult to predict the
application response due to message encryption and customized protocols. Therefore, the application
server should support the prediction of uplink occurrence to profit from the PBESM. For prediction
from the application server, the information about packet occurrence is trustable only due to the paging
delay in the PSM.

Table 1. Predictable packet types.

Packet Type Prediction
Entity Strategy

RLC protocol PPE Prediction of RLC ACK packet though poll bit transmission
RRC protocol PPE Prediction of RRC response message through a REQUEST message type
NAS protocol PIE Prediction of NAS response message through a REQUEST message type
Transport
layer protocol PIE Prediction for DNS, DTLS, etc. through packet header inspection

Application
response

Application
Server, PIE Application server can analyze application message type

The PPE organizes the received uplink occurrence information and response time for each session.
Using these data and the proposed algorithm, it predicts the processing delay, which is the time
difference between the downlink transmission and uplink packet generation. Then, the eNB generates
a prescheduling command that contains the uplink transmission time and modulation scheme, and
the command is sent to the UE in a downlink packet via the NPDSCH. When the UE receives the
command, it holds the uplink packet for the specified time without a scheduling request procedure.
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Predictable Packet Type

There are five types of predictable packets, namely, RLC ACK, RRC and NAS signaling messages,
transport layer response (e.g., TCP ACK and DTLS response), and application response. Table 1 lists
the prediction entities and strategies for each packet type.

4.2. Prediction of Processing Delay

The processing delay for downlink packets varies according to the protocol category, application
type, and device performance. The PPE manages the prediction metrics for each session and UE.
We introduce the predictive processing delay, TCID,PID according to the cell ID (UE cell ID–CID) and the
packet type (packet type ID–PID). Hence, we define the k-th predictive processing delay as TCID,PID(k)
and modified predictive processing delay T′CID,PID(k), which applies the carried information with
weight (1− α) by

T′CID,PID(k) = α× TCID,PID(k) + (1− α)× Tin f o (1)

where Tin f o is the received information from the MME.
For a given session and UE, the processing delay can be very similar with its previous value

under the same UE load. Therefore, the proposed algorithm uses the previous value as a prediction
reference. The prediction result and statistics of past predictions are also considered. Whether the
previous prediction was successful can be confirmed through the decoding result of the preassigned
radio resource. The variation of the predictive processing delay follows these criteria: if the previous
prediction failed and the current probability, P, of successful delay prediction is smaller than the target
probability, Po, of successful delay prediction, then the PPE increases the predictive processing delay;
if the previous prediction succeeded and P is greater than Po, then the PPE reduces the predictive
processing delay; whereas the PPE holds previous value otherwise. The corresponding expression is:

TCID,PID(i) =


min

{(
1 + Γ ∗ Rup

)
× T′CID,PID(i− 1), Tmax

}
, i f P < Po and CRC = NOK;

max{(1− Γ ∗ Rdown)× T′CID,PID(i− 1), Tmin}, i f P > Po and CRC = OK;
T′CID,PID(i− 1), otherwise,

(2)
where:

• Γ = |P− Po|,
• Rdown and Rup are compensation steps,
• Rdown = Rup × (1− Po)/Po, and
• Tmax and Tmin are the upper and lower boundaries, respectively.

The variation step has a dependency on the target probability in (2). Hence, the predictive
processing delay has a slower decrease compared with the rate of increase, as the target probability
is larger. Γ has a role to reduce the variation step when the current probability of successful delay
prediction is close to the target probability. Algorithm 1 shows the corresponding algorithm to predict
the processing delay. The processing delay is estimated in lines 2 to 12, and the probability of successful
delay prediction is updated in lines 13 to 23. Furthermore, a window calculation is applied to reduce
the complexity and consider the most recent results, as described in lines 19 to 23. Initial values are
chosen based on the simulation result.



Sensors 2017, 17, 2008 12 of 22

Algorithm 1. Proposed prediction algorithm for processing delay in an NB-IoT network

1: Initialization: Po=0.9, P=0.0, Rup=0.5, Rdown= (1− Po)/Po, T(0)=0, α=0.8 for NAS/APP/IP packet, α=1.0
for RLC/RRC packet, CRC=0, k=1, Tmax=30,000, Tmin=10, Wp=256

2: Prediction:
3: k = k + 1
4: Γ = |P − Po|
5: T = α × T(k− 1) + (1 − α) × Tin f o
6: if P < Po and CRC = 0 then
7: T(k) = min{T × (1 + Γ× Rup), Tmax}
8: else if P > Po and CRC = 1 then
9: T(k) = max{T × (1 − Γ× Rdown), Tmin}
10: else
11: T(k) = T(k− 1)
12: endif

13: NPUSCH result update:
14: if NPUSCH_CRC = OK then
15: CRC = 1
16: else
17: CRC = 0
18: endif
19: if k < Wp then
20: P = (P× (k-1) + CRC)/k
21: else
22: P = (P× (Wp-1) + CRC)/Wp

23: endif

4.3. UE Procedure

Algorithm 2 describes the procedure to apply the PBESM in the UE side. The UE stores a
prescheduling command, which is transmitted via NPDSCH, and checks the stored prescheduling
command when the uplink packet occurred. If there is no pre-scheduling command, the UE follows the
legacy scheduling request procedure. However, if there is stored information, the UE defers the uplink
packet transmission until the prescheduled time without triggering the scheduling request procedure.

Algorithm 2. Proposed UE procedure in an NB-IoT network

1: Scheduling request procedure:
2: if scheduling request is triggered then
3: if scheduling command is already stored then
4: store uplink packet in the buffer.
5: delay uplink transmission by prescheduled time
6: else
7: process scheduling request procedure with RA
8: endif
9: endif
10: Uplink Scheduling Procedure:
11: if TX time equals scheduling command time then
12: if buffer is not empty then
13: process NPUSCH transmission
14: else
15: ignore NPUSCH
16: endif
17: endif
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On the other hand, if the eNB fails to predict the processing delay and the UE does not have
uplink packets to send at the prescheduled time, the UE does not send empty packets to save energy.
In this case, the UE does nothing at the prescheduled time and follows the legacy scheduling request
procedure when uplink packets are generated.

4.4. Uplink Procedure without Scheduling Request

Figure 12 compares the legacy NB-IoT and PBESM procedures for the scenario that the UE receives
a network command and sends the response message. For the NB-IoT, the random-access procedure is
performed to request uplink radio resources. However, the PBESM delays the uplink packet until the
prescheduled time, and the random-access procedure is not executed. In view the UE TX operation,
MSG1 and MSG3 procedures can be bypassed using proposed mechanism and battery consumption
for message transmission can be substantially reduced. Furthermore, if the predictive processing
delay is overestimated, the PBESM latency can be longer than that of the legacy NB-IoT procedure.
However, this can be mitigated by setting the maximum predictive delay to a smaller value than the
random-access procedure delay. Clearly, a large predictive processing delay improves the energy
consumption for more sessions by reducing the prediction failure, but it causes more transmission
latency. Hence, there is a tradeoff between latency and energy consumption.
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5. Simulation and Results

This section describes the system-level simulation and corresponding results to validate the
performance of the proposed PBESM for an NB-IoT network.

5.1. Simulation Setup

The parameters used to evaluate the proposed mechanism are listed in Table 2. The parameter
names, values, and ranges follow the 3GPP specification [18]. The eNB scheduler is designed to select a
small value to minimize the active time as much as possible. For the same reason, we assumed that the
eNB and MME support release assistance indicator functionality, which means that the eNB can release
the radio bearer immediately after the last packet transmission without monitoring the packet activity.

Table 2. Simulation parameters.

Parameter Value

ul_K0_for_DCI_formatN0 8 ms
ul_K0_for_DCI_formatN0_for_random-access response 12 ms

dl_K0_for_DCI_formatN1 0
k0_for_ack_nack_pusch 13
NPRACH cyclic prefix0 267 µs

Number of uplink subcarrier 6, fixed
Scheduling size for MSG3 88 bits

According to the 3GPP specification [19], cells classify the UEs into three coverage-enhancement
levels depending on the radio condition. We classified the channel condition into good, medium, and
bad conditions according to the MCL. Each channel condition is designed to have a 10 dB difference in
MCL. The simulation metrics for each channel condition are listed in the Table 3.
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Table 3. Parameters for Each Channel Quality According to MCL.

Parameter Good
(144 dB)

Medium
(154 dB)

Bad
(164 dB)

NPRACH periodicity 80 ms 640 ms 1280 ms
Number of repetitions for NPDCCH 4 32 64
NPDCCH StartSF CSS for USS 2 16 32
Number of repetition for NPUSCH 2 16 32
Number of repetition for NPDSCH 16 128 256
Number of repetitions for HARQ ACK/NACK 8 64 128
Number of repetitions per preamble attempt 8 64 128
NPDCCH number of repetitions for random access 4 32 64
NPDCCH StartSF CSS for random access 2 6 32

NPUSCH carrier spacing 15 kHz
Multitone

15 kHz
Multitone

3.75 kHz
Simgle-tone

5.1.1. Simulation Scenario

We used five application-layer scenarios for performance evaluation as shown in Table 4. Case 1
corresponds to a UE report scenario, such as the periodic metering service [20], where the IoT device
reports sensor values to the network using non-IP packets and receives an acknowledgment from
the network to complete the session. In case 2, the application server checks the device status and
sensor value. As in case 1, non-IP packets are used, but the session is triggered by a network command
and finishes with the UE response and consequent network acknowledgment. Cases 3 to 5 have the
same scenario as case 2 but employ IP. Cases 3 and 4 use CoAP/DTLS/UDP that is generally used in
IP-based IoT systems [21]. Case 3 includes an initial context creation procedure for DTLS connection,
and case 4 considers that the DTLS context already exists, but resuming is necessary. Finally, TCP is
used in case 5, but it reduces the header size by robust header compression.

Table 4. Scenarios.

Scenario Case 1 Case 2 Case 3 Case 4 Case 5

UE report scenario X
Network command scenario X X X X

Non-IP X X
IP X X X

CoAP/DTLS/UDP X X
Initial security context creation X

Resuming security context X
TCP X

5.1.2. Energy Consumption According to UE Power State

The power consumption according to the UE state was based on the value used in the 3GPP
NB-IoT evaluation as listed in Table 5 [22]. The energy consumption is calculated using the power and
the duration of each state.

Table 5. Power Consumption According to UE State.

State Power Assumption

TX 460 mW 23 dBm (50% power amplifier efficiency) and 60 mW (other circuitry)
RX 60 mW Includes digital mixing/decimation and demodulation
Sleep 3 mW Maintains accurate timing (keeping RFs)
Deep sleep 0.016 mW Common assumption (RTC)
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5.1.3. Processing Delay Distribution

The Pareto distribution was used for the processing delay to generate a downlink packet response.
Scale parameter X m was 300 ms for the highest layer protocol over RRC and 80 ms for the other layers.
We set tail index of the Pareto distribution between 2 and 4.

5.2. Simulator Evaluation

Figure 13 shows the simulation results of the non-IP UE report scenario that is used in the 3GPP
NB-IoT evaluation to confirm the simulator performance. In this scenario, the application report is
piggybacked to an RRC connection setup complete message, and the session is completed immediately
after. The figure shows the energy consumption and active time at which the UE operates from its
activation to the transmission completion according to the channel condition. As the channel quality
improves and the session time reduces, the RX time is considerable in the total active time due to the
acquisition of the master information block. This acquisition verifies the radio frame number after
waking up from the deep-sleep state. Furthermore, as the channel quality reduces, both the active time
and energy consumption increase. However, the growth rate for the energy consumption is larger than
that of the active time, given the increase in the proportion of time in the TX state that consumes more
energy than the other states.
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5.3. Results

Figure 14 shows the active time for the case of legacy NB-IoT, PBESM, and ideal prediction.
The ideal prediction is the case that applies the proposed mechanism, but it corresponds to a PPE
prediction of processing delay with 0% error and it can be regarded as the improvement limit for
the processing delay prediction. We considered a target probability of successful delay prediction
of 90% and a tail index of 3 for the Pareto distribution. The ideal prediction can reduce the active
time from 8% to 23% according to the channel condition and compared with the legacy NB-IoT.
For the PBESM, the active time only reduces from 5% to 16% for the medium and bad channel quality.
This performance difference is caused by the prediction error of the processing delay. In contrast, for a
good channel quality, the active time rises by up to 8% depending on the scenario. The reason is that
for a good channel quality, the time taken for random access is smaller than the prediction error of the
proposed mechanism.
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For energy consumption, the PBESM outperforms the legacy NB-IoT from 10% to 34% regardless
of the channel quality, as shown in Figure 15. We can see that there is a slight decline in performance
from 3% to 5% compared to the ideal prediction. Given that the uplink transmission is delayed by
the prediction error, the total active time for one session can increase, but the radio transmission
time and energy consumption decrease. Hence, the proposed scheme is effective in terms of energy
consumption. For instance, when we assume a scenario of a metering device with a 5 Wh AA battery
and check the energy consumption everyday through the network, the battery life is 12.26 years for
case 4 and medium channel quality in the legacy IoT, but it increases to 15.95 years by applying the
proposed mechanism.
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ideal prediction.

Figure 16 shows the energy consumption and active time according to the processing delay
distribution and target probability of successful delay prediction obtained from the PBESM algorithm.
These results correspond to case 4 for a good channel quality. A high target probability of successful
delay prediction in the PPE results in energy saving across more sessions. However, the prediction
error also increases and time to complete the transmission becomes excessively larger than that for
the legacy NB-IoT. In real environments, the target probability should consider the quality-of-service
deadline of the session. For medium and bad channel quality, we recommend using 90% as the
target probability. Considering the processing delay distribution, as the tail index becomes larger,
the processing delay can be predicted with a smaller error; thus, it can improve both active time and
energy consumption.
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5.4. Prediction of Processing Delay

The energy consumption using the PBESM (E(i,j)
PBESM) should be smaller than that using the legacy

NB-IoT procedure (E(i,j)
legacy), where i is the CID and j is the PID. The energy consumed by the legacy

NB-IoT is
E(i,j)

legacy
∼=
(

T(i)
NPRACH + T(i,j)

MSG3 + T(i,j)
NPUSCH

)
·PW(i)

TX

+
(

T(i)
NPDCCH + T(i)

RAR + T(i)
NPDCCH

)
·PW(i)

RX + T(i)
GAP·PW(i)

sleep

(3)

where TX is the execution time for procedure X including retransmission, PWX is the required power
for procedure X, RAR is random-access-response procedure and GAP is the time gap between NPRACH



Sensors 2017, 17, 2008 20 of 22

and RAR. In Equation (3), we assume that the energy by waiting for an NPRACH opportunity is
negligible. On the other hand, the energy consumed using the proposed scheme is

E(i,j)
PBESM = P(i,j)

o ·(T(i,j)
o ·PW(i)

sleep + T(i,j)
NPUSCH ·PW(i)

TX) +
(

1− P(i,j)
o

)
·E(i,j)

legacy (4)

where Po is the target probability of successful delay prediction and To is the predicted processing
delay. When the prediction succeeds, it is possible to save energy from the random-access procedure;
otherwise, it uses same energy as the legacy NB-IoT procedure. Considering E(i,j)

legacy ≥ E(i,j)
PBESM,

Equations (3) and (4) become

T(i,j)
o ≤ T(i)

NPRACH−GAP +
(

2·T(i)
NPDCCH + T(i)

RAR

)
·PW(i)

RX′ +
(

T(i)
NPRACH + T(i,j)

MSG3

)
·PW(i)

TX′ (5)

where the power ratios with respect to the sleep power are PW(i)
RX′ = PW(i)

RX/PW(i)
sleep and PW(i)

TX′ =

PW(i)
TX/PW(i)

sleep. For example, PW(i)
RX′ =

60 mW
3 mW = 20 and PW(i)

TX′ =
460 mW

3 mW = 153.3 for the metrics used
in the simulation. Equation (5) shows the upper boundary of the predicted processing delay, and we
notice that a high ratio of transmission to sleep power allows a wide margin for the prediction error.

5.5. Probability of Successful Prediction

When the prediction entities fail to predict the processing delay or uplink occurrence, the UE
avoids transmitting an empty packet at the prescheduled time, thus preventing battery consumption.
However, the radio resources reserved for NPUSCH are not used and reduce the cell capacity.
To generalize the unused radio resource, we compare the radio resources of the legacy NB-IoT
procedure with those of the proposed PBESM:

P(i,j)
ul ·N

(i,j)
legacy ≥ P(i,j)

ul

{
P(i,j)

s ·N(i,j)
PBESM +

(
1− P(i,j)

s

)
N(i,j)

legacy

}
+
(

1− P(i,j)
ul

)(
1− P(i,j)

s

)
·N(i,j)

NPUSCH (6)

where:

• P(i,j)
s is the target probability of successful prediction for the uplink packet occurrence,

• P(i,j)
ul is the probability of uplink packet occurrence to the downlink packet in the NB-IoT

device, and
• N(i,j)

X the number of the radio resource units for procedure X including repeating transmission.

The number of radio resources used in the legacy NB-IoT and proposed scheme are, respectively,

N(i,j)
legacy = N(i)

NPRACH + N(i)
NPDCCH_RAR + N(i)

NPDSCH_RAR + N(i,j)
NPUSCH_MSG3 + N(i,j)

NPDCCH + N(i,j)
NPUSCH (7)

N(i,j)
PBESM = P(i,j)

o ·N(i,j)
NPUSCH +

(
1− P(i,j)

o

)
·(N(i,j)

NPUSCH + N(i,j)
legacy

)
. (8)

Then, Equation (6) becomes

P(i,j)
o ≥

N(i,j)
NPUSCH

N(i,j)
legacy

×ϕ(i,j) (9)

where ϕ(i,j) =

(
1− 1

P(i,j)
ul

)
·
(

1− 1
P(i,j)

s

)
+ 1 ≥ 1.

Equation (9) shows that the lower boundary for the target probability is proportional to the ratio
between the number of resources for NPUSCH and the legacy procedure. In addition, the target
probability should increase with the uplink packet size.
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6. Conclusions

In this paper, we introduced the energy consumption problem caused by the scheduling request
procedure in the NB-IoT network. NB-IoT characteristics such as repeating transmission of NPUSCH
and NPRACH, increase energy consumption in an IoT device, thus notably decreasing the battery life.
As a solution, we propose the PBESM to reduce energy consumption by decreasing the number of
scheduling request procedures. The PBESM predicts the uplink occurrence through inspection of the
packet header and classification of the predictable message. Furthermore, it measures the response time
for each session and predicts the processing delay following the proposed algorithm. A network-level
simulation showed that the PBESM can achieve from 10% to 34% battery saving in different scenarios
and improve the total active time per session by up to 16%, if compared to the legacy NB-IoT. Even in
the worst case that corresponds to a very short time session with good channel quality, the active time
increased to some extent, but the energy consumption was dramatically reduced.

Further works will include a software-defined network architecture to enhance packet inspection.
Moreover, we will investigate the effect of contention resolution in a multiuser scenario. We expect
that the failure of contention resolution will decrease and the PBESM will raise the cell capacity.

Overall, the proposed mechanism does not require any special hardware on an IoT device,
but a simple modification in the network entities including packet inspection and delay prediction.
We believe that our mechanism can contribute to successful deployment of NB-IoT networks.
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